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A minimizing property of hyperbolic
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Abstract. In this short note, we characterize hyperbolic Keplerian orbits
as minimizing paths of the Keplerian action functional in the space of
curves from a ray emanating from the attractive focus to a point in
space. Variants of this result have been previously proved by different
methods. Our proof based on hyperbolic anomaly is simple and infor-
mative.
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1. Variational approaches for the Kepler problem

The equation of motions for the Kepler problem:

μẍ = −α
x

|x|3 (1.1)

is the Euler–Lagrange equation for the Lagrangian action functional:

Iμ,α,T (x) =
∫ T

0

μ

2
|ẋ|2 +

α

|x|dt. (1.2)

Here, μ and α are positive constants involving masses. We call solutions
of (1.1) Keplerian orbits and Iμ,α,T the Keplerian action functional. It is
natural to regard Keplerian orbits as extrema of this functional in suitable
function spaces. To include generalized solutions and allow more functional
analytic tools, a natural choice of the function space would be H1

loc(R,C) or
H1(R/TZ,C).

Speaking of variational approaches for the Kepler problem, one should
begin with the pioneering work of Gordon [17], in which elliptic Keplerian
orbits, together with periodic collision–ejection orbits, were characterized as
minimizers of the Keplerian action functional among non-contractible H1-
loops in the punctured complex plane. This observation played an important
role in later discoveries of periodic solutions for several equivariant n-body
problems, especially those which based on global estimates for the action
functional. See [5,6,8,12–14,23] for examples and further references. Another
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setting by the author characterizes some of these orbits as minimizing paths
between two rays emanating from the attractive focus. This viewpoint is
useful in showing existence of retrograde orbits of the three-body problem
without the equal mass constraint [8,10].

Parabolic orbits for the n-body problem, as well as for some other singu-
lar Hamiltonian systems, arise naturally in the study of generalized solutions
near collisions. They are interesting from variational perspective, because
they can be characterized as free-time action-minimizers, and can, therefore,
be linked with the Mather and weak KAM theories. Detailed discussions can
be found in [2,3,18,19].

Given two different points with the same positive distance from the
attractive focus, the parabolic collision–ejection path which connects them
has larger action value than some direct and indirect Keplerian arcs which
connects them with the same transfer time. This result was attributed to
C. Marchal in [4] and proved in [16,21]. Similar proofs have also appeared
in [20,22]. Here, we will give another proof, a proof which we think might
be the simplest, more direct and informative. The proof is more informative,
because it not only shows the existence of Keplerian arc will less action value,
but also specifies eccentricities, semi-latus rectum, and action values of such
hyperbolic Keplerian arcs. This result allows us to characterize hyperbolic
Keplerian orbits as action minimizers among paths from a point to a ray
emanating from the attractive focus. Details will be shown in Sect. 3.

2. Some preliminaries

For convenience, here, we briefly review some facts about hyperbolic Kep-
lerian orbits. We refer readers to two introductory books [1, Sect. 4.4], [15,
Chap 3] for details.

In terms of polar coordinates (x, y) = (r cos θ, r sin θ), solutions of (1.1)
with pericenters on R+ = {0} × [0,∞) are of the form:

r =
p

1 + e cos θ
, (2.1)

where p > 0 is the semi-latus rectum and e ≥ 0 is the eccentricity. This is
Kepler’s first law. Kepler’s second law can be written:

r2θ̇ =
√

pα

μ
. (2.2)

The energy H of orbit is given by:

H =
α(e2 − 1)

2p
. (2.3)

Conics described by (2.1) form a two-parameters’ family. For each ξ in
the upper half space R×(0,∞), there is a one-parameter family of such conics
in the upper half space which emanate from their pericenters on R+\{0} and
end at ξ. The corresponding Keplerian orbit is uniquely determined if we fix
the transfer time.
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A natural parametrization for hyperbolic orbits (1 < e) is by the hyper-
bolic anomaly ψH ∈ R:

r =
p

e2 − 1
(e cosh ψH − 1). (2.4)

The true anomaly θ and the hyperbolic anomaly ψH are related by:

tan
θ

2
=

√
e + 1
e − 1

tanh
ψH

2
,

dψH

dθ
=

e cosh ψH − 1√
e2 − 1

=
r

p

√
e2 − 1. (2.5)

The hyperbolic Kepler equation relates the hyperbolic anomaly with the
transfer time τ , since the last pericenter passage:√

α(e2 − 1)3

μp3
τ = e sinh ψH − ψH. (2.6)

In particular, in the upper half space (ψH > 0), we have e sinh ψH − ψH > 0.
Using (2.2) and (2.5), ψH as a function of τ is proportional to the inte-

gration of the potential term on [0, τ ]:
∫ τ

0

α

r
dt = α

∫ ψH(τ)

0

1
r

dt

dθ

dθ

dψH
dψH =

√
μαp

e2 − 1
ψH(τ). (2.7)

3. The main theorem

A simple rectilinear solution of (1.1) is the parabolic ejection orbit x
(φ)
pe given

by:

x(φ)
pe (t) = cpe t

2
3 eiφ, cpe =

(
9α

2μ

) 1
3

. (3.1)

It is easy to check that this is the only solution for (1.1) of the form c tλeiφ,
it is indeed parabolic, and its action value is:

Iμ,α,τ (x(φ)
pe ) = 2(6μα2)

1
3 τ

1
3 . (3.2)

Our main theorem compares these parabolic ejection orbits with some hy-
perbolic orbits:
Main theorem. Fix φ ∈ (0, π) and τ > 0. Let x

(φ)
pe be the parabolic ejection

orbit in (3.1). Let x(φ) = reiθ be the Keplerian orbit such that x(φ)(0) ∈ R+

is its pericenter, and x(φ)(τ) = x
(φ)
pe (τ). Then, x(φ) is hyperbolic and

Iμ,α,τ (x(φ)) < Iμ,α,τ (x(φ)
pe ).

Proof. The polar equation for x(φ) is of the form (2.1), since the pericenter is
on R+. The area of the sector swept by the vector from 0 to x(φ) for t ∈ [0, τ ]
is

p2

2

∫ φ

0

1
(1 + e cos θ)2

dθ =
1
2

∫ φ

0

r2 dθ =
1
2

∫ τ

0

r2θ̇ dt =
1
2

√
pα

μ
τ.
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The last identity uses (2.2). Observe that

p

1 + e cos φ
= |x(φ)(τ)| = |x(φ)

pe (τ)| =
(

9α

2μ

) 1
3

τ
2
3 ,

and so

τ2 =
(

2μ

9α

) (
p

1 + e cos φ

)3

. (3.3)

Therefore, ∫ φ

0

1
(1 + e cos θ)2

dθ =
√

2
3

1
(1 + e cos φ)

3
2
. (3.4)

By differentiating this identity with respect to φ, we find

e sin φ =
√

2
√

1 + e cos φ,

from which one can square both sides to deduce

(1 + e cos φ)2 = e2 − 1. (3.5)

This implies e > 1; i.e. the orbit x(φ) is hyperbolic.
In addition, from (3.3) and (3.5), we have:

τ2 =
(

2μ

9α

) (
p√

e2 − 1

)3

. (3.6)

In terms of hyperbolic anomaly ψH = ψH(τ), by (2.4) and (3.5), we find:

e cosh ψH − 1 =
e2 − 1

1 + e cos φ
=

√
e2 − 1. (3.7)

The action value for x(φ) can be easily evaluated using the hyperbolic
eccentric anomaly:

Iμ,α,τ (x(φ)) =
1
2

√
pμα

e2 − 1
(e sinh ψH + 3ψH). (3.8)

This follows easily by writing the Lagrangian as 2α/r + H and using (2.3),
(2.6), (2.7).

By (3.6), we can rewrite (3.2) in terms of e, p:

Iμ,α,τ

(
x(φ)
pe

)
= 2

√
2
√

pμα

e2 − 1
(e2 − 1)

1
4 .

Comparing with the above formula for Iμ,α,τ (x(φ)), all we have to show is

e sinh ψH + 3ψH < 4
√

2(e2 − 1)
1
4 .

By (3.7), we have

(e cosh ψH − 1)2 = e2 − 1.

Expanding the left-hand side yields

e sinh ψH =
√

2
√
e cosh ψH − 1 =

√
2 (e2 − 1)

1
4 .

From the hyperbolic Kepler equation, we know e sinh ψH−ψH > 0. Therefore,

e sinh ψH + 3ψH < 4e sinh ψH = 4
√

2 (e2 − 1)
1
4
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as desired. �

Identity (3.4) was also obtained in [16]. The main difference is that our
argument bases on properties of the hyperbolic anomaly. As mentioned in the
first section, this result in slightly variant forms can be found in [16,20–22].
Apart from these references, an application to the n-center problem can be
found in [11]. The proof above is informative, because it identifies eccentricity,
semi-latus rectum, hyperbolic anomaly, and action value of the Keplerian arc
with smaller action value through equations (3.5)–(3.8).

The following corollary characterizes hyperbolic Keplerian orbits as min-
imizing paths of the Keplerian action functional in the space of curves from
a ray emanating from the attractive focus to a point in space. An application
to the four-body problem can be found in [9].

Corollary. Given τ > 0 and ξ ∈ R × (0,∞). Minimizers of the Keplerian
action functional on the space

Γτ (R+, ξ) := {x ∈ H1([0, τ ],C) : x(0) ∈ R+, x(τ) = ξ}
are collision-free.

Proof. Existence of action minimizer follows from weak compactness of the
space Γτ (R+, ξ), weak lower semi-continuity, and coercivity of the Keplerian
action functional (see [7,17] for instances).

If an action minimizer has collision, then following a standard blow-up
argument (see [14,21] for instances), a limiting minimizing path along the
ray R+ξ is a parabolic ejection orbit, but the main theorem tells us that such
an orbit do not have least action value in spaces of the form Γτ ′(R+, ξ). �
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3: orbites ‘hip-hop’. Celest. Mech.
Dynam. Astron. 77(2), 139–151 (2000)

[14] Ferrario, D., Terracini, S.: On the existence of collisionless equivariant mini-
mizers for the classical n-body problem. Invent. Math. 155, 305–362 (2004)

[15] Fitzpatrick, R.: An Introduction to Celestial Mechanics. Cambridge University
Press, Cambridge (2012)

[16] Fusco, G., Gronchi, G.F., Negrini, P.: Platonic polyhedra, topological con-
straints and periodic solutions of the classical N-body problem. Invent. Math.
185, 283–332 (2011)

[17] Gordon, W.: A minimizing property of Keplerian orbits. Am. J. Math. 99,
961–971 (1977)

[18] Maderna, E.: On weak KAM theory of N-body problems. Ergodic Theory Dy-
nam. Syst. 32, 1019–1041 (2012)

[19] Maderna, E.: Venturelli, A, Globally minimizing parabolic motions in the New-
tonian N-body problem. Arch. Ration. Mech. Anal. 194, 283–313 (2009)

[20] Soave, N., Terracini, S.: Symbolic dynamics for the N-centre problem at nega-
tive energies. Discrete Contin. Dyn. Syst. Ser. A 32, 3245–3301 (2012)



Vol. 19 (2017) A minimizing property 287

[21] Terracini, S., Venturelli, A.: Symmetric trajectories for the 2N -body problem
with equal masses. Arch. Ration. Mech. Anal. 184, 465–493 (2007)

[22] Yu, G.: Periodic solutions of the planar N -center problem with topological
constraints. Discrete Contin. Dynam. Syst. A 36, 5131–5162 (2016)

[23] Zhang, S., Zhou, Q.: Variational methods for the choreography solution to the
three-body problem. Sci. China Ser. A 45, 594–597 (2002)

Kuo-Chang Chen
Department of Mathematics
National Tsing Hua University
Hsinchu 30013
Taiwan
e-mail: kchen@math.nthu.edu.tw


	A minimizing property of hyperbolic Keplerian orbits
	Abstract
	1. Variational approaches for the Kepler problem
	2. Some preliminaries
	3. The main theorem
	Acknowledgements
	References




