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Abstract. We establish multiplicity and nonexistence of solutions to the
quasilinear problem

−Δpv = |v|q−2 v in Ω, v = 0 on ∂Ω,

in some bounded smooth domains Ω in R
N , for 1 < p < N and some

supercritical exponents q > p∗ := Np
N−p

. Multiplicity is established in

domains arising from the Hopf maps. We show that, after a suitable
change of metric, these maps become p-harmonic morphisms, i.e., they
preserve the p-Laplace operator up to a factor. We use them to reduce
the supercritical problem to an anisotropic quasilinear critical problem
in a domain of lower dimension.
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1. Introduction and statement of results

This paper is concerned with the existence and nonexistence of solutions to
the quasilinear supercritical problem

−Δpv = |v|q−2
v in Ω, v = 0 on ∂Ω, (℘q)

where Ω is a bounded smooth domain in R
N , Δpv := div(|∇v|p−2 ∇v) is the

p-Laplace operator, 1 < p < N, and q > p∗ := Np
N−p .

In the semilinear case p = 2 there has recently been some progress,
and existence, nonexistence and multiplicity results have been established
for particular classes of domains.
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A remarkable result due to Bahri and Coron [1] establishes the existence
of a positive solution to the critical problem (℘2∗) in every bounded domain Ω
having nontrivial reduced homology with Z/2-coefficients. Rabinowitz asked
whether this remains true for supercritical exponents q > 2∗ as well; see [4,
Question 2]. In [10,11] Passaseo gave a negative answer: for each 1 ≤ k ≤
N −3 he exhibited a domain which has the homotopy type of a k-dimensional
sphere, in which problem (℘q) does not have a nontrivial solution for any
q ≥ 2∗

N,k := 2(N−k)
N−k−2 . The exponent 2∗

N,k has been called the (k +1)-st critical
exponent in dimension N.

More general domains in which problem (℘q) does not admit a solution
for p = 2 and every q ≥ 2∗

N,k were introduced in [6]. These are domains of
the form

Ω := {(y, z) ∈ R
k+1 × R

N−k−1 : (|y|, z) ∈ Θ}, (1.1)

where Θ is a bounded smooth domain in R
N−k having the geometric property

stated in the following definition.

Definition 1.1. A bounded smooth domain Θ in (0,∞)×R
N−k−1 is said to be

doubly starshaped if there exist two numbers 0 < t0 < t1 such that t ∈ (t0, t1)
for every (t, z) ∈ Θ and Θ is strictly starshaped with respect to ξ0 := (t0, 0)
and ξ1 := (t1, 0), i.e.,

〈σ − ξi, ν(σ)〉 > 0 ∀σ ∈ ∂Θ\{ξi}, i = 0, 1,

where ν(σ) is the outward-pointing unit normal to ∂Θ at σ.

The nonexistence results in [6] can be extended to the quasilinear case.
We shall prove, e.g., the following one.

Theorem 1.2. Let 1 ≤ k < N − p. If Θ is a bounded smooth domain in R
N−k

which is doubly starshaped and Ω is given by (1.1), then problem (℘q) does
not have a nontrivial solution in Ω for any q ≥ p∗

N,k := (N−k)p
N−k−p .

The special case where p = 2 and Θ is a ball centered on (0,∞) × {0}
is the example given by Passaseo in [10,11]. Note that p∗

N,k > p∗ for every
1 ≤ k < N − p.

Until quite recently, only few existence results were known for supercrit-
ical problems. A fruitful approach which has been applied in recent years in
the semilinear case, consists in reducing the supercritical problem to a more
general elliptic critical or subcritical problem, either by considering rotational
symmetries, or by means of maps which pull back local harmonic functions,
or by a combination of both techniques. We refer the reader to the survey
paper [7] for a detailed discussion.

In our recent paper [8] we considered domains Ω of the form (1.1) and,
under some symmetry assumptions on Θ, we obtained multiplicity results for
the supercritical quasilinear problem (℘p∗

N,k
) by reducing it to an anisotropic

quasilinear critical problem in the domain Θ.
Here, we shall obtain some existence and multiplicity results in a differ-

ent type of domains, arising from the Hopf maps. So let us recall what are
these maps. For N = 4, 8, 16 we write R

N≡ K × K, where K is either the
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complex numbers C, the quaternions H or the Cayley numbers O. The Hopf
map H : R2 dimK = K × K → K × R = R

dimK+1 is defined by

H(z1, z2) := (2z1z2, |z1|2 − |z2|2).

Its restriction to the unit sphere is the Hopf fibration f : S2 dimK−1 → S
dimK.

So, in spherical coordinates,

H(sϑ) = s2f (ϑ) for s ∈ [0,∞), ϑ ∈ S
2 dimK−1.

Hopf maps were used in [6] to obtain multiplicity results for problem
(℘q) with p = 2 in domains of the form Ω = H−1(U) where U is a bounded
smooth domain in R

dimK+1. The main property of Hopf maps, which was
used to obtain those results, is that they are harmonic morphisms, i.e., they
preserve the Laplace operator, up to a factor. For p �= 2 there is a similar
notion: p-harmonic morphisms were introduced by Loubeau in [9] and further
studied in [5]. They commute with the p-Laplace operator, up to a factor. The
Hopf maps are not p-harmonic, but we shall prove that, after replacing the
standard metric in the target space R

dimK+1 by a suitable conformal metric,
H becomes a p-harmonic morphism. This will allow us to reduce problem (℘q)
in a domain of the form Ω = H−1(U) to an anisotropic quasilinear problem
in U. Then, we will apply the existence and multiplicity results obtained in
[8] for the latter problem to derive existence and multiplicity results for the
former one. The following theorem is one of them. Others will be given in
Sect. 2.

The sphere of units SK := {ζ ∈ K : |ζ| = 1} in K acts by multiplication
on K×K and the Hopf map is SK-invariant, i.e., H(ζz1, ζz2) = H(z1, z2) for all
ζ ∈ SK, z1, z2 ∈ K. As usual, we denote by O(n) the group of linear isometries
of Rn and, for a subgroup Γ of O(n), we denote by Γx := {γx : γ ∈ Γ} the
Γ-orbit of a point x ∈ R

n and by #Γx its cardinality. Recall that a subset X
of Rn is said to be Γ-invariant if γx ∈ X for every γ ∈ Γ and x ∈ X, and a
function f : X → R is Γ-invariant if f(γx) = f(x) for every γ ∈ Γ and x ∈ X.

Theorem 1.3. Let d = 2, 4, 8, p ∈ (1, d + 1), and Ω be an SK-invariant
bounded smooth domain in R

2d. If H(Ω) is invariant under the action of a
closed subgroup Γ of O(d+1) and #Γy = ∞ for every y ∈ H(Ω), then problem
(℘p∗

2d, d−1
) has infinitely many SK-invariant solutions in Ω.

Note that p∗
2d,d−1 = (d+1)p

d+1−p is supercritical in dimension 2d.

We wish to stress that it does not suffice that Ω is Γ-invariant and
has infinite Γ-orbits, for some subgroup Γ of O(N), to ensure that problem
(℘q) has a solution, as Theorem 1.2 shows. This stands in contrast to the
critical case, where problem (℘p∗) has infinitely many solutions if the domain
is Γ-invariant and all of its Γ-orbits are infinite; see [8, Theorem 2.1].

In the following section, we will prove this and other multiplicity results
in domains arising from the Hopf maps, and we will give some examples. The
proof of Theorem 1.2 is given in Sect. 3.
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2. Existence

Let (M, h) and (N, g) be Riemannian manifolds. A map φ: (M, h) → (N, g)
is horizontally weakly conformal if, at each point x ∈ M for which dφx �= 0,

the restriction dφx: Hx → Tφ(x)N to the horizontal space Hx := (ker dφx)⊥

is surjective and conformal, i.e., there exists λ(x) ∈ (0,∞) such that

g(dφx(X),dφx(Y )) = λ2(x)h(X,Y ) for every X,Y ∈ Hx.

Defining λ(x) := 0 if dφx = 0, one obtains a continuous function λ: M →
[0,∞) which is called the dilation.

Let p ∈ (1,∞). A map φ : (M, h) → (N, g) is p-harmonic if φ | K is a
critical point of the p-energy

Ep(ψ,K) :=
1
p

∫
K

|dψx|p dx

for every compact subset K of M.

A map φ: (M, h) → (N, g) is a p -harmonic morphism if it pulls back
local p-harmonic functions on N to local p-harmonic functions on M. If p = 2
it is simply called a harmonic morphism; see [3]. The following useful char-
acterizations were obtained by Burel and Loubeau in [5,9].

Theorem 2.1. Let φ : (M, h) → (N, g) be a C2-map and p ∈ (1,∞). Then,
the following statements are equivalent:

(a) φ is a p-harmonic morphism;
(b) φ is horizontally weakly conformal and p-harmonic;
(c) There exists a (unique and continuous) function λ on M such that

Δh
p(u ◦ φ) = λp

[
(Δg

pu) ◦ φ
]

for every C2-function u defined on a nonempty open subset of N, where
Δh

p and Δg
p denote the p-Laplace operators on (M, h) and (N, g), respec-

tively.

For K = C, H or O, we set d := dimK and we write R
2d ≡ K × K and

R
d+1 ≡ K × R. The Hopf map H : R2d → R

d+1 defined by

H(z1, z2) := (2z1z2, |z1|2 − |z2|2), z1, z2 ∈ K,

is a harmonic morphism with dilation λ(x) = 2 |x|, but it is not a p-harmonic
morphism for p �= 2; cf. [5, Theorem 4.9.]. Next, we will show that, if we re-
place the standard metric in R

d+1 by a suitable conformal metric, H becomes
a p-harmonic morphism. We start with the following lemmas.

Lemma 2.2. Let φ: (Mm, h) → (Nn, g) be a C1-map without critical points
(i.e., dφx �= 0 for all x ∈ M) which is horizontally weakly conformal with
dilation λ, m �= 2 and p ∈ (1,∞). Then φ is p-harmonic if and only if φ is
harmonic with respect to the conformally related metric on M given by

h̃ := (nλ2(x))
p−2
m−2 h.
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Proof. Lemma 1.2 in [2] asserts that, under the above assumptions, φ is p-
harmonic if and only if φ is harmonic with respect to the conformally related
metric on M given by

h̃ := |dφx| 2(p−2)
m−2 h,

where |dφx| is the Hilbert–Schmidt norm of dφx, which is defined by

|dφx|2 :=
m∑

i=1

g(dφx(ei),dφx(ei))

for any orthonormal basis {ei} of TxM. As φ is horizontally weakly conformal
with dilation λ, we get that |dφx|2 = nλ2(x). �

Lemma 2.3. Let C ∈ (0,∞), β ∈ R. Then, the Hopf map

H : (R2d\{0}, h) → (Rd+1\{0}, g)

is a harmonic morphism with respect to the conformally related metrics

h := (C |x|2)βδijdxidxj and g := |y|2β
δijdyidyj .

Proof. Let

γ(s) :=
1
2

ln
[(

Cs2
)β

]
and μ(t) := ln

(
tβ

)
.

Then, h = e2γ(|x|)δijdxidxj and g = e2μ(|y|)δijdyidyj . Now, for each s ∈
(0,∞), H maps the (2d − 1)-sphere of radius s onto the d-sphere of radius s2

via the scaled Hopf fibration, and has dilation 2s. Therefore, the diagram

R
2d H−→ R

d+1

f ↓ ↓ f

[0,∞) α−→ [0,∞)

commutes, where f(x) := |x| , f(y) := |y| and α(s) := s2. These data satisfy
the assumptions of Corollary 13.4.2 in [3], which says that H is a harmonic
morphism with respect to the conformally equivalent metrics h and g if and
only if

(2d − 2)α′(s)γ′(s) = (d − 1)4s2μ′(α(s)),

i.e., if and only if γ and μ satisfy

γ′(s) = sμ′(s2),

as they clearly do. �

Proposition 2.4. Let p ∈ (1,∞), p �= d + 1. Then, the Hopf map

H : R2d\{0} → (Rd+1\{0}, g)

is a p-harmonic morphism with respect to the standard metric on R
2d and

the conformally related metric

g := |y| p−2
d+1−p δijdyidyj

on R
d+1. Its square dilation is given by λ2(x) = 4 |x| 2(d−1)

d+1−p .
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Proof. Set n := d + 1, β := p−2
2(n−p) and C := (4n)

n−p
d−1 . Then g = |y|2β

δijdyi

dyj , and the Hopf map

H : R2d\{0} → (Rd+1\{0}, g)

is horizontally weakly conformal with dilation λ2(x) = 4(|x|2)2β+1

= 4(|x|2) d−1
n−p . By Lemma 2.2 and Theorem 2.1, it is a p-harmonic morphism

iff

H : (R2d\{0}, h) → (Rd+1\{0}, g)

is a harmonic morphism with respect to the conformally related metric h :=
(nλ2(x))

p−2
2d−2 δijdxidxj on R

2d\{0}. This is true, by Lemma 2.3, because

(nλ2(x))
p−2
2d−2 = [4n(|x|2) d−1

n−p ]
p−2

2(d−1) = (C |x|2)β

and therefore h = (C |x|2)βδijdxidxj . �
Corollary 2.5. Let p ∈ (2, d + 1), H : R2d → R

d+1 be the Hopf map, and U be
a bounded smooth domain in R

d+1\{0}. Then, u ∈ C2(U) satisfies{
−div(|y| (p−2)(d−2p+3)

2(d+1−p) |∇u|p−2 ∇u) = 1
2p|y| |u|q−2

u in U,

u = 0 on ∂U,
(℘#

q )

if and only if v := u ◦ H solves problem (℘q) in Ω := H−1(U).

Proof. Set n := d + 1 and β := p−2
2(n−p) . For the conformal metric g :=

|y|2β
δijdyidyj on R

d+1\{0} we have that |g| := det(gij) = |y|2βn and

Δg
pu =

1√|g|div
(√

|g| |y|−2β(p−1) |∇u|p−2 ∇u
)

=
1

|y|βn
div

(
|y|β(n−2p+2) |∇u|p−2 ∇u

)
.

Setting v := u ◦ H and y := H(x), from Proposition 2.4 and Theorem 2.1 we
obtain

Δp(v)(x) = λp(x)(Δg
pu)(y)

= 2p |y| p(n−2)
2(n−p)− (p−2)n

2(n−p) div
(
|y| (p−2)(n−2p+2)

2(n−p) |∇u(y)|p−2 ∇u(y)
)

= 2p |y|div
(
|y| (p−2)(n−2p+2)

2(n−p) |∇u|p−2 ∇u
)

(y).

This immediately yields the claim. �
The anisotropic critical problem (℘#

q ) with q = (d+1)p
d+1−p was studied in

[8] and multiplicity results were obtained under some symmetry assumptions.
We combine them with Corollary 2.5 to obtain multiplicity results for problem
(℘q) in domains of the form Ω = H−1(U).

Proof of Theorem 1.3. Theorem 2.1 in [8] says that, if U is a bounded smooth
domain in R

d+1 which is invariant under the action of a closed subgroup Γ of
O(d+1) and every Γ-orbit of U is infinite, then the anisotropic critical prob-
lem (℘#

q ) with q = (d+1)p
d+1−p has infinitely Γ-invariant solutions in U. Theorem

1.3 now follows from Corollary 2.5.
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Next, we fix p ∈ (1, d + 1), a closed subgroup Γ̂ of O(d + 1) and a Γ̂-
invariant bounded smooth domain D in R

d+1 such that #Γ̂y = ∞ for every
y ∈ D. Then, the following statement holds true.

Theorem 2.6. There exists an increasing sequence (�m) of positive real num-
bers, depending only on Γ̂, D and p, with the following property: If Ω is an
SK-invariant bounded smooth domain in R

2d such that D ⊂ H(Ω) ⊂ R
d+1\{0}

and H(Ω) is Γ-invariant for some closed subgroup Γ of Γ̂ for which

min
y∈H(Ω)

|y|� #Γy > 2p−d−1�m

with � = (d+1)(p−2)(d−2p+3)
2p(d+1−p) + (d+1)−p

p , then the supercritical problem
(℘p∗

2d, d−1
) has at least m pairs of SK-invariant solutions ±v1, . . . ,±vm in

Ω of the form vj = uj ◦ H; u1 is positive, u2, . . . , um change sign, and uj is
Γ-invariant and satisfies∫

U

1
2p |y| |uj |

(d+1)p
d+1−p ≤ �jS

(d+1)/p for every j = 1, . . . , m,

where S is the best Sobolev constant for the embedding D1,p(Rd+1) ↪→ Lp∗

(Rd+1).

Proof. By Theorem 2.2 in [8], there exists a sequence (�m) as above with the
property that, if U is a bounded smooth domain in R

d+1 with D ⊂ U ⊂
R

d+1\{0} which is invariant under the action of a closed subgroup Γ of Γ∞
and

min
y∈U

2d+1−p |y|� #Γy > �m,

holds true, then the anisotropic critical problem (℘#
q ) with q = (d+1)p

d+1−p has at
least m pairs of Γ-invariant solutions ±u1, . . . ,±um in U with the properties
stated above. This, together with Corollary 2.5, yields the result. �

Theorems 1.3 and 2.6 extend some results proved in [6] for the semilinear
case p = 2.

Theorem 2.6 gives many examples of domains in which the supercritical
problem (℘p∗

2d, d−1
) has a prescribed number m of solutions. Namely, write

R
d+1 ≡ C

d/2 ×R and let Γ∞ := {e2πiθ : θ ∈ [0, 1)} act on R
d+1 by eiθ(z, t) :=

(eiθz, t) for z ∈ C
d/2, t ∈ R. Fix a bounded smooth domain O in R

2 with
O ⊂ (0,∞) × R and define

D := {(z, t) ∈ C
d/2 × R : (|z| , t) ∈ O}.

Then D is Γ∞-invariant invariant and every Γ∞-orbit in D is a circle.
Now, fix a cylinder Z := {(z, t) : R1 < |z| < R2}, R1, R2 ∈ (0,∞), and,
for r ∈ N, let Γr := {e2πij/r : j = 0, . . . , r − 1}. Then #Γry = r for every
y ∈ Z. According to Theorem 2.6, for every bounded smooth domain U in
R

d+1 such that D ⊂ U ⊂ Z, which is Γr-invariant for some r satisfying

r > 2p−d−1 max{R−�
1 , R−�

2 }�m,

the supercritical problem (℘p∗
2d, d−1

) has at least m solutions in Ω := H−1(U).
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Theorem 2.6 requires that all Γ-orbits in H(Ω) have large enough car-
dinality. Our next result allows H(Ω) to have small Γ-orbits, provided it is
close enough but does not touch {0}×R. Although a more general result can
be derived from Theorem 2.3 in [8], for the sake of clarity we state only the
following special case.

Fix p ∈ (1, d], r ≥ 2 and a Γr-invariant bounded smooth domain Û in
R

d+1\{0}, with Γr as before, such that Û ∩ ({0} × R) �= ∅. For ε > 0 set

Ûε := {y ∈ Û : dist(y, {0} × R) ≥ ε}.

Then, the following statement holds true.

Theorem 2.7. Let m be the largest integer such that

r inf
y∈Û

|y|� > m inf
y∈Û∩({0}×R)

|y|�

with � = (d+1)(p−2)(d−2p+3)
2p(d+1−p) + (d+1)−p

p . There exists ε > 0 with the following
property: If Ω is an SK-invariant bounded smooth domain in R

2d such that
H(Ω) is Γr-invariant,

H(Ω) ∩ ({0} × R) = ∅ and Ûε ⊂ H(Ω) ⊂ Û ,

then the supercritical problem (℘p∗
2d, d−1

) has at least m pairs of SK-invariant
solutions ±v1, . . . ,±vm in Ω of the form vj = uj◦H; u1 is positive, u2, . . . , um

change sign, and uj is Γr-invariant.

Proof. This follows from Theorem 2.3 in [8] and Corollary 2.5. �

3. Nonexistence

In this section, we prove some nonexistence results for problem (℘q) in do-
mains of the following form: Fix k1, . . . , km ∈ N with k := k1 + · · · + km and
1 ≤ m ≤ N − k − p, and define Ω as

Ω := {(y1, . . . , ym, z) ∈ R
k1+1 × · · · × R

km+1

×R
N−k−m :

(|y1|, . . . , |ym|, z) ∈ Θ}, (3.1)

where Θ is a bounded smooth domain in R
N−k whose closure is contained in

(0,∞)m × R
N−k−m.

Fix τ1, . . . , τm ∈ (0,∞) and, for each i = 1, . . . , m, let ϕi be the solution
to the problem {

ϕ′
i(t)t + (ki + 1)ϕi(t) = 1, t ∈ (0,∞),

ϕi(τi) = 0.

Then ϕi is given by ϕi(t) = 1
ki+1 [1 − ( τi

t )ki+1], so it is strictly increasing in
(0,∞). Now, for yi �= 0 we consider the vector field

χ(y1, . . . , ym, z) := (ϕ1(|y1|)y1, . . . , ϕm(|ym|)ym, z). (3.2)
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Lemma 3.1. χ has the following properties:
(i) divχ = N − k,
(ii) For every yi ∈ R

ki+1\{0}, z ∈ R
N−k−m, ξ ∈ R

N , p ∈ (1,∞),〈
dχ(y1, . . . , ym, z)[ξ], |ξ|p−2ξ

〉
≤ max

{
1 − k1ϕ1(|y1|), . . . , 1 − kmϕ1(|ym|), 1} |ξ|p.

Proof. These statements follow immediately from Lemma 4.2 in [6]. �
Theorem 1.2 is proved by the same argument used in [6] for the semi-

linear case. We give the details for the reader’s convenience.

Proof of Theorem 1.2. Let t0 be as in Definition 1.1 and let χ be the vector
field defined in (3.2) with m = 1 and τ1 = t0, i.e., k1 = k, ϕ(t) = 1

k+1 [1 −
( t0

t )k+1] and

χ(y, z) := (ϕ(|y|)y, z) for (y, z) ∈ R
k+1 × R

N−k−1, y �= 0.

Since 1 − kϕ(t) < 1 for t ∈ (t0,∞), Lemma 3.1 yields

〈dχ(x)[ξ], |ξ|p−2ξ〉 ≤ |ξ|p ∀x ∈ Ω, ξ ∈ R
N .

Therefore, if u ∈ C2(Ω) ∩ C1(Ω) is a solution to problem (℘q), the varia-
tional identity (4) in Pucci and Serrin’s paper [12] applied to the function
F(u,X) := 1

p |X|p − 1
q |u|q, (u,X) ∈ R × R

N , together with Lemma 3.1,
implies that

p − 1
p

∫
∂Ω

|∇u|p (χ · νΩ) dσ

=
∫

Ω

(divχ)
(

1
q
|u|q − 1

p
|∇u|p

)
dx +

∫
Ω

〈dχ[∇u], |∇u|p−2∇u〉dx

≤
∫

Ω

(N − k)
(

1
q

− 1
p

+
1

N − k

)
|∇u|p dx, (3.3)

where νΩ is the outward-pointing unit normal to ∂Ω.
Next, we claim that

〈(ϕ(t)t, z), νΘ(t, z)〉 > 0 ∀(t, z) ∈ ∂Θ\{ξ0, ξ1} (3.4)

where νΘ(t, z) is the outward-pointing unit normal to ∂Θ at (t, z), which we
write as νΘ(t, z) = (ν1(t, z), ν2(t, z)) ∈ R × R

N−k−1, and ξ0 := (t0, 0) and
ξ1 := (t1, 0) are as in Definition 1.1.

To prove this claim, let (t, z) ∈ ∂Θ\{ξ0, ξ1}. Since Θ is doubly star-
shaped we have that

(t − ti)ν1(t, z) + 〈z, ν2(t, z)〉 > 0 for i = 0, 1.

Therefore, setting ψ(t) := ϕ(t)t − t, we obtain

〈(ϕ(t)t, z), νΘ(t, z)〉 = ϕ(t)tν1(t, z) + 〈z, ν2(t, z)〉
> (ϕ(t)t − t + ti)ν1(t, z)=(ψ(t) + ti)ν1(t, z) for i = 0, 1.

Note that ψ′(t) = −kϕ(t) < 0 if t > t0. So, as t ∈ (t0, t1) for every (t, z) ∈ Θ,
we have that

ϕ(t1)t1 − t1 = ψ(t1) ≤ ψ(t) ≤ ψ(t0) = −t0 ∀(t, z) ∈ ∂Θ.
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If ν1(t, z) ≤ 0, then

〈(ϕ(t)t, z), νΘ(t, z)〉 > (ψ(t) + t0)ν1(t, z) ≥ 0

and if ν1(t, z) ≥ 0, then

〈(ϕ(t)t, z), νΘ(t, z)〉 > (ψ(t) + t1)ν1(t, z) ≥ ϕ(t1)t1ν1(t, z) ≥ 0.

This proves inequality (3.4).
Since Ω = {(y, z) ∈ R

k+1 × R
N−k−1 : (|y| , z) ∈ Θ}, from inequality

(3.4) we conclude that

〈χ(σ), νΩ(σ)〉 > 0 ∀σ ∈ ∂Ω\{(y, 0) ∈ ∂Ω : |y| �= t0, |y| �= t1}. (3.5)

If u �= 0, this inequality combined with (3.3) gives

0 <

∫
Ω

(N − k)
(

1
q

− 1
p

+
1

N − k

)
|∇u|p dx,

which implies that q < p∗
N,k. �

It is an open question, even in the semilinear case, whether Theorem
1.2 holds true for a domain of the form (3.1) with m > 1. A partial result,
which was proved in [6] for p = 2, can be extended to the quasilinear case as
follows.

Theorem 3.2. Given ε > 0 and τ = (τ1, . . . , τm) ∈ (0,∞)m there exists � ∈
(0,mini=1,...,m τi) such that, if Θ := BN−k

� (τ) is the ball in (0,∞)m×R
N−k−m

centered at (τ, 0) of radius � and Ω is defined as in (3.1), then problem (℘q)
does not have a nontrivial solution in Ω for every q ≥ p∗

N,k + ε.

Proof. The proof is a straightforward adaptation of the proof of Theorem 1.3
in [6]. �

Note that, if Θ is a ball, Ω has the homotopy type of the product of
spheres S

k1 × · · · × S
km . It turns out that the radius � → 0 as ε → 0, so

Theorem 3.2 does not provide an example of a domain of the form (3.1) with
m > 1 in which problem (℘q) does not have a nontrivial solution for q = p∗

N,k.
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