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Abstract. We consider a class of semilinear elliptic system of the form:

− Δu(x, y) + ∇W (u(x, y)) = 0, (x, y) ∈ R
2, (0.1)

where W : R2 → R is a double well potential with minima a± ∈ R
2. We

show, via variational methods, that if the set of minimal heteroclinic
solutions to the one-dimensional system −q̈(x)+∇W (q(x)) = 0, x ∈ R,
up to translations, is finite and constituted by not degenerate functions,
then Eq. (0.1) has infinitely many solutions u ∈ C2(R2)2, parametrized
by an energy value, which are periodic in the variable y and satisfy
limx→±∞ u(x, y) = a± for any y ∈ R.
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1. Introduction

We consider semilinear elliptic system of the form:

− Δu(x, y) + ∇W (u(x, y)) = 0, (x, y) ∈ R
2, (1.1)

where W ∈ C2(R2) satisfies

(W1) There exist a± ∈ R
2, such that W (a±) = 0, W (ξ) > 0 for every

ξ ∈ R
2\{a±} and D2W (a±) are definite positive.

(W2) There exists R > 0, such that inf |ξ|=R W (ξ) = w0 > 0 and
∇W (ξ)ξ ≥ 0 for |ξ| > R;
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The problem of existence of differently shaped entire solutions for equa-
tions or systems of the form (1.1) has been widely studied in the last years,
both in the autonomous or non-autonomous cases (see [3,7,8,10–18,21–27]
and the references therein).

Here, we look for solutions u ∈ C2(R2)2 of (1.1) satisfying the asymp-
totic conditions:

lim
x→±∞ u(x, y) = a± uniformly w.r.t. y ∈ R. (1.2)

Problems (1.1)–(1.2) arise considering the reaction-diffusion system

∂tu(x, y) − ε2Δu(x, y) + ∇W (u(x, y)) = 0, (x, y) ∈ Ω ⊂ R
2 (1.3)

in the limit as ε → 0+. Solutions to (1.3) converge almost everywhere to
global minima of W and sharp phase interfaces appear (see [19,29,31]) with
the first term in the expansion represented by solution to (1.1)–(1.2).

The problem of existence of planar solutions to (1.1)–(1.2) was stud-
ied by Alama et al. in [1] under the additional symmetry condition on the
potential:

(W3) W (−ξ1, ξ2) = W (ξ1, ξ2) for any (ξ1, ξ2) ∈ R
2.

In [1] is first considered the set of one-dimensional minimal solutions to
(1.1)–(1.2), that is, the set of solutions to{−q̈(x) + ∇W (q(x)) = 0, x ∈ R

lim
x→±∞ q(x) = a±.

(1.4)

which are, furthermore, minima of the action

V (q) =
∫
R

1
2 |q̇|2 + W (q) dx

on the class of symmetric functions

Γs = {q ∈ H1(R)2 | q(±∞) = a± and q(−x) = (−q1(x), q2(x))}.

Denoting Ms = {q ∈ Γs | V (q) = infq∈Γs
V (q)} in [1], it is proved that

if Ms is a finite set, i.e., if Ms = {q1, . . . , qk} with k ≥ 2 and qi �= qj when
i �= j, then there exists a solution v ∈ C2(R2)2 to (1.1) and (1.2) which is
asymptotic as y → ±∞ to two different one-dimensional solutions q± ∈ Ms.

The result in [1] was strengthen in [2] where assuming (W1), (W2), and
(W3) and adapting to the vectorial case an energy constrained variational
argument used in [4–6,9], it is shown that (1.1)–(1.2) admit infinitely many
planar solutions whenever the set of one-dimensional minimal symmetric het-
eroclinic solutions is not a continuum. More precisely, a first result states that
if Ms decomposes in the union of two disjoint set:

(∗s) Ms = Ms,+ ∪ Ms,− with distL2(R)2(Ms,+,Ms,−) > 0,

then, there exists a solution um ∈ C2(R2)2 of (1.1)–(1.2) verifying um(·, y) ∈
Γs for all y ∈ R and distL2(R2)2(um(·, y),Ms,±) → 0 as y → ±∞. Together
with this first existence result, in [2], it is proved the existence of infinitely
many energy prescribed solutions of (1.1)–(1.2). To give an idea of the result,
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let us observe that any solution u of (1.1)–(1.2) verifying u(·, y) ∈ Γs for all
y ∈ R can be roughly seen as a trajectory y ∈ R �→ u(·, y) ∈ Γs, solution to
the infinite dimensional Lagrangian system:

d2

dy2
u(·, y) = V ′(u(·, y)).

Since y is cyclic in the equation, the corresponding energy is conserved
along such solutions, i.e., the function Eu(y) = 1

2‖∂yu(·, y)‖2
L2(R)2 −V (u(·, y))

is constant on R (see [20] for more general identities of this kind). In particu-
lar, denoting m = minΓs

V , the above solution um is such that Eum
(y) = −m

for every y ∈ R and it connects as y → ±∞ the two disjoint parts Ms,± of
the level set {q ∈ Γs |V (q) ≤ m}. In [2], this kind of result is generalized
to different value of the energy. Indeed, if b ∈ (m,m + λ) with λ > 0 small
enough, by (∗s), the sublevel set {q ∈ Γs |V (q) ≤ b} separates into two well
disjoint parts: {q ∈ Γs |V (q) ≤ b} = Vb

− ∪Vb
+ with distL2(Vb

−,Vb
+) > 0. Theo-

rem 1.2 in [2] establishes in particular that for any b ∈ (m,m+λ), there exists
a solution ub ∈ C2(R2)2 of (1.1) and (1.2) with energy Eub

(y) = −b which
connects (periodically or asymptotically depending on whether the value b is
regular or not for V ) the set Vb

− and Vb
+.

Both the papers [1] and [2] use minimization arguments and the sym-
metry assumption (W3) is used to obtain compactness in the problem. The
existence problem for planar solutions of (1.1) and (1.2) avoiding the use
of the symmetry condition (W3) was first done by M. Schatzman in [30]. To
overcame the difficulties due to lack of compactness, in [30], it is assumed that
the set of (geometrically distinct) minimal one-dimensional heteroclinic con-
nections consists of two elements which are supposed to be non-degenerate,
i.e., the kernels of the corresponding linearized operators are one dimension.
In [30], it is shown that this assumption is generically satisfied by potentials
W satisfying (W1) and (W2).

Precisely, letting z0 any smooth function, such that z0(x) = a+ for x > 1
and z0(x) = a− for x < −1 and defining

Γ = z0 + H1(R), m = inf
Γ

V, M = {q ∈ Γ | V (q) = m}.

It is well known that (W1) and (W2) are sufficient to guarantee that M �= ∅.
Then, in [30], it is assumed that

(∗)–(i) There exists z− �= z+ ∈ Γ such that

M = {z−(· − t), z+(· − s) | t, s ∈ R}.

(∗)–(ii) The operators A± : H2(R)2 ⊂ L2(R)2 → L2(R)2, A±h = −ḧ +
D2W (z±)h, are such that Ker(A±) = span{ż±}.

By the discreteness assumption (∗)–(i), the minimal set M decomposes in
the disjoint union of the set of the translated of z− and z+:

M = C(z−) ∪ C(z+)

where we denote C(z±) = {z±(·−s) | s ∈ R}. The non-degeneracy assumption
(∗)-(ii) implies, roughly speaking, that in the directions orthogonal to C(z±),
V has a local quadratic behaviour (see Lemma 2.11 below) which allows to
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avoid sliding phenomena for the minimizing sequence of the problem along
the (non-compact) sets C(z±). In [30], it is proved that if (W1), (W2), and (∗)
are satisfied (with W ∈ C3(R2)), then there exists u ∈ C2(R2)2 solution of
(1.1) and (1.2), such that limy→±∞ u(x, y) = z±(x−s±) for certain constants
s± ∈ R.

The aim of the present paper is to obtain as in [2] energy prescribed
solutions in the non-symmetric setting studied in [30]. Indeed by (∗)-(i), anal-
ogously to what happens in the symmetric case, we have that if λ > 0 is
sufficiently small and b ∈ (m,m + λ), then

{q ∈ Γ |V (q) ≤ b} = Vb
− ∪ Vb

+ with distL2(Vb
−Vb

+) > 0,

and we prove that there is a solution vb of (1.1), (1.2) with energy Evb
= −b

which connects in a periodic way the sets Vb
±. More precisely

Theorem 1.1. Let W ∈ C2(R2) be such that (W1), (W2) and (∗) are satisfied.
Then, there exists λ0 > 0, such that for any b ∈ (m,m + λ0), there are
vb ∈ C2(R2)2 and Tb > 0, such that vb solves (1.1)–(1.2) on R

2, and moreover
(i) Evb

(y) = 1
2‖∂yv(·, y)‖2

L2(R)2 − V (v(·, y)) = −b for all y ∈ R.
(ii) vb(·, 0) ∈ Vb

−, vb(·, Tb) ∈ Vb
+ (and so ∂yv(·, 0) = ∂yv(·, T ) = 0).

(iii) vb(·,−y) = vb(·, y) and vb(·, y + T ) = vb(·, T − y) for any y ∈ R.
(iv) V (vb(·, y)) > b for y ∈ (0, T ).

Note that the solution vb is a periodic solution of period 2Tb being
symmetric with respect to y = 0 and y = Tb. As a trajectory, the function
y ∈ R → vb(·, y) ∈ Γ oscillates back and forth along a simple curve inside
the set {q ∈ Γ | V (q) > b} connecting the two turning points at its boundary
vb(·, 0) ∈ Vb

− and vb(·, Tb) ∈ Vb
+. In the dynamical system language, we can

say (see [32]) that vb is a brake orbit solution of (1.1) and (1.2).
To prove Theorem 1.1, we apply an energy constrained variational argu-

ment analogous to the one used in [2] (see also [3–6,9] for different problems
in the scalar situation). Given b ∈ (m,m + λ0), we look for minima of the
renormalized functional

ϕ(v) =
∫
R

1
2‖∂yv(·, y)‖2

L2(R)2 + (V (v(·, y)) − b) dy

on the class of functions u ∈ H1
loc(R

2)2, such that u(·, y) ∈ Γ for almost every
y ∈ R and which verify the constraint condition:

lim inf
y→±∞ distL2(R)2(u(·, y),Vb

±) = 0 and inf
y∈R

V (u(·, y)) ≥ b.

The lack of compactness due to the lack of symmetry in the problem is
overcome using (∗). The quadratic behaviour of the functional V around the
sets C(z±) allows us to adapt to the present context some arguments devel-
oped in [9] to control sliding phenomena constructing a suitably precompact
minimizing sequence (vn) (see Lemma 3.12). Denoting v̄ its weak limit and
defining σ̄ = sup{y ∈ R / v̄(·, y) ∈ Vb

−} and τ̄ = inf{y > σ̄ / v̄(·, y) ∈ Vb
+}, we

prove that σ̄ < τ̄ ∈ R, v̄(·, σ̄) ∈ Vb
−, v̄(·, τ̄) ∈ Vb

+ and V (v̄(·, y)) > b for any y ∈
(σ̄, τ̄). From the minimality properties of v̄, we recover that v̄ solves in a clas-
sical sense (1.1)–(1.2) on R×(σ̄, τ̄) and Ev̄(y) = −b for any y ∈ (σ̄, τ̄). Then, v̄
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satisfies the boundary conditions limy→σ̄+ ∂y v̄(·, y) = limy→τ̄− ∂y v̄(·, y) = 0,
and the solution vb is constructed from v̄ by translations, reflections, and
periodic continuation.

We conclude with a brief outline of the paper. In Sect. 2, we present
a list of preliminary properties of the one-dimensional problem studying in
particular some consequences of the assumption (*). In Sect. 3, we introduce
our variational framework and prove Theorem 1.1.

Remark 1.1. We precise some consequences of the assumptions (W1)− (W2),
fixing some constants and notation. For all x ∈ R

2, we set

χ(x) = min{|x − a−|, |x − a+|}.
First, we note that since W ∈ C2(R) and D2W (a±) are definite positive, then

∀ r > 0∃ωr > 0 such that if χ(x) ≤ r then W (x) ≥ ωrχ(x)2. (1.5)

Then, since W (a±) = 0, DW (a±) = 0, and D2W (a±) are definite
positive, we have that there exists δ ∈ (0, 1

8 ) two constants w > w > 0, such
that if χ(x) ≤ 2δ, then

4w|ξ|2 ≤ D2W (x)ξ · ξ ≤ 4w|ξ|2 for all ξ ∈ R
2, (1.6)

and
wχ(x)2 ≤ W (x) ≤ wχ(x)2 and |∇W (x)| ≤ 2wχ(x). (1.7)

Finally, given q1, q2 ∈ L2(R)2, we denote ‖q1‖ ≡ ‖q1‖L2(R)2 , 〈q1, q2〉 ≡
〈q1, q2〉L2(R)2 , and given A, B ⊂ L2(R)2, we denote

dist(A,B) = inf{‖q1 − q2‖ | q1 ∈ A, q2 ∈ B}.

2. The potential functional

Preliminaries. In this section, we recall and list some well-known properties
of the functional

V (q) =
∫
R

1
2
|q̇|2 + W (q) dt

on the space Γ = z0 + H1(R)2. Endowing Γ with the Hilbertian structure
induced by the map Q : H1(R)2 → Γ, Q(z) = z0 +z, we have that V ∈ C2(Γ)
and that critical points of V are classical solutions to the one-dimensional
heteroclinic problem associated to (1.1), that is{−q̈(t) + ∇W (q(t)) = 0, t ∈ R,

lim
t→±∞ q(t) = a±.

(2.1)

In particular, we are interested in the minimal properties of V on Γ and we
set

m = inf
Γ

V and M = {q ∈ Γ | V (q) = m}
More generally, if I is an interval in R, we set

VI(q) =
∫

I

1
2 |q̇(t)|2 + W (q(t)) dt,
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noting that VI is well defined on H1
loc(R)2 with values in [0,+∞] for any

I ⊂ R.

Note that if q ∈ H1
loc(R)2 is such that W (q(t)) ≥ μ > 0 for all t ∈

(σ, τ) ⊂ R, then

V(σ,τ)(q) ≥ 1
2(τ−σ) |q(τ) − q(σ)|2 + μ(τ − σ) ≥

√
2μ |q(τ) − q(σ)|. (2.2)

As consequence, by (W2), we obtain

Lemma 2.1. For any λ > 0, there exists Rλ > 0, such that if q ∈ Γ and
‖q‖L∞(R)2 ≥ Rλ, then V (q) ≥ m + λ.

Remark 2.2. By Lemma 2.1, we can fix Rm ≥ R, such that if ‖q‖L∞(R)2 ≥ Rm

and q ∈ Γ, then V (q) ≥ 2m.

By Lemma 2.1, if (qn) ⊂ {V ≤ m + λ} := {q ∈ Γ / V (q) ≤ m + λ}, then
‖qn‖L∞(R) ≤ Rλ and ‖q̇n‖L2(R)N ≤ 2(m + λ) for any n ∈ N. Hence, by the
semicontinuity of the L2 norm with respect to the weak convergenze and the
Fatou Lemma, we recover

Lemma 2.3. Let (qn) ⊂ {V ≤ m + λ} for some λ > 0. Then, there exists
q ∈ H1

loc(R)2 with ‖q‖L∞(R)2 ≤ Rλ, such that, along a subsequence, qn → q in
L∞

loc(R)2, q̇n → q̇ weakly in L2(R)2, and moreover, V (q) ≤ lim infn→∞ V (qn)

We can strength the result in Lemma 2.3 when λ is sufficiently small
proving that, in this case, the set {V ≤ m + λ} is weakly precompact with
respect to the H1

loc(R)2 topology. To this aim, observe first that using (2.2)
and (1.7), one obtains

Lemma 2.4. For all δ ∈ (0, 2δ) if q ∈ Γ, t− < t+ ∈ R are such that |q(t±) −
a±| = δ, then

V(t−,t+)(q) ≥ m − δ2(1 + 2w).

Then, fixing δ0 ∈ (0, δ) and setting μ0 = inf{W (ξ) | χ(ξ) ≥ δ0} > 0, we
choose a constant:

λ̄ ∈ (0,min{
√

μ0/2 δ, δ2
0(1 + 2w)}). (2.3)

Moreover, given q ∈ Γ, we define

σq = sup{t ∈ R / |q(t) − a−| ≤ δ0} and τq = inf{t > σq / |q(t) − a+| ≥ δ0}.

Since q ∈ Γ and it is continuous, we have σq < τq ∈ R and

|q(σq) − a−| = |q(τq) − a+| = δ0 and χ(q(t)) > δ0 for all t ∈ (σq, τq). (2.4)

There results

Lemma 2.5. There exists L0 > 0, such that for every q ∈ {V ≤ m + λ̄}, we
have

(i) τq − σq ≤ L0.
(ii) If t < σq, then |q(t) − a−| ≤ 2δ, and if t > τq, then |q(t) − a+| ≤ 2δ.
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Proof. By (2.2) and (2.4), we have V(σq,τq)(q) ≥ μ0(τq − σq) and since
V(σq,τq)(q) ≤ V (q) ≤ m + λ̄, (i) follows with L0 = (m + λ̄)/μ0.

To prove (ii), assume by contradiction that there exists σ < σq, such
that |q(σ)−a−| > 2δ or τ > τq, such that |q(τ)−a+| > 2δ. In both the cases,
there exists an interval (t−, t+) ⊂ R\(σq, τq), such that |χ(q(t))| ≥ δ for any
t ∈ (t−, t+) and |q(t+) − q(t−)| = δ. Then, W (q(t)) ≥ μ0 for any t ∈ (t−, t+),
and hence, by (2.2) and (2.3), V(t−,t+)(q) ≥ √

2μ0 δ > 2λ̄. By Lemma 2.4, we
conclude m + λ0 ≥ V (q) ≥ V(σq,τq)(q) + V(x−,x+)(q) > m − δ2

0(1 + 2w) + 2λ̄ >

m + λ̄, a contradiction which proves (ii). �

The concentration property of the functions q ∈ {V ≤ m+ λ̄} described
in Lemma 2.5 allows us to obtain the following compactness result.

Lemma 2.6. Let (qn) ⊂ {V ≤ m + λ̄} be such that the sequence (σqn
) is

bounded in R. Then, there exists a subsequence (qnk
) ⊂ (qn) and q ∈ Γ,

such that qnk
− q → 0 weakly in H1(R)2. Moreover, if V (qnk

) → V (q), then
qnk

− q → 0 strongly in H1(R)2.

Proof. By Lemma 2.3, there exists a subsequence (qnk
) ⊂ (qn), q ∈ H1

loc(R)2,
such that q̇ ∈ L2(R)2, ‖q‖L∞(R) ≤ Rλ̄, qnk

→ q weakly in H1
loc(R)2, q̇nk

→ q̇

weakly in L2(R)2. For the first part of the lemma, we have to show that q ∈ Γ
and that qnk

− q → 0 weakly in L2(R)2.
To this aim note that since the sequence (σqn

) is bounded in R and
(qn) ⊂ {V ≤ m + λ̄}, by Lemma 2.5, there exists T0 > 0, such that for any
n ∈ N

if t < −T0 then |qn(t)−a−| ≤ 2δ and if t > T0 then |qn(t)−a+| ≤ 2δ. (2.5)

By the L∞
loc convergence, we derive

if t < −T0 then |q(t) − a−| ≤ 2δ and if t > T0 then |q(t) − a+| ≤ 2δ. (2.6)

Then, by (1.7) and (2.6), we have∫
t<−T0

|q − a−|2dt =
∫

t<−T0

χ(q)2dt

≤ 2
w

∫
t<−T0

W (q)dt ≤ 2
wV (q) ≤ 2

w (m + λ̄)

and analogously
∫

t>T0
|q − a+|2 ≤ 2

w (m + λ̄). Since we already know that
q̇ ∈ L2(R)2, this implies that q − z0 ∈ H1(R)2, i.e., q ∈ Γ.
By (1.7) and (2.5), we obtain also

∫
|t|>T0

χ(qn)2dt ≤ 4
w (m+ λ̄) for any n ∈ N,

and so, by Lemma 2.1, the sequence ‖qn − q‖L2(R)2 is bounded. This implies,
as we claimed, that qnk

− q → 0 weakly in L2(R)2.
To prove the second part of the lemma, assume V (qnk

) → V (q). Since
qnk

→ q in L∞
loc(R) and q̇nk

→ q̇ weakly in L2(R), given any T ≥ T0, we have

V (qnk
)−V (q) =

1
2
‖q̇nk

−q̇‖2+
∫

|t|>T

W (qnk
)−W (q) dt+o(1), as k → ∞

and since V (qnk
) → V (q), we derive
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1
2
‖q̇nk

− q̇‖2 + ∫
|t|>T

W (qnk
) dt =

∫
|t|>T

W (q) dt+o(1), as k → ∞. (2.7)

By (1.7) and (2.5), we have W (qnk
(t)) ≥ wχ(qnk

(x))2 for |t| ≥ T0, and
so, by (2.7)

1
2
‖q̇nk

− q̇‖2 + w

∫
|t|>T

χ(qnk
)2 dt ≤

∫
|t|≥T

W (q) dt + o(1), as k → ∞.

(2.8)
By (2.5), for |t| ≥ T0, we have |qnk

(t)−q(t)|2 ≤ 2(χ(qnk
(t))2 +χ(q(t))2).

Since for any η > 0, we can choose Tη ≥ T0, such that
∫

|t|>Tη
W (q) dt +

w
∫

|t|>Tη
χ(q)2 dt < η/2, by (2.8), we finally obtain

1
2
‖q̇nk

− q̇‖2 + w

∫
|t|>Tη

|qnk
− q|2dt ≤ η + o(1) as k → +∞.

Since η is arbitrary and qnk
→ q in L∞

loc(R)2, we conclude ‖qnk
−

q‖H1(R)2 → 0 as k → ∞ and the lemma is proved. �

By Lemma 2.6, we derive in particular the compactness of the minimiz-
ing sequences of V in Γ.

Lemma 2.7. Let (qn) ⊂ Γ be such that V (qn) → m. Then, there exists q ∈ M,
such that, along a subsequence, ‖qn(· + σqn

) − q‖H1(R)2 → 0 as n → ∞.

Remark 2.8. Lemma 2.7 readily implies the following property: for any r > 0,
there exists λr > 0, such that

if inf
q̄∈M

‖q − q̄‖H1(R)2 ≥ r then V (q) ≥ m + λr. (2.9)

Consequences of the assumption (∗). Recall the assumption:
(∗)–(i) There exists z− �= z+ ∈ Γ, such that

M = {z−(· − t), z+(· − s) | t, s ∈ R}.

(∗)–(ii) The operators A± : H2(R)2 ⊂ L2(R)2 → L2(R)2, A±h = −ḧ +
D2W (z±)h are such that Ker(A±) = span{ż±}.

Here, below z will denote any one of the functions z±, and A the corre-
sponding operator. Since z is a minimum for V on Γ, we have V ′′(z)hh ≥ 0
for any h ∈ H1(R)2; since V ′′(z)hk =

∫
R

ḣ · k̇ + W ′′(z)hk dx = 〈Ah, k〉 for
any h, k ∈ H2(R)2, we derive that A is a positive self-adjoint operator. The
assumption (∗) implies, moreover, the following.

Lemma 2.9. There exists μ̄ > 0, such that

V ′′(z)hh ≥ μ̄‖h‖2
H1(R)2 , ∀h ∈ H1(R)2 / 〈h, ż〉 = 0.

Proof. Let w0 be the minimum of the lowest eigenvalues of D2W (a−) and
D2W (a+), then the essential spectrum of A is [w0,+∞). Since Ker(A) =
span{ż}, we have that 0 is a simple eigenvalue of A, whose eigenspace is
span{ż}, and since we already know that 〈Ah, h〉 = V ′′(z)hh ≥ 0 for any
h ∈ H2(R)2, 0 is the minimum eigenvalue of A. By the min–max eigenvalue
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characterization ([28], Theorem XIII.1), we have σ(A) ∩ (−∞, w0] = {0 ≤
μ1 ≤ . . .}, where

μj = sup
X⊂H2(R),dimX=j

inf
ψ⊥X, ‖ψ‖=1

〈Aψ,ψ〉

We have that μ1 is either equal to w0 or strictly less than it. In any
case, since 0 is a simple eigenvalue, we obtain that μ1 > 0. If h ∈ H2(R)2

is such that h⊥ż, using, e.g., the resolution of the identity relative to A, we
obtain V ′′(z)hh = 〈Ah, h〉 ≥ μ1‖h‖2 for any h ∈ H2(R)2 such that h⊥ż. By
density

V ′′(z)hh ≥ μ1‖h‖2 for any h ∈ H1(R)2 such that h⊥ż. (2.10)

To conclude the proof, setting ω = maxt∈R |D2W (z(t))|, we note that if
h ∈ H1(R)2 is such that 〈h, ż〉 = 0, then∫

R

|∇h|2 + D2W (z)hhdt ≥ μ1‖h‖ ≥ −μ1

∫
R

D2W (z)
ω hhdt.

Hence,
∫
R

|∇h|2 + D2W (z)hhdt ≥ μ1
ω+μ1

‖∇h‖2 and the Lemma follows.
�

We now set

C(z) = {z(· − s) | s ∈ R}.

Note that the functions z − a±, ż, z̈, and
...
z are continuous on R and,

by (W1), converge exponentially to 0 as t → ±∞. Then, ż ∈ H2(R)2. In
particular, the function s ∈ R �→ z(· − s) ∈ Γ is C2 with respect to the H1

topology on Γ and d
dsz(·− s) = −ż(·− s) and d2

dm2 z(·− s) = z̈(·− s). We have

Lemma 2.10. There exists r̄ ∈ (0, 1), such that if q ∈ Γ and dist(q, C(z)) ≤
r̄, then there is a unique ζq ∈ R verifying ‖q − z(· − ζq)‖ = dist(q, C(z)).
Moreover

〈q − z(· − ζq), ż(· − ζq)〉 = 0.

Proof. We set c1 = ‖ż‖, c2 = ‖z̈‖, c3 = maxR |D2W (z(t))|, and let ρ(η) =
inf{‖z − z(· − s)‖ | |s| ≥ η} for η ≥ 0. Clearly, ρ(0) = 0, 0 < ρ(η1) < ρ(η2)
whenever 0 < η1 < η2 and ρ(η) → +∞ as η → +∞. Moreover, ‖z(· − s1) −
z(· − s2)‖ ≥ ρ(|s1 − s2|) for any s1, s2 ∈ R. Let

η0 = min
{

1
2c1

, c1
c3

}
and 2r̄ = min

{
1,

c21
c2

, ρ(η0)
}

and let q ∈ Γ be such that dist(q, C(z)) ≤ r̄. Since the function s → ‖q − z
(· − s)‖2 is continuous and tends to +∞ as s → ±∞, we derive that there
exists ζq ∈ R, such that ‖q − z(· − ζq)‖ = dist(q, C(z)). We have

d
ds‖q − z(· − ζq)‖2 = 2〈q − z(· − ζq), ż(· − ζq)〉 = 0
d2

ds2 ‖q − z(· − ζq)‖2 = 2‖ż‖2 − 2〈q − z(· − ζq), z̈(· − ζq)〉 ≥ 2c2
1 − 2c2r̄ ≥ c2

1.

Moreover, if s ∈ R, since z̈ = ∇W (z) and 〈ż, z̈〉 = 0, we have

| d3

ds3 ‖q − z(· − s)‖2| = 2|〈q − z(· − s),D2W (z(· − s))ż(· − s)〉|
≤ 2c1c3‖q − z(· − s)‖. (2.11)
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Let s̄ ∈ R be such that ‖q − z(· − s̄)‖ = ‖q − z(· − ζq)‖. Clearly, ‖z
(·− s̄)−z(·−ζq)‖ ≤ 2r̄, and so, since 2r̄ ≤ ρ(η0), we have |s̄−ζq| ≤ η0. Then,
since z(· − s) = z(· − ζq) − ∫ s

ζq
ż(· − t) dt, we derive that for s between s̄ and

ζq, we have ‖z(· − s) − z(· − ζq)‖ ≤ c1|s̄ − ζq| ≤ η0c1, and so

‖q − z(· − s)‖ ≤ dist(q, C(z)) + η0c1 ≤ r̄ + η0c1.

By (2.11), we obtain that for any s between s̄ and ζq, we have

| d3

ds3 ‖q − z(· − s)‖2| ≤ 2(r̄ + η0c1)c3c1

and by the Taylor Formula and the choice of η0 and r̄, we obtain

‖q − z(· − s̄)‖2 ≥ dist(q, C(z))2 + c21
2 |s̄ − ζq|2 − 1

3 (r̄ + η0c1)c3c1η0|s̄ − ζq|2

≥ dist(q, C(z))2 + c21
6 |s̄ − ζq|2

which shows that s̄ = ζq. �

By Lemma 2.10 we can uniquely associate to any q ∈ Γ, such that
dist(q, C(z)) ≤ r̄, the nearest point z(· − ζq) in C(z) which, for the sake of
brevity in the notation, we will denote from now on with zq. Using Lemma 2.9,
we can further characterize the behaviour of V in a suitable H1-neighborhood
of C(z) in Γ.

Lemma 2.11. There exists r0 ∈ (0, r̄), such that if q ∈ Γ and distH1(R)2

(q, C(z)) ≤ r0, then

d2

ds2 V (zq + s(q − zq)) ≥ μ̄
2 ‖q − zq‖2

H1(R)2 for any s ∈ [0, 1].

Proof. Set W̄ = sup|ξ|≤‖z‖∞ |D3W (ξ)|. We claim that there exists r0 ∈ (0, r̄),
such that if distH1(R)2(q, C(z)) ≤ r0, then

sup
t∈R

|q(t) − zq(t)| ≤ μ̄
2W̄

. (2.12)

Indeed, let us assume by contradiction that there exists (qj) ⊂ Γ and
(sj) ∈ R, such that ‖qj − z(· − sj)‖H1(R)2 → 0 as j → +∞ and ‖qj −
zqj

‖L∞(R)2 > μ̄
2W̄

for any j ∈ N. Then, qj(· + sj) − z → 0 in H1(R)2, and
since ‖qj − zqj

‖ ≤ ‖qj − z(· − sj)‖H1(R)2 → 0, we derive that zqj
(·+ sj)− z =

z(·− ζqj
+ sj)− z → 0 in L2(R)2. This implies ζqj

− sj → 0 and consequently
zqj

(· + sj) − z → 0 in H1(R)2. Hence

‖qj − zqj
‖H1(R)2 ≤ ‖qj − z(· − sj)‖H1(R)2 + ‖zqj

− z(· − sj)‖H1(R)2 → 0
as j → +∞

in contradiction with the assumption ‖qj − zqj
‖L∞(R)2 > μ̄

2W̄
for any j ∈ N.

Now note that for any s ∈ [0, 1], we have |D2W (zq + s(q − zq)) − D2(zq)| ≤
W̄ |q − zq|, and so by (2.12)

|(V ′′(zq + s(q − zq)) − V ′′(zq))(q − zq)(q − zq)| ≤ μ̄
2 ‖q − zq‖2.

Since by Lemma 2.10, we have (q − zq)⊥ żq, by Lemma 2.9, we derive
that for any s ∈ (0, 1), we have



Vol. 19 (2017) Brake orbit solutions for semilinear 701

d2

ds2 V (zq+s(q − zq))=V ′′(zq + s(q − zq))(q − zq)(q − zq)≥ μ̄
2 ‖q − zq‖2

H1(R)2 .

�

Remark 2.12. By Lemma 2.11, we recover that if q ∈ Γ and distH1(R)2(q, C(z))
≤ r0, then

V ′(q)(q − zq) =
∫ 1

0

d2

ds2 V (zq + s(q − zq)) ds ≥ μ̄
2 ‖q − zq‖2

H1(R)2 .

Lemma 2.11 holds true both for z = z− or z = z+ and we can assume
that this occurs for the same value of r0. In particular, denoting Nr0(C(z)) =
{q ∈ H1(R)2 | distH1(R)2(q, C(z)) < r0}, we have that Nr0(C(z−)) ∩
Nr0(C(z+)) = ∅. Considering r0 smaller, if necessary, we can, furthermore,
assume that

dist(Nr0(C(z−)), Nr0(C(z+))) ≥ 5r0. (2.13)
By Remark 2.8, we can fix λ0 ≤ min{λ̄,m} (λ̄ given by (2.3)), such that

if V (q) ≤ m + λ0 then q ∈ Nr0(C(z−)) ∪ Nr0(C(z+)). (2.14)

For any b ∈ (m,m + λ0), we then have that {V ≤ b} = Vb
− ∪ Vb

+, where

Vb
− = {V ≤ b} ∩ Nr0(C(z−)) and Vb

+ = {V ≤ b} ∩ Nr0(C(z+)).

The set Vb
± is invariant with respect to the action of the group of trans-

lations and it is not weakly closed. The following lemma states that it is
”locally” weakly closed

Lemma 2.13. If (qn) ⊂ Vb
± is such that (σqn

) is bounded, then there exists
q ∈ Vb

±, such that, along a subsequence, qn → q weakly in H1
loc(R)2.

Proof. Let (qn) ⊂ Vb
− be such that (σqn

) is bounded. By Lemma 2.6, there
exists q ∈ Γ, such that, along a subsequence, qn → q weakly in H1

loc(R)2

and V (q) ≤ b. Since distH1(R)2(qn, C(z−)) < r0, there exists sn, such that
‖qn − z−(· − sn)‖ ≤ r0. Since (σqn

) is bounded, by Lemma 2.5, we recognize
that also (sn) is bounded and so convergent to s0 ∈ R up to a subsequence.
Then, z−(· − sn) − z−(· − s0) → 0 in H1(R)2, and by semicontinuity, we
conclude ‖q − z−(· − s0)‖H1(R)2 ≤ lim inf ‖qn − z−(· − sn)‖H1(R)2 ≤ r0, which
implies that q ∈ Vb

−. The case (qn) ⊂ Vb
+ is analogous. �

Remark 2.14. By Lemma 2.13, we obtain in particular that if (qn) ⊂ Vb
± is

bounded in Γ with respect to the L2(R)2 metric, since this implies that (σqn
)

is bounded in R, there exists q ∈ Vb
±, such that along a subsequence, qn → q

weakly in H1
loc(R)2.

Remark 2.15. Since M = C(z−) ∪ C(z+), we easily recognize that if (qn) ⊂ Γ
and distH1(R)2(qn,M) → 0 then V (qn) → m. Equivalently, we can say that
for any b > m there exists rb > 0, such that if V (q) ≥ b then distH1(R)2

(q,M) ≥ rb. In particular, by Remark 2.12, we derive that for any b ∈
(m,m + λ0), we have

inf
q∈Vm+λ0

± \Vb
±

V ′(q)(q − zq) ≥ μ̄ r2
b

4
≡ ν(b) > 0. (2.15)
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3. Planar solutions

The variational setting. We denote S(y1, y2) := R×(y1, y2) for (y1, y2) ⊂
R and, more simply, SL := S(−L,L) for L > 0. We consider the space

H = z0 + ∩L>0H
1(SL)2.

Note that, if v ∈ H, then v(·, y) ∈ Γ for a.e. y ∈ R. Moreover∫
R

|v(x, y2) − v(x, y1)|2 dx ≤ |y2 − y1|
∫
R

∫ y2

y1

|∂yv(x, y)|2 dydx

and so, any v ∈ H verifies the continuity property

‖v(·, y2) − v(·, y1)‖2 ≤ ‖∂yv‖2
L2(S(y1,y2))

|y2 − y1|, ∀ (y1, y2) ⊂ R. (3.1)

Considering the functional V extended on z0 + L2(R)2 as

V (u) =

{
V (u), if u ∈ Γ,

+∞, if u ∈ z0 + L2(R)2\H1(R)2,

we have

Lemma 3.1. If v ∈ H then the function y ∈ R �→ V (v(·, y)) ∈ R ∪ {+∞} is
lower semicontinuous.

Proof. Let yn → y0 ∈ R be such that lim infy→y0 V (v(·, y)) = limn→+∞
V (v(·, yn)). By (3.1), we have v(·, yn) − v(·, y0) → 0 in L2(R)2. Up to subse-
quences, we have either: (a) supn∈N

‖∂xv(·, yn)‖ < +∞ or (b)
limn→+∞ ‖∂xv(·, yn)‖ = +∞. In the case (a), we have v(·, yn) − v(·, y0) → 0
weakly in H1(R)2 and by semicontinuity limn→+∞ V (v(·, yn)) ≥ V (v(·, y0)).
If (b) occurs, then limn→+∞ V (v(·, yn)) = +∞, and the Lemma follows. �

Fixed any b ∈ (m,m + λ0), we consider the subspace of H
Hb = {v ∈ H / lim inf

y→±∞ dist(v(·, y),Vb
±) = 0 and inf

y∈R

V (v(·, y)) ≥ b}

on which we look for minima of the functional

ϕ(v) =
∫
R

1
2‖∂yv(·, y)‖2 + (V (v(·, y)) − b) dy.

Remark 3.2. Note that, if v ∈ Hb, then V (v(·, y)) ≥ b for every y ∈ R, and
so ϕ is well defined and non-negative on Hb. Moreover, we plainly recognize
that Hb �= ∅ and mb = infv∈Hb

ϕ(v) < +∞.

Remark 3.3. More generally, given an interval I ⊂ R, we consider the func-
tional

ϕI(v) =
∫

I

1
2‖∂yv(·, y)‖2 + V (v(·, y)) − b dy

which is well defined for any v ∈ H, such that V (v(·, y)) ≥ b for a.e. y ∈ I or
for every v ∈ H if I is bounded.

We will make use of the following immediate semicontinuity property
of ϕI .
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Lemma 3.4. Let v ∈ H be such that V (v(·, y)) ≥ b for a.e. y ∈ I ⊂ R.
If (vn) ⊂ Hb is such that vn → v weakly in H1(SL) for any L > 0, then
ϕI(v) ≤ lim inf

n→∞ ϕI(vn).

Remark 3.5. Concerning coerciveness properties of ϕ, it is important to dis-
play the following simple estimate. Given v ∈ H and (y1, y2) ⊂ R, we have

ϕ(y1,y2)(v) = 1
2

∫ y2

y1

‖∂yv(·, y)‖2
2 dy +

∫ y2

y1

V (v(·, y)) − b dy

≥ 1
2(y2−y1)

∫
R2

(
∫ y2

y1

|∂yv(x, y)|dy)2 dx +
∫ y2

y1

V (v(·, y)) − b dy

≥ 1
2(y2−y1)

‖v(·, y1) − v(·, y2)‖2 +
∫ y2

y1

V (v(·, y)) − b dy.

In particular, if V (v(·, y)) ≥ b + ν > b for any y ∈ (y1, y2), then

ϕ(y1,y2)(v)≥ 1
2(y2−y1)

‖v(·, y1)−v(·, y2)‖2+ν(y2−y1)≥
√

2ν ‖v(·, y1)−v(·, y2)‖.

(3.2)

Remark 3.6. By (2.13), (2.14), and (3.1), if v ∈ Hb, there exist y1 < y2 ∈ R,
such that ‖v(·, y1) − v(·, y2)‖ ≥ 4r0 and V (v(·, y)) > m + λ0 for any y ∈
(y1, y2). Then, by (3.2), we obtain ϕ(y1,y2)(u) ≥ 4

√
m + λ0 − b r0 > 0. In

particular

mb ≥ 4r0

√
m + λ0 − b.

Estimates around Vb
− and Vb

+. The study of the coerciveness prop-
erties of ϕ needs some local results. Given b ∈ (m,m + λ0), we define the
constants

β = b + m+λ0−b
4 , and Λ0 =

√
m+λ0−b

2
r0
4 (3.3)

where λ0 and r0 are defined by (2.13) and (2.14), noting that

dist(Vb
−,Vb

+) ≥ dist(Vβ
−,Vβ

+) ≥ 5r0. (3.4)

We denote I− = (−∞, 0), I+ = (0,+∞), and, given q0 ∈ Γ,

H±
b,q0

={v∈H / v(·, 0) = q0, inf
y∈I±

V (v(·, y))≥b, lim inf
y→±∞ dist(v(·, y),Vb

±) = 0}.

Next Lemma states that if ϕI±(v) is small for a v ∈ H±
b,q0

, then v(·, y)
remains close for y ∈ I± to the set Vβ

± with respect to the L2(R)2 metric.

Lemma 3.7. If q0 ∈ Γ, V (q0) ≥ b, v ∈ H±
b,q0

, and ϕI±(v) ≤ Λ0, then

dist(v(·, y),Vβ
±) ≤ r0 for every y ∈ I±.

Proof. By (3.1), the function y ∈ [0,+∞) �→ v(·, y) − z0 ∈ L2(R)2 is con-
tinuous. If, by contradiction, y0 ≥ 0 is such that dist(v(·, y0),Vβ

+) > r0,
since lim infy→+∞ dist(v(·, y),Vb

+) = 0, by continuity, there exists an interval
(y1, y2) ⊂ R such that r0/2 < dist(v(·, y),Vβ

+) < r0 for any y ∈ (y1, y2) and
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‖v(·, y1)−v(·, y2)‖ ≥ r0/2. By (3.4), v(·, y) /∈ Vβ
+ ∪Vβ

− and so V (v(·, y))− b ≥
β − b = (m + λ0 − b)/4 for all y ∈ (y1, y2) . By (3.2), we conclude

Λ0 ≥ ϕ(0,+∞)(v) ≥ ϕ(y1,y2)(v) ≥
√

m+λ0−b
2 ‖v(·, y1) − v(·, y2)‖ ≥ 2Λ0,

a contradiction. Analogous is the case v ∈ H−
b,q0

. �

Clearly, the infimum value of ϕI± on H±
b,q0

is close to 0 if dist(q0,Vb
±) is

small. Next result displays a test function w±
q0 ∈ H±

b,q0
which gives us refined

information

Lemma 3.8. For all b ∈ (m,m+λ0), there exists C(b) > 0 such that for every
q0 ∈ Vβ

±\Vb
±, there is w±

q0 ∈ H±
b,q0

, such that we have

sup
y∈I±

‖w±
q0(·, y) − q0‖≤ r0

ν(b) (V (q0) − b) and ϕI±(w+
q0)≤C(b)(V (q0) − b)3/2,

where ν(b) is defined in (2.15).

Proof. Assume q0 ∈ Vβ
+\Vb

+ (the proof is symmetric in the case q0 ∈ Vβ
−\Vb

−).
Since q0 ∈ Vβ

+ ⊂ Nr0(C(z−)), by Lemma 2.11, there exists a unique s0 ∈ (0, 1),
such that V (zq0+s(q0−zq0)) > b for any s ∈ [s0, 1) and V (zq0+s0(q0−zq0)) =
b. Moreover, for the constant ν(b) defined in (2.15), we have

1 − s0 ≤ 1
ν(b) (V (q0) − b). (3.5)

Indeed, by Lemma 2.11

V (q0) − b =
∫ 1

s0

∫ s

0

d2

ds2
V (zq0 +σ(q0 − zq0)) dσ ds≥

∫ 1

s0

s
μ̄

2
‖q0−zq0‖2

H1(R)2 ds

≥ (1 − s2
0)

μ̄

4
‖q0 − zq0‖2

H1(R)2 ≥ (1 − s0)ν(b).

We define

w+
q0(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

q0(x) y ≤ 0,

zq0(x) +
(
1 − y2

2

)
(q0(x) − zq0(x)) y ∈ (0,

√
2(1−s0)),

zq0(x) + s0(q0(x) − zq0(x)) y ≥ √
2(1−s0).

We have w+
q0 ∈ H+

b,q0
and by (3.5)

sup
y≥0

‖w+
q0(·, y) − q0‖ = (1 − s0)‖q0 − zq0‖ ≤ 1

ν(b) (V (q0) − b)r0.

Again, using (3.5), we obtain

ϕ(0,+∞)(w+
q0) =

∫ √
2(1−s0)

0

1
2‖∂y

(
1 − y2

2

)
(q0 − zq0)‖2

2 dy

+
∫ √

2(1−s0)

0

V (z0 +
(
1 − y2

2 )(q0 − zq0)
)

− b dy

≤
∫ √

2(1−s0)

0

1
2y2‖q0 − zq0‖2

2 dy +
∫ √

2(1−s0)

0

V (q0) − b dy



Vol. 19 (2017) Brake orbit solutions for semilinear 705

≤ √
2(1−s0)

(
(1−s0)

3 r2
0 + (V (q0) − b)

)
≤

√
2

ν(b)

(
1

3ν(b)r
2
0 + 1)(V (q0) − b

)3/2

and the Lemma follows considering C(b) =
√

2
ν(b) (

r2
0

3ν(b) + 1). �

For any b ∈ (m,m + λ0), we fix b∗ ∈ (b, β], such that the following
inequalities hold true:

b∗−b
ν(b) < 1

2 , max{1, C(b)}(b∗ − b)1/4 < 1
4 , C(b)(b∗ − b)3/2 ≤ Λ0, (3.6)

where Λ0 is defined in (3.3). Together with Lemma 3.8, next, result will
play an important role in the study of the compactness properties of our
minimization problem.

Lemma 3.9. Assume that q0 ∈ Vb∗
+ \Vb

+ and v ∈ H+
b,q0

verify

if V (v(·, y)) ≤ b∗ for a y ∈ [0, 1) then ϕ(y,+∞)(v) ≤ C(b)(V (v(·, y)) − b)3/2.
(3.7)

Then, there exists ȳ ∈ (0, 1), such that V (v(·, ȳ)) = b, v(·, ȳ) ∈ Vb
+ and

v(·, y) = b for every y ∈ [ȳ,+∞).

Proof. We first note that, since q0 ∈ Vb∗
+ \Vb

+ and v ∈ H+
b,q0

, we have V (v(·, 0)) =
V (q0) ≤ b∗, and hence, by (3.7) and (3.6), we have ϕ(0,+∞)(v) ≤ C(b)(V (q0)−
b)3/2 ≤ Λ0. By Lemma 3.7, we then deduce that dist(v(·, y),Vβ

+)
≤ r0 for any y > 0 and by the definition of r0, we obtain that v(·, y) /∈ Vb∗

−
for any y > 0. In particular, if y > 0 and V (v(·, y)) ≤ b∗, then v(·, y) ∈ Vb∗

+ .
We claim that there exists a sequence (ξn) ⊂ [0, 1

2 ), such that

ξn−1 <ξn ≤ξn−1 + ( b∗−b
42(n−1) )1/4 < 1

2 and V (v(·, ξn)) − b ≤ b∗−b
4n , ∀n ∈ N.

(3.8)
Indeed, defining ξ0 = 0, by (3.6) and (3.7), we have that for any ξ > ξ0∫ ξ

ξ0

V (v(·, s)) − b ds ≤ ϕ(ξ0,+∞)(v) ≤ C(b)(V (v(·, ξ0)) − b)3/2

≤ C(b)(b∗ − b)3/2 ≤ b∗−b
4 (b∗ − b)1/4,

and so

∃ ξ1 ∈ (ξ0, ξ0 + (b∗ − b)1/4) such that V (v̄(·, ξ1)) − b ≤ b∗−b
4 , (3.9)

Note that, by (3.6), ξ0 + (b∗ − b)1/4 < ξ0 + 1
4 < 1

2 , and so ξ1 ∈ (0, 1
2 ).

Now, if ξn verifies (3.8), by (3.7), we obtain that for any ξ > ξn∫ ξ

ξn

V (v(·, s)) − b ds ≤ ϕ(ξn,+∞)(v) ≤ C(b)(V (v(·, ξn)) − b)3/2

≤ C(b)(b∗ − b)1/4( b∗−b
4n )( b∗−b

42n )1/4 < b∗−b
4n+1 ( b∗−b

42n )1/4,

implying that

∃ ξn+1 ∈ (ξn, ξn + ( b∗−b
42n )1/4) such that V (v(·, ξn+1)) − b ≤ b∗−b

4n+1 ,
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and, by (3.6)

ξn+1 <

n∑
j=0

( b∗−b
42j )1/4 = (b∗ − b)1/4

+∞∑
j=0

1
2j < 1

2 .

Then, by induction, (3.8) holds true for any n ∈ N.
Now, note that by (3.8), we have ξn → ȳ ∈ (0, 1

2 ] as n → +∞. Moreover,
since v ∈ Hb,q0 there result V (v(·, ξn)) ≥ b for all n ∈ N, and hence, by (3.8),
V (v(·, ξn)) → b. Then, by Lemma 3.1, we deduce V (v(·, ȳ)) = b. Moreover,
by (3.1), v(·, ξn) − v(·, ȳ) → 0 in L2(R)2 and weakly in H1(R)2. Then, by
Remark 2.14, we have v(·, ȳ) ∈ Vb

+, and hence, using (3.7) that ϕ(ȳ,+∞)(v) ≤
C(b)(V (v(·, ȳ)) − b)3/2 = 0, which implies v(·, y) = b for every y ≥ ȳ. �

Remark 3.10. A symmetric argument shows that: if q0 ∈ Vb∗
− \Vb

− and v ∈
H−

b,q0
verify

if V (v(·, y)) ≤ b∗ for a y ∈ (−1, 0] then ϕ(−∞,y)(v) ≤ C(b)(V (v(·, y)) − b)3/2,

then there exists ȳ ∈ (−1, 0), such that V (v(·, ȳ)) = b, v(·, ȳ) ∈ Vb
− and

v(·, y) = b for every y < ȳ.

Lemma 3.9, Remark 3.10, and Lemma 3.8 have the following conse-
quence which will be used in the construction of minimizing sequences for ϕ
with suitable compactness properties.

Lemma 3.11. Let b ∈ [m,m+λ0), then, for every q0 ∈ Vb∗
± \Vb

± and v ∈ H±
b,q0

,
there exists ṽ ∈ H±

b,q0
, such that

sup
y∈I±

‖ṽ(·, y) − q0‖ ≤ 1 and ϕI±(ṽ) ≤ min{Λ0, ϕI±(v)}.

Proof. We prove the lemma only in the case q0 ∈ Vb∗
+ \Vb

+, since the same
argument can be used in a symmetric way for the case q0 ∈ Vb∗

− \Vb
−.

By Lemma 3.8 and (3.6), since q0 ∈ Vb∗
+ \Vb

+, we have that there exists
w+

q0 , such that ϕI+(w+
q0) ≤ Λ0 and ‖w+

q0(·, y) − q0‖ ≤ 1
2 for any y > 0. In

particular, if v ∈ H+
b,q0

is such that ϕI+(v) > Λ0, then the statement of the
lemma holds true with ṽ = w+

q0 .
To prove the lemma, we argue by contradiction assuming that there

exist q0 ∈ Vb∗
+ \Vb

+ and v ∈ H+
b,q0

with ϕI+(v) ≤ Λ0, such that

ϕI+(ṽ) > ϕI+(v) for every ṽ ∈ H+
b,q0

such that sup
y∈I+

‖ṽ(·, y) − q0‖ ≤ 1.

(3.10)
By (3.10), we have supy∈I+ ‖v(·, y)− q0‖ > 1, and since v(·, 0) = q0, by (3.1),
we recover that

∃ y0 > 0 such that ‖v(·, y0) − q0‖ = 1
2 and ‖v(·, y) − q0‖ < 1

2 (3.11)
for any y ∈ [0, y0).

As already noted in the proof of the previous Lemma, by Lemma 3.7,
since ϕI+(v) ≤ Λ0, we have that if y > 0 and V (v(·, y)) ≤ b∗, then v(·, y) ∈
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Vb∗
+ . We claim that

if ỹ ∈ [0, y0) and V (v(·, ỹ)) ≤ b∗ then

ϕ(ỹ,+∞)(v) ≤ C(b)(V (v(·, ỹ)) − b)3/2. (3.12)

Indeed, considering the function

ṽ(·, y) =

{
v(·, y) 0 ≤ y < ỹ

w+
v(·,ỹ)(·, y − ỹ) y ≥ ỹ,

we have ṽ ∈ H+
b,q0

. Now note that for every y ∈ [0, ỹ) ⊂ [0, y0), by definition
of y0, we have ‖ṽ(·, y) − q0‖ = ‖v(·, y) − q0‖ < 1

2 , while if y ≥ ỹ by Lemmas
3.8 and (3.6)

‖ṽ(·, y) − q0‖ = ‖w+
v(·,ỹ)(·, y − ỹ) − q0‖

≤ ‖w+
v(·,ỹ)(·, y − ỹ) − v(·, ỹ)‖ + ‖v(·, ỹ) − q0‖ ≤ b∗ − b

ν(b)
+

1
2

< 1.

This shows that supy>0 ‖ṽ(·, y)−q0‖ ≤ 1, and so, by (3.10), 0 < ϕI+(ṽ)−
ϕI+(v) = ϕI+(w+

v(·,ỹ)) − ϕ(ỹ,+∞)(ṽ) which together with Lemma 3.8 imply
(3.12).

Finally note that, by Remark 3.5, ϕ(0,y0)(v) ≥ 1
2y0

‖v(·, y0)−q0‖2 = 1
8y0

,
and so, by (3.6) and (3.12), y0 ≥ 1

8C(b)(b∗−b)3/2 > 1. Then, by (3.12) and
Lemma 3.9, there exists ȳ ∈ (0, 1), such that v(·, ȳ) ∈ Vb

+ and v(·, y) = v(·, ȳ)
for any y ≥ ȳ. Hence, using (3.11), we obtain 1 < supy∈I+ ‖v(·, y) − q0‖ =
supy∈(0,ȳ] ‖ v(·, y)−q0‖ ≤ supy∈(0,y0] ‖v(·, y)−q0‖ = 1

2 , a contradiction which
proves the Lemma. �

Minimizing ϕ. Our first step in minimizing ϕ on Hb is to select a
minimizing sequence with suitable compactness properties.

Lemma 3.12. For every b ∈ (m,m + λ0), there exists L0 > 0, C̄1, C̄2 > 0 and
(vn) ⊂ Hb, such that ϕ(vn) → mb and

(i) dist(vn(·, y),Vβ
−) ≤ r0 for any y ≤ 0 and n ∈ N.

(ii) dist(vn(·, y),Vβ
+) ≤ r0 for any y ≥ L0 and n ∈ N.

(iii) ‖vn(·, y) − z−‖ ≤ C̄1 for any y ∈ R and n ∈ N.
(iv) For every bounded interval (y1, y2) ⊂ R, there exists C > 0, depending

on y2 − y1, such that ‖vn − z−‖H1(S(y1,y2))2 ≤ C.
(v) ‖vn‖L∞(R2)2 ≤ C̄2 for any n ∈ N.

Proof. Let b ∈ (m0,m0 + λ0) and (wn) ⊂ Hb be such that ϕ(wn) ≤ mb + 1
for any n ∈ N and ϕ(wn) → mb. We prove the lemma producing various
modifications of the minimizing sequence wn. The first step is to modify
(wn) with a simple cutoff procedure to obtain a new minimizing sequence
(ψn) bounded in L∞(R)2.

Let Rm be given by Remark 2.2. We define

ψn(x, y) = min
{

1,
2Rm

|wn(x, y)|
}

wn(x, y) (3.13)
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(ψn(x, y) = 0 if wn(x, y) = 0) observing that ‖ψn‖L∞(R)2 ≤ 2Rm. We claim
that

(ψn) ⊂ Hb, and ϕ(ψn) → mb. (3.14)

Indeed, let us first show that (ψn) ⊂ Hb, and so that for any n ∈ N, we
have

inf
y∈R

V (ψn(·, y)) ≥ b and lim inf
y→±∞ dist(ψn(·, y),Vb

±) = 0. (3.15)

To this aim, we observe that given y ∈ R, if ‖wn(·, y)‖L∞(R)2 ≤ Rm,
then, by definition, ψn(·, y) = wn(·, y) and V (ψn(·, y)) = V (wn(·, y)) ≥
b. If otherwise ‖wn(·, y)‖L∞(R)2 > Rm, again, by definition, we have also
‖ψn(·, y)‖L∞(R)2 > Rm, and by Remark 2.2, we conclude V (ψn(·, y)) ≥ 2m >
m + λ0 > b. Then, V (ψn(·, y)) ≥ b for any y ∈ R and the first part of (3.15)
is proved. For the second part, observe that since wn ∈ Hb, there exist a
sequence yj → −∞ and a sequence (qj) ⊂ Vb, such that ‖wn(·, yj)−qj‖ → 0.
By Remark 2.2, we have ‖qj‖L∞(R)2 ≤ Rm. Moreover, by definition of ψn, if
|wn(x, yj)| > 2Rm, we have ψn(x, yj) = 2Rm

|wn(x,yj)|wn(x, yj), so that we derive

|wn(x, yj) − qj(x)|2 − |ψn(x, yj) − qj(x)|2

= |wn(x, yj)|2 − 4R2
m − 2

|wn(x, yj)| − 2Rm

|wn(x, yj)| qj(x)wn(x, yj)

≥ (|wn(x, yj)| − 2Rm)(|wn(x, yj)| + 2Rm − 2|qj(x)|) > 0.

Hence, we have |ψn(x, yj) − qj(x)| ≤ |wn(x, yj) − qj(x)| for any x ∈ R

and j ∈ N, and so ‖ψn(·, yj) − qj‖ ≤ ‖wn(·, yj) − qj‖ → 0 as j → +∞. This
shows that lim infy→−∞ dist(ψn(·, y),Vb

−) → 0 and (3.15) follows showing in
a symmetric way that lim infy→+∞ dist(ψn(·, y),Vb

+) → 0. To conclude the
proof of (3.14), observe now that |∂yψn(x, y)| ≤ |∂ywn(x, y)| for almost every
(x, y) ∈ R

2, and since, by (W2), V (ψn(·, y)) ≤ V (wn(·, y)) for any y ∈ R, we
derive mb ≤ ϕ(ψn) ≤ ϕ(wn) → mb.

We now further modify the sequence (ψn). Let

sn = sup{y ∈ R |ϕ(−∞,y)(ψn) ≤ Λ0}.

By Remark 3.6, (3.3), and (3.15), we have Λ0 < mb ≤ ϕ(ψn), and
so sn ∈ R and ϕ(−∞,sn)(ψn) = Λ0. Since ψn(·, · + sn) ∈ H−

b,ψn(·,sn) and

ϕI−(ψn(·, ·+sn)) = Λ0, by Lemma 3.7, we derive that dist(ψn(·, y+sn),Vβ
−) ≤

r0 for any y ≤ 0, and so, by (3.4) and (3.6), dist(ψn(·, y),Vb∗
+ ) ≥ 4r0 for any

y ≤ sn. In particular,

if y ≤ sn and V (ψn(·, y)) ≤ b∗ then ψn(·, y) ∈ Vb∗
− . (3.16)

A symmetric argument shows that there exists tn > sn, such that

if y ≥ tn and V (ψn(·, y)) ≤ b∗ then ψn(·, y) ∈ Vb∗
+ . (3.17)

Define now

y−
n = sup{y ∈ R |ψn(·, y) ∈ Vb∗

− }.
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By (3.17), we have y−
n < tn, and since lim infy→−∞ V (ψn(·, y)) = b < b∗,

by (3.16), we obtain that y−
n ∈ R. Defining, furthermore

y+
n = inf{y ≥ y−

n |ψn(·, y) ∈ Vb∗
+ },

by Remark 2.14 and (3.1), we obtain that

y−
n < y+

n ∈ R, ψn(·, y−
n ) ∈ Vb∗

− and ψn(·, y+
n ) ∈ Vb∗

+ .

Moreover, V (ψn(·, y)) > b∗ for any y ∈ (y−
n , y+

n ) and by (3.2), we derive

y+
n − y−

n ≤ ϕ
(y

−
n ,y

+
n )

(ψn)

b∗−b ≤ mb+1
b∗−b := L0 and

sup
y∈(y−

n ,y+
n )

‖ψn(·, y) − ψn(·, y−
n )‖ ≤ mb+1√

2(b∗−b)
. (3.18)

By Lemma 3.11, there exist ṽ−
n ∈ H−

b,ψn(·,y−
n )

and ṽ+
n ∈ H+

b,ψn(·,y−
n )

, such that

sup
y∈(−∞,0)

‖ṽ−
n (·, y) − ψn(·, y−

n )‖ ≤ 1,

sup
y∈(0,+∞)

‖ṽ+
n (·, y) − ψn(·, y+

n )‖ ≤ 1,

ϕ(−∞,0)(ṽ−
n ) ≤ min{Λ0, ϕ(−∞,y−

n )(ψn)}, ϕ(0,+∞)(ṽ+
n )

≤ min{Λ0, ϕ(y+
n ,+∞)(ψn)}. (3.19)

Eventually retracting the functions ṽ±
n as in (3.13), the argument used

at the beginning of the proof shows that we can assume also that

sup
y≤0

‖ṽ−
n (·, y)‖L∞(R)2 ≤ 2Rm and sup

y≥0
‖ṽ+

n (·, y)‖L∞(R)2 ≤ 2Rm. (3.20)

We modify the function ψn defining

ψ̂n(x, y) =

⎧⎪⎨
⎪⎩

ṽ−
n (x, y − y−

n ) if y ∈ (−∞, y−
n ),

ψn(x, y) if y ∈ [y−
n , y+

n ],
ṽ+

n (x, y − y+
n ) if y ∈ (y+

n ,+∞),

observing that ψ̂n ∈ Hb and mb ≤ ϕ(ψ̂n) ≤ ϕ(ψn) → b. By (3.20) and the
definition of ψn, we also have

‖ψ̂n‖L∞(R2)2 ≤ 2Rm. (3.21)

We can now finally verify that suitable translated of the function ψ̂n

satisfies (i)–(v). Indeed, since ψ̂n(·, y−
n ) ∈ Vb∗

− ⊂ Nr0(C(z−)), there exists σn,
such that

‖ψ̂n(·, y−
n ) − z−(· − σn)‖ ≤ r0. (3.22)

Then, for any n ∈ N, we consider the functions

vn(x, y) = ψ̂n(x + σn, y + y−
n ).

We plainly have (vn) ⊂ Hb and ϕ(vn) = ϕ(ψ̂n) → mb as n → +∞. By (3.21)
‖vn‖L∞(R2)2 = ‖ψ̂n‖L∞(R2)2 ≤ 2Rm and (v) follows. By (3.19) and (3.18), we
have ϕ(−∞,0)(vn) ≤ Λ0, and ϕ(L0,+∞)(vn) ≤ Λ0. Then, by Lemma 3.7, we
derive (i) and (ii).
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To prove (iii) we observe that, by (3.22), ‖vn(·, 0) − z−‖ = ‖ψ̂n(· +
σn, y−

n ) − z−‖ ≤ r0. Then, by (3.19), we derive that for any y ≤ 0, we have

‖vn(·, y) − z−‖ = ‖ψ̂n(· + σn, y + y−
n ) − z−‖ ≤ ‖ψ̂n(· + σn, y + y−

n )

− ψ̂n(· + σn, y−
n )‖ + ‖ψ̂n(· + σn, y−

n ) − z−‖
= ‖ṽ−

n (·, y) − ψ̂n(·, y−
n )‖ + r0 ≤ 1 + r0

Moreover, by (3.18), for any y ∈ (0, y+
n − y−

n ), we have

‖vn(·, y) − z−‖ ≤ ‖ψ̂n(·, y + y−
n ) − ψn(·, y−

n )‖ + ‖ψ̂n(· + σn, y−
n ) − z−‖

≤ mb+1√
2(b∗−b)

+ r0.

Again, using (3.19), if y ≥ y+
n − y−

n , we finally derive

‖vn(·, y) − z−‖ = ‖ψ̂n(· + σn, y + y−
n ) − z−‖

≤ ‖ψ̂n(·, y + y−
n ) − ψ̂n(·, y+

n )‖ + ‖ψ̂n(· + σn, y+
n ) − z−‖

= ‖ṽ+
n (·, y + y−

n − y+
n ) − ψ̂n(·, y+

n )‖ + ‖ψ̂n(·, y+
n )

− ψn(·, y−
n )‖ + r0 ≤ 1 + mb+1√

2(b∗−b)
+ 2r0

and (iii) follows.
Finally, if y1 < y2 ∈ R, we have

‖∇(vn − z−)‖2
L2(S(y1,y2))2

≤ 2(‖∇vn‖2
L2(S(y1,y2))2

+ (y2 − y1)‖ż−‖2
L2(R)2)

≤ 2(2ϕ(vn) + 2(y2 − y1)(b + ‖ż−‖2
L2(R)2)),

and (iv) follows from (iii) concluding the proof of the lemma. �

By Lemma 3.12, (vn) be the minimizing sequence which verifies (i)–(v),
then there exists v̄ ∈ X , such that, up to a subsequence

vn − z− → v̄ − z− weakly in H1(SL)2 for any L > 0.

We do not know if v̄ ∈ Hb, since the constraint V (v(·, y)) ≥ b for any y ∈ R

is not necessarily preserved by the weak convergence. In any case, using
arguments similar to the ones introduced in [2,6,9], we can conclude the
proof of Theorem 1.1 showing that the minimality properties of the function
v̄ are sufficient to recover from it an entire solution as in the statemen of our
main Theorem.

The following Lemma lists some immediate properties of the
function v̄.

Lemma 3.13. For any b ∈ (m,m + λ0), there exists v̄ ∈ H satisfies

(i) Given any interval I ⊂ R, such that V (v̄(·, y)) ≥ b for a.e. y ∈ I, we
have ϕI(v̄) ≤ mb.

(ii) dist(v̄(·, y),Vβ
−) ≤ r0 for any y ≤ 0.

(iii) dist(v̄(·, y),Vβ
+) ≤ r0 for any y ≥ L0.

(iv) ‖v̄(·, y) − z−‖ ≤ C̄1 for any y ∈ R.
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(v) for every (y1, y2) ⊂ R, ‖v̄ − z−‖H1(S(y1,y2)) ≤ C(y1, y2),
(vi) ‖v̄‖L∞(R2)2 ≤ C̄2,

where L0, C̄1, C̄2, and C(y1, y2) are given by Lemma 3.12.

Proof. Let us consider the function v̄ described above. Property (i) follows
by Lemma 3.4, since lim infn→+∞ ϕI(vn) ≤ limn→+∞ ϕ(vn) = mb. Properties
iv), v), and vi) are direct consequences of Lemma 3.12 (iii), (iv), and (v). To
show (ii) observe that by Lemma 3.12 (iii), we have ‖vn(·, y) − z−‖ ≤ C̄1 for
any y ∈ R and n ∈ N. In particular, for any y ≤ 0, the sequence (vn(·, y)) is
bounded in Γ with respect to the L2(R)2 metric. Since by Lemma 3.12 (i), we
have dist(vn(·, y),Vβ

−) ≤ r0 for any y ≤ 0 and n ∈ N, using Lemma 2.13 and
Remark 2.14, we recover dist(v(·, y),Vβ

−) ≤ r0 for any y ≤ 0. In a symmetric
way, we derive also (iii) and the Lemma is proved. �

Even if we do not know if v̄ ∈ Hb, we can now select an interval (σ̄, τ̄) ⊂
R on which the trajectory y → v̄(·, y) makes a transition between the sets Vb

−
and Vb

+ satisfying the property V (v̄(·, y)) > b for any y ∈ (σ̄, τ̄). Precisely,
we let

σ̄ = sup{y ∈ R /dist(v̄(·, y),Vb
−) ≤ r0 and V (v̄(·, y)) ≤ b},

τ̄ = inf{y > σ̄ / V (v̄(·, y)) ≤ b}
with the agreement that σ̄ = −∞ whenever V (v̄(·, y)) > b for every y ∈ R,
such that dist(v̄(·, y),Vb

−) ≤ r0 and that τ̄ = +∞ whenever V (v̄(·, y)) > b for
every y > σ̄. The following Lemma states some natural properties of σ̄, τ̄ .

Lemma 3.14. We have σ̄ ∈ [−∞, L0] and τ̄ ∈ [0,+∞], and moreover
(i) σ̄ < τ̄ .
(ii) If σ̄ ∈ R, then v̄(·, σ̄) ∈ Vb

− and if τ̄ ∈ R then v̄(·, τ̄) ∈ Vb
+.

(iii) If [y1, y2] ⊂ (σ̄, τ̄), then infy∈[y1,y2] V (v̄(·, y)) > b. Moreover, ϕ(σ̄,τ̄)(v̄) ≤
mb.

(iv) If σ̄ = −∞, then lim infy→−∞ V (v̄(·, y)) − b = lim infy→−∞ dist(v̄(·, y),
Vb

−) = 0.
(v) If τ̄ = +∞, then lim infy→+∞ V (v̄(·, y)) − b = lim infy→+∞ dist(v̄(·, y),

Vb
+) = 0.

Proof. We prove only (iv) (and symmetrically (v)), since the other properties
can be showed following the reasoning displayed in [9] (see Remark 3.19).

Let σ̄ = −∞. Then, V (v̄(·, y)) > b for any y ∈ (−∞, τ̄). By Lemma 3.13–
(i), we then have ϕ(−∞,τ̄)(v̄) ≤ mb and we derive that there exists a sequence
yn → −∞, such that V (v̄(·, yn)) → b. By Lemma 3.13–(ii), we have moreover
that dist(v̄(·, y),Vβ

−) ≤ r0 for every y ≤ 0 and so we can assume v̄(·, yn) ∈ Vβ
−

and dist(v̄(·, yn),Vb
+) ≥ 4r0. Arguing as in the proof of Lemma 3.8 and using

(2.14) and Lemma 2.10, for any n ∈ N, there exist zv̄(·,yn) ∈ C(z−) and sn ∈
(0, 1], such that ‖v̄(·, yn)−zv̄(·,yn)‖ ≤ r0, V (zv̄(·,yn)+sn(v̄(·, yn)−zv̄(·,yn))) = b,
zv̄(·,yn) +sn(v̄(·, yn)− zv̄(·,yn)) ∈ Vb

− with 1−sn ≤ (V (v̄(·, yn))− b)/ν(b) → 0.
Then, we derive as we claimed that dist(v̄(·, yn),Vb

−) ≤ (1 − sn)‖v̄(·, yn) −
zv̄(·,yn)‖ → 0. �
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Lemma 3.14 explains what we mean when we say that the trajectory
y �→ v̄(·, y) makes a transition between the sets Vb

− and Vb
+ on the interval

(σ̄, τ̄) ⊂ R. Moreover, by (iii), we know that ϕ(σ̄,τ̄)(v̄) ≤ mb. Thanks to
the following Lemma (whose proof can be obtained by mirroring the one of
Lemma 3.4 in [6]), we have in fact that ϕ(σ̄,τ̄)(v̄) = mb.

Lemma 3.15. Let v ∈ H and −∞ ≤ σ < τ ≤ +∞ be such that
(i) V (v(·, y)) > b for any y ∈ (σ, τ);
(ii) either σ = −∞ and lim infy→−∞ dist(v(·, y),Vb

−) = 0 or σ ∈ R and
v(·, σ) ∈ Vb

−;
(iii) either τ = +∞ and lim infy→+∞ dist(v(·, y),Vb

+) = 0 or τ ∈ R and
v(·, τ) ∈ Vb

+

then ϕ(σ,τ)(v) ≥ mb. Finally, ϕ(σ,τ)(v) > mb if lim infy→σ+ V (v(·, y)) > b or
lim infy→τ− V (v(·, y)) > b.

We can now conclude the proof of Theorem 1.1. Even if from now on the
arguments are closely related to the ones used in some previous works (we
refer in particular to [9]), we give for completeness the details of the proofs.

Lemma 3.16. For any b ∈ (m,m + λ0), we have
(i) ϕ(σ̄,τ̄)(v̄) = mb and lim infy→τ̄− V (̄.v(·, y)) = lim infy→σ̄+ V (v̄(·, y)) = b,
(ii) σ̄, τ̄ ∈ R.
(iii) For every h ∈ C∞

0 (R× (σ̄, τ̄))2, with supph ⊂ R× [y1, y2] ⊂ R× (σ̄, τ̄),
there exists t̄ > 0, such that ϕ(σ̄,τ̄)(v̄ + th) ≥ ϕ(σ̄,τ̄)(v̄), ∀ t ∈ (0, t̄).

(iv) Ey(v̄(·, y)) = 1
2‖∂y v̄(·, y)‖2 − V (v̄(·, y)) = −b for every y ∈ (σ̄, τ̄).

(v) lim infy→τ̄− ‖∂y v̄(·, y)‖ = lim infy→σ̄+ ‖∂y v̄(·, y)‖ = 0.

Proof. (i) As already noted, we have that ϕ(σ̄,τ̄)(v̄) = mb, and, by Lemma
3.15, we derive that lim infy→τ̄− V (v̄(·, y)) = lim infy→σ̄+ V (v̄(·, y)) = b.

(ii) Assume by contradiction that σ̄ = −∞. Fixed a y0 < τ , such that q0 :=
v̄(·, y0) ∈ Vb∗

− \Vb
+, we have v̄(·, ·+y0) ∈ H−

b,q0
. To obtain a contradiction,

we show that

if V (v̄(·, y)) ≤ b∗ for a y ≤ y0 then

ϕ(−∞,y)(v̄) ≤ C(b)(V (v̄(·, y)) − b)3/2. (3.23)

By (3.23), Lemma 3.9 states the existence of a ȳ ∈ (y0 − 1, y0),
such that V (v̄(·, ȳ)) = b, contradicting that σ̄ = −∞.

If (3.23) does not hold, by Lemma 3.8, there exists ỹ ≤ y0 with
v̄(·, ỹ) ∈ Vb∗

− and ϕ(−∞,ỹ)(v̄) > ϕ(−∞,0)(w−
v̄(·,ỹ)). Then, defining

ṽ(·, y) =

{
v̄(·, y) y ≥ ỹ

w−
v̄(·,ỹ)(·, · − ỹ) y < ỹ,

we obtain ϕ(−∞,τ̄)(ṽ) < ϕ(−∞,τ̄)(v̄) = mb. Using Lemma 3.15, this leads
to a contradiction. Indeed, by definition of w−

v̄(·,ỹ), there exists y− < ỹ,
such that ṽ(·, y−) ∈ Vb

−, V (ṽ(·, y)) > b for any y ∈ (y−, τ̄) and either
ṽ(·, τ̄) = v̄(·, τ̄) ∈ Vb

+ if τ̄ < +∞ or lim infy→+∞ dist(ṽ(·, y),Vb
+) = 0

if τ̄ = +∞. In other words, ṽ satisfies the assumption of Lemma 3.15
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on the interval (y−, τ̄) and we get the contradiction mb ≤ ϕ(y−,τ̄)(ṽ) ≤
ϕ(−∞,τ̄)(ṽ) < mb. To prove also that τ̄ ∈ R, we can argue in a symmetric
way.

(iii) Let h ∈ C∞
0 (R × (σ̄, τ̄))2 with supph ⊂ R × [y1, y2] ⊂ R × (σ̄, τ̄). By

Lemma 3.14 that there exists μ > 0 such that V (v̄(·, y)) ≥ b+μ for any
y ∈ [y1, y2]. We also recognize that

∃t̄ > 0 such that V (v̄(·, y) + th(·, y)) > b for any
y ∈ [y1, y2] and t ∈ (0, t̄). (3.24)

Indeed, if this is not true, there exists a sequence tn → 0 and a
sequence (sn) ⊂ [y1, y2], such that sn → y0 ∈ [y1, y2] and V (v̄(·, sn) +
tnh(·, sn)) ≤ b. Arguing as in the proof of Lemma 3.1, a semicontinu-
ity argument shows that b < V (v̄(·, y0)) ≤ lim infn→+∞ V (v̄(·, sn) +
tnh(·, sn)) ≤ b, a contradiction.

By (3.24), the function v+th verifies the assumption of Lemma 3.15
on the interval (σ̄, τ̄) for any t ∈ (0, t̄) and we deduce ϕ(σ̄,τ̄)(v̄ + th) ≥
mb = ϕ(σ̄,τ̄)(v̄) for any t ∈ (0, t̄).

(iv) For any ξ ∈ (σ̄, τ̄) and s > 0, the function

v̄s(·, y) =

{
v̄(·, y + ξ) y ≤ 0,

v̄(·, y
s + ξ) 0 < y.

verifies the assumption of Lemma 3.15 on the interval (σ̄ − ξ, s(τ̄ − ξ)).
Then, ϕ(σ̄−ξ,s(τ̄−ξ))(v̄s) ≥ mb = ϕ(σ̄−ξ,τ̄−ξ)(v̄(·, · + ξ)), and so, for any
s > 0, we have

0 ≤ ϕ(σ̄−ξ,s(τ̄−ξ))(v̄s) − ϕ(σ̄−ξ,τ̄−ξ)(v̄(·, · + ξ))

= (1
s − 1)

∫ τ̄

ξ

1
2‖∂y v̄(·, y)‖2 dy + (s − 1)

∫ τ̄

ξ

V (v̄(·, y)) − b dy.

Setting A =
∫ τ̄

ξ
1
2‖∂y v̄(·, y)‖2 dy and B =

∫ τ̄

ξ
V (v̄(·, y)) − b dy, the

real function s �→ ψ(s) = A(1
s −1)+B(s−1) is non-negative on (0,+∞)

and then that 0 ≤ min ψ(s) = ψ(
√

A
B ) = −(

√
A − √

B)2, that implies
A = B, that is∫ τ̄

ξ

V (v̄(·, y)) − b dy =
∫ τ̄

ξ

1
2‖∂y v̄(·, y)‖2 dy

for any ξ ∈ (σ̄, τ̄). (3.25)

By (iii) and since v̄ ∈ L∞(R2)2, we have that v̄ is a weak solution
of (1.1)–(1.2) on R× (σ̄, τ̄), and, again using the fact that v̄ ∈ L∞(R2)2,
regularity elliptic arguments (see [17]) give v̄ ∈ C2(R × (σ̄, τ̄))2 verifies
(1.1) and (1.2) and v̄ − z ∈ H2(R× (y1, y2))2 whenever [y1, y2] ⊂ (σ̄, τ̄).
This implies that the function y → 1

2‖∂y v̄(·, y)‖2 − V (v̄(·, y)) is contin-
uous and (iv) follows by (3.25).

(v) It follows by (i) and (iv).
�
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The brake orbit-type solution. For every b ∈ (m,m + λ0), by
Lemma 3.16, starting from the function v̄ given by Lemma 3.13, by reflection
and periodic continuation, we can construct a solution to (1.1)–(1.2) on all
R

2 which is periodic in the variable y. In fact, we define

vb(x, y) =

{
v̄(x, y + σ̄) if x ∈ R and y ∈ [0, τ̄ − σ̄)
v̄(x, τ̄ + (τ̄ − σ̄ − y)) if x ∈ R and y ∈ [τ̄ − σ̄, 2(τ̄ − σ̄)]

and vb(x, y) = v(x, y + 2k(τ̄ − σ̄)) for all (x, y) ∈ R
2, k ∈ Z.

Remark 3.17. Let T = τ̄ − σ̄

(i) The function y ∈ R �→ vb(·, y) ∈ L2(R)2 is continuous and periodic with
period 2T . By Lemma 3.14 (ii) and (iv), we have vb(·, 0) ∈ Vb

− and
vb(·, T ) ∈ Vb

+. By definition, vb(·,−y) = vb(·, y) and vb(·, y + T ) =
vb(·, T − y) for any y ∈ R.

(ii) vb ∈ H and, by (v) of Lemma 3.14, V (vb(·, y)) > b for any y ∈ R\{kT / k ∈
Z}.

(iii) By (v) of Lemma 3.16, for any k ∈ Z, we have lim infy→kT ± ‖∂yvb(·, y)‖
= 0.

(iv) By (iii) of Lemma 3.16 , vb ∈ C2(R × (0, T ))2 satisfies −Δv(x, y) +
v(x, y) − f(v(x, y)) = 0 for (x, y) ∈ R × (0, T ).

Theorem 1.1 finally follows by the following result.

Lemma 3.18. For every b ∈ (m,m + λ0), vb ∈ C2(R2)2 is a solution of (1.1)–
(1.2) on R

2. Moreover, Ev(y) = 1
2‖∂yv(·, y)‖2 −V (v(·, y)) = −b for all y ∈ R

and ∂yv(·, 0) = ∂yv(·, T ) = 0.

Proof. Let us prove that vb is a classical solution to (1.1)–(1.2) on R
2. To this

aim, we first note that by Remark 3.17 (iii), there exist sequences (ε±
n ), (η±

n ),
such that ε−

n < 0 < ε+
n , η−

n < 0 < η+
n for any n ∈ N, ε±

n , η±
n → 0 and

lim
n→+∞ ‖∂yvb(·, ε±

n )‖ = lim
n→+∞ ‖∂yvb(·, T + η±

n )‖ = 0. (3.26)

Fixed any ψ ∈ C∞
0 (R2), by Remark 3.17 (i)–(iv), we obtain that for any

k ∈ Z and n sufficiently large, we have

0 =
∫
R

∫ (2k+1)T+η−
n

2kT+ε+
n

−Δvb ψ + ∇W (vb)φ dy dx

=
∫
R

∫ (2k+1)T+η−
n

2kT+ε+
n

∇vb∇ψ + ∇W (vb)φ dy dx

+
∫
R

∂yv(x, 2kT + ε+
n )ψ(x, 2kT + ε+

n ) dx

−
∫
R

∂yvb(x, (2k + 1)T + η−
n )ψ(x, (2k + 1)T + η−

n ) dx



Vol. 19 (2017) Brake orbit solutions for semilinear 715

and analogously

0 =
∫
R

∫ 2kT+ε−
n

(2k−1)T+η+
n

∇vb∇ψ + ∇W (vb)φ dy dx

−
∫
R

∂yvb(x, 2kT + ε−
n )ψ(x, 2kT + ε−

n ) dx

+
∫
R

∂yvb(x, (2k − 1)T + η+
n )ψ(x, (2k − 1)T + η+

n ) dx.

By (3.26), in the limit for n → +∞, we obtain that for any k ∈ Z, we
have

0 =
∫
R

∫ 2kT

(2k−1)T

∇vb∇ψ + ∇W (vb)φ dy dx

=
∫
R

∫ (2k+1)T

2kT

∇vb∇ψ + ∇W (vb)φ dy dx.

Then, vb satisfies∫
R2

∇vb∇ψ + ∇W (vb)φ dxdy = 0, ∀ψ ∈ C∞
0 (R2)2,

and so, since vb ∈ L∞(R2)2, elliptic regularity arguments (see [17]) give that
vb is a classical solution to (1.1)–(1.2) on R

2 which is periodic of period 2T
in the variable y. Since by (v) of Lemma 3.13, we have ‖v̄b(·, y)‖H1(S(0,T ))2 ≤
Ĉ depending only on T , by definition of vb and using (1.1), we recover
that vb ∈ H2(R × (y1, y2))2 for any bounded interval (y1, y2) ⊂ R and
‖vb‖H2(S(y1,y2))2 ≤ C with C depending only on y2 − y1. Then, the functions
y ∈ R �→ ∂yvb(·, y) ∈ L2(R)2 and y ∈ R �→ vb(·, y) ∈ H1(R)2 are uniformly
continuous and so limy→0+ V (vb(·, y)) − b = lim infy→0+ ‖∂yvb(·, y)‖ = 0 and
limy→T − V (vb(·, y)) − b = limy→T − ‖∂yvb(·, y)‖ = 0. By continuity, we derive
that ∂yvb(·, 0) = ∂yvb(·, T ) = 0. �
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