
J. Fixed Point Theory Appl. 19 (2017) 1481–1499
DOI 10.1007/s11784-016-0323-y
Published onlineOctober 6, 2016
c© Springer International Publishing 2016

Journal of Fixed Point Theory
and Applications

Viscosity approximation methods for
solving fixed-point problems and split
common fixed-point problems

Duong Viet Thong

Dedicated to Professor Do Hong Tan on the occasion of his 80th birthday

Abstract. In this paper, we introduce the strong convergence theorem for
the viscosity approximation methods for solving the split common fixed-
point problem in Hilbert spaces. As a consequence, we obtain strong
convergence theorems for split variational inequality problems for Lip-
schitz continuous and monotone operators and split common null point
problems for maximal monotone operators. Our results improve and
extend the corresponding results announced by many others.

Mathematics Subject Classification. 47H10, 47J25, 47H45, 65J15.

Keywords. Fixed-point theory, Split common fixed-point problem, Split
feasibility problem, Split variational inequality problem, Split null point
problem.

1. Introduction

Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively. The split feasibility problem (SFP) is formulated as
finding a point x satisfying the property

x ∈ C such that Ax ∈ Q,

where A : H1 → H1 is a bounded linear operator. Recently, the SFP has been
widely studied by many authors (see [1,14,16,17,19]), due to its application
in signal processing [2]. In particular, Byrne [1] introduced the so-called CQ
algorithm. For x0 ∈ H1 and define the iteration {xn} as

xn+1 = PC(I − γA∗(I − PQ)A)xn, (1.1)

where 0 < γ <
2

ρ(A∗A)
and where PC denotes the projector onto C and

ρ(A∗A) is the spectral radius of the operator A∗A. It is known that the
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CQ algorithm converges weakly to a solution of the SFP if such a solution
exists.

In the case, where both C and Q consist of fixed-point sets of some non-
linear operators, the SFP is known as the split common fixed-point problem
(SCFP). More specifically, the SCFP is to find

x ∈ Fix(U) such that Ax ∈ Fix(T ),

where Fix(U) and Fix(T ) are the fixed-point sets of U : H1 → H1 and
T : H2 → H2, respectively. We denote the solution set of the SCFP by

Γ := {x ∈ H1 : x ∈ Fix(U) and Ax ∈ Fix(T )}.

When U and T are directed operators, Censor and Segal [5] proposed
and proved the convergence of the following algorithm in the setting of the
finite-dimensional spaces:

xn+1 = U(I − γA∗(I − T )Axn). (1.2)

Note that a class of directed operators includes the metric projection.
Therefore, the results of Censor and Segal recover Byrne’s CQ algorithm.
Moudafi [11] introduced the following algorithm:{

un = xn − γA∗(I − T )Axn,

xn+1 = (1 − αn)un + αnUun

(1.3)

to solve the SCFP for demicontractive operators and he obtained the weak
convergence. It is known that demicontractive operators include the directed
operators. Hence, Moudafi’s algorithm is an extension of the algorithm (1.2).

Recently, Moudafi [12] and Zhao and He [20] proposed the viscosity ap-
proximation methods for solving the SCFP for quasi-nonexpansive operators.
Motivated by their work, in this paper, we introduce a generalized algorithm
to solve the SCFP and their results are as our consequences.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of
H. The weak convergence of {xn}∞

n=1 to x is denoted by xn ⇀ x as n → ∞,
while the strong convergence of {xn}∞

n=1 to x is written as xn → x as n → ∞.
For every point x ∈ H, there exists a unique nearest point in C, denoted

by PCx, such that ‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C. PC is called the metric
projection of H onto C. It is known that PC is nonexpansive.

Lemma 2.1 [6] Let C be a nonempty closed convex subset of a real Hilbert
space H. Given x ∈ H and z ∈ C. Then, z = PCx ⇐⇒ 〈x − z, z − y〉 ≥
0 ∀y ∈ C.

Definition 2.2 [6] Assume that T : H → H is a nonlinear operator. Then,
I − T is said to be demiclosed at zero if for any {xn} in H, the following
implication holds:

xn ⇀ x and (I − T )xn → 0 =⇒ x ∈ Fix(T ).
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Definition 2.3 Let T : H → H be an operator with Fix(T ) 
= ∅. Then
• T : H → H is called firmly nonexpansive if

‖Tx − Ty‖2 ≤ 〈Tx − Ty, x − y〉,
or equivalently

‖Tx − Ty‖2 ≤ ‖x − y‖2 − ‖(I − T )x − (I − T )y‖2;
• T : H → H is called directed if

〈z − Tx, x − Tx〉 ≤ 0 ∀z ∈ Fix(T ), x ∈ H,

or equivalently

‖Tx − z‖2 ≤ ‖x − z‖2 − ‖x − Tx‖2 ∀z ∈ Fix(T ), x ∈ H;

• T : H → H is called α-strongly quasi-nonexpansive with α > 0 if

‖Tx − z‖2 ≤ ‖x − z‖2 − α‖x − Tx‖2 ∀z ∈ Fix(T ), x ∈ H,

or equivalently

〈Tx − x, x − z〉 ≤ −1 − α

2
‖x − Tx‖2 ∀z ∈ Fix(T ), x ∈ H;

• T : H → H is called quasi-nonexpansive if

‖Tx − z‖ ≤ ‖x − z‖ ∀z ∈ Fix(T ), x ∈ H;

• T : H → H is called β-demicontractive with 0 ≤ β < 1 if

‖Tx − z‖2 ≤ ‖x − z‖2 + β‖(I − T )x‖2 ∀z ∈ Fix(T ), x ∈ H,

or equivalently

〈x − z, Tx − x〉 ≤ β − 1
2

‖x − Tx‖2 ∀z ∈ Fix(T ), x ∈ H. (2.1)

To prove its convergence, we will need the two following lemmas.

Lemma 2.4 [9] Let {an} be a sequence of non-negative real numbers, such
that there exists a subsequence {anj

} of {an}, such that anj
< anj+1 for

all j ∈ N. Then, there exists a nondecreasing sequence {mk} of N, such that
limk→∞ mk = ∞, and the following properties are satisfied by all (sufficiently
large) number k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, . . . , k}, such that an <
an+1.

Lemma 2.5 [13,15] Let {an} be sequences of non-negative real numbers, such
that

an+1 ≤ (1 − αn)an + αnbn,

where {αn} ⊂ (0, 1) and {bn} are a sequence, such that
(a)

∑∞
n=0 an = ∞;

(b) lim supn→∞ bn = 0.

Then, limn→∞ an = 0.
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Lemma 2.6 [18] If U : H → H is β1-strongly quasi-nonexpansive and T :
H → H is β2-strongly quasi-nonexpansive with Fix(U) ∩ Fix(T ) 
= ∅, then

UT is
β1β2

β1 + β2
-strongly quasi-nonexpansive and Fix(UT ) = Fix(U) ∩

Fix(T ).

Lemma 2.7 Let U : H → H be a β-demicontractive operator and T : H → H
be a α1-strongly quasi-nonexpansive operator with β < α1. Then, the operator

UT is
α1β

α1 − β
demicontractive and Fix(U) ∩ Fix(T ) = Fix(UT ).

Proof It is suffices to show that Fix(UT ) ⊂ Fix(U) ∩ Fix(T ). Let p ∈
Fix(UT ), it is enough to show that p ∈ Fix(T ). We take z ∈ Fix(U) ∩
Fix(T ), we have

‖p − z‖2 = ‖UTp − z‖2
≤ ‖Tp − z‖2 + β‖UTp − Tp‖2
≤ ‖p − z‖2 − α1‖Tp − p‖2 + β‖UTp − Tp‖2
= ‖p − z‖2 − α1‖Tp − p‖2 + β‖Tp − p‖2
= ‖p − z‖2 − (α1 − β)‖Tp − p‖2.

This implies that Tp = p, that is, p ∈ Fix(T ). Therefore, Fix(U)∩Fix(T ) =
Fix(UT ).

Take z ∈ Fix(U) ∩ Fix(T ), x ∈ H, let a := ‖x − z‖, b := ‖Tx − z‖,
c := ‖UTx− z‖, we have ‖a− c‖ = ‖UTx−x‖, ‖a− b‖ = ‖Tx−x‖, ‖b− c‖ =
‖UTx−Tx‖. Since the definition of U and T , we obtain ‖b‖2 ≤ ‖a‖2−α1‖a−
b‖2 and ‖c‖2 ≤ ‖b‖2 + β‖b − c‖2. This implies

−2α1〈a, b〉 ≤ (1 − α1)‖a‖2 − (1 + α1)‖b‖2,
2β〈b, c〉 ≤ (1 − β)‖b‖2 − (1 − β)‖c‖2.

On the other hand

0 ≤ ‖α1a − (α1 − β)b − βc‖2
= α2

1‖a‖2 + (α1 − β)2‖b‖2 + β2‖c‖2 − 2α1(α1 − β)〈a, b〉
+ 2β(α1 − β)〈b, c〉 − 2α1β〈a, c〉

= α2
1‖a‖2 + (α1 − β)2‖b‖2 + β2‖c‖2

+ (α1 − β)
[
(1 − α1)‖a‖2 − (1 + α1)‖b‖2]

+ (α1 − β)
[
(1 − β)‖b‖2 − (1 − β)‖c‖2] − 2α1β〈a, c〉

= (α1 + α1β − β)‖a‖2 + (−α1 + α1β + β)‖c‖2 − 2α1β〈a, c〉

= (α1 − β)(1 +
α1β

α1 − β
)‖a‖2 − (α1 − β)(1 − α1β

α1 − β
)‖c‖2 − 2α1β〈a, c〉

= (α1 − β)
(

‖a‖2 − ‖c‖2 +
α1β

α1 − β
‖a − c‖2

)
.
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Thus

‖c‖2 ≤ ‖a‖2 +
α1β

α1 − β
‖a − c‖2,

that is, the operator UT is
α1β

α1 − β
-demicontractive. �

Lemma 2.8 Let U : H → H is β demicontractive with F (U) 
= ∅ and set
Uλ = (1 − λ)I + λU , λ ∈ (0, 1 − β) then

(a) Fix(U) = Fix(Uλ);

(b) ‖Uλx−z‖2 ≤ ‖x−z‖2− 1
λ

(1−β −λ)‖(I −Uλ)x‖2 ∀x ∈ H, z ∈ Fix(U);

(c) F (U) is a closed convex subset of H1.

Proof (a) It is obvious.
(b) We have

‖Uλx − z‖2 = ‖(1 − λ)x + λUx − z‖2
= ‖(x − z) + λ(Ux − x)‖2
= ‖x − z‖2 + 2λ〈x − z, Ux − x〉 + λ2‖Ux − x‖2
≤ ‖x − z‖2 + λ(β − 1)‖Ux − x‖2 + λ2‖Ux − x‖2
= ‖x − z‖2 − λ(1 − β − λ)‖(I − U)x‖2

= ‖x − z‖2 − 1
λ

(1 − β − λ)‖(I − Uλ)x‖2.
(c) It is a consequence of Proposition 1 in [18]. �

Lemma 2.9 Let T : H2 → H2 be a μ-demicontractive operator, A : H1 → H2

be a linear bounded operator with L = ‖A∗A‖. For a positive real number γ,
define the operator V : H1 → H1 by

V := I + γA∗(T − I)A.

Then:

(a) for all x ∈ H1 and z ∈ A−1(Fix(T )),

‖V x − z‖2 ≤ ‖x − z‖2 − 1
γL

(1 − μ − γL)‖(I − V )x‖2.

(b) for all x ∈ H1 and z ∈ A−1(Fix(T )),

‖V x − z‖2 ≤ ‖x − z‖2 − γ(1 − μ − γL)‖(I − T )Ax‖2.

(c) x ∈ Fix(V ) if Ax ∈ Fix(T ) provided that γ ∈ (0,
1 − μ

L
).

Proof (a) Given x ∈ H1 and z ∈ A−1(Fix(T )), we have

〈A∗(I − T )Ax, x − z〉 = 〈(I − T )Ax,Ax − Az〉
≥ 1 − μ

2
‖(I − T )Ax‖2.
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On the other hand

‖A∗(I − T )Ax‖2 = 〈A∗(I − T )Ax,A∗(I − T )Ax〉
= 〈(I − T )Ax,AA∗(I − T )Ax〉
≤ L‖(I − T )Ax‖2.

Thus

〈A∗(I − T )Ax, x − z〉 ≥ 1 − μ

2L
‖A∗(I − T )Ax‖2.

We have

‖V x − z‖2 = ‖x − γA∗(I − T )Ax − z‖2
= ‖x − z‖2 − 2γ〈x − z,A∗(I − T )Ax〉 + γ2‖A∗(I − T )Ax‖2

≤ ‖x − z‖2 − 2γ
1 − μ

2L
‖A∗(I − T )Ax‖2 + γ2‖A∗(I − T )Ax‖2

= ‖x − z‖2 − γ

L
(1 − μ − γL)‖A∗(I − T )Ax‖2

= ‖x − z‖2 − 1
γL

(1 − μ − γL)‖γA∗(I − T )Ax‖2

= ‖x − z‖2 − 1
γL

(1 − μ − γL)‖(I − V )x‖2.

(b) Given x ∈ H1 and z ∈ A−1(Fix(T )), we have

‖V x − z‖2 = ‖x + γA∗(T − I)Ax − z‖2
= ‖x − z‖2 + 2γ〈x − z,A∗(T − I)Ax〉 + γ2‖A∗(T − I)Ax‖2
= ‖x − z‖2 + 2γ〈Ax − Az, (T − I)Ax〉
+ γ2〈A∗(T − I)Ax,A∗(T − I)Ax〉
≤ ‖x − z‖2 + γ(−1 + μ)‖(T − I)Ax‖2
+ γ2〈AA∗(T − I)Ax, (T − I)Ax〉
≤ ‖x − z‖2 + γ(−1 + μ)‖(T − I)Ax‖2 + γ2‖AA∗‖‖(T − I)Ax‖2
= ‖x − z‖2 − γ(1 − μ − γL)‖(T − I)Ax‖2.

(c) It is obvious that Ax ∈ Fix(T ) then x ∈ Fix(V ). We show the converse,
let x ∈ Fix(V ) and z ∈ A−1(Fix(T )), we have

‖x − z‖2 = ‖V x − z‖2 ≤ ‖x − z‖2 − γ(1 − μ − γL)‖(T − I)Ax‖2.
Since γ ∈ (0,

1 − μ

L
), we obtain (T − I)Ax = 0, that is, Ax ∈ Fix(T ).

3. Main results

Theorem 3.1 Let U : H → H be a α-strongly quasi-nonexpansive operator
such that I−U is demiclosed at zero. Suppose that f : H → H is a contraction
with constant ρ ∈ (0, 1). Let {xn} be a sequence in H defined by

x0 ∈ H, xn+1 = αnf(xn) + (1 − αn)Uxn, (3.1)
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where the sequence {αn} satisfies the following conditions:

αn ∈ (0, 1), lim
n→∞ αn = 0 and

∞∑
n=0

αn = ∞.

Then {xn} strongly converges to an element q ∈ Fix(U), where q = PFix(U) ◦
f(q).

Proof First, we note that Fix(U) is a closed convex subset by Lemma 2.8.
Thus, the mapping PFix(U) ◦ f : H → H is a contraction. By Banach’ s
contraction principle that there exists a unique element q ∈ H, such that
q = PFix(U) ◦ f(q). In particular, q ∈ Fix(U) and

〈(I − f)(q), q − z〉 ≤ 0 ∀z ∈ Fix(U). (3.2)

Now, we show that {xn} is bounded. Indeed, we have

‖xn+1 − q‖ = ‖αnf(xn) + (1 − αn)Uxn − q‖
= ‖αn(f(xn) − xn) + (1 − αn)(Uxn − q)‖
≤ αn‖f(xn) − q‖ + (1 − αn)‖Uxn − q‖
≤ αn‖f(xn) − f(q)‖ + αn‖f(q) − q‖ + (1 − αn)‖Uxn − q‖
≤ αnρ‖xn − q‖ + αn‖f(q) − q‖ + (1 − αn)‖xn − q‖
= [1 − αn(1 − ρ)]‖xn − q‖ + αn‖f(q) − q‖

= [1 − αn(1 − ρ)]‖xn − q‖ + αn
‖f(q) − q‖

1 − ρ

≤ max
{

‖xn − q‖,
‖f(q) − q‖

1 − ρ

}

≤ · · · ≤ max
{

‖x0 − q‖,
‖f(q) − q‖

1 − ρ

}
.

This implies that the sequence {xn} is bounded and {f(xn)}, {Uxn} are
bounded.

On the other hand, we get

xn+1 − xn = αn(f(xn) − xn) + (1 − αn)(Uxn − xn).

This implies that

‖xn+1 − xn‖2 = α2
n‖f(xn) − xn‖2 + (1 − αn)2‖Uxn − xn‖2

+ 2αn(1 − αn)〈f(xn) − xn, Uxn − xn〉
≤ α2

n‖f(xn) − xn‖2 + (1 − αn)‖Uxn − xn‖2
+ 2αn(1 − αn)〈f(xn) − xn, Uxn − xn〉 (3.3)
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and

‖xn+1 − q‖2 − ‖xn − q‖2 − ‖xn+1 − xn‖2 = 2〈xn+1 − xn, xn − q〉
= 2αn〈f(xn) − xn, xn − q〉

+2(1 − αn)〈Uxn − xn, xn − q〉
≤ 2αn〈f(xn) − xn, xn − q〉

−(1 − αn)(1 + α)‖xn − Uxn‖2.
(3.4)

From (3.3) and (3.4), we obtain

‖xn+1 − q‖2 − ‖xn − q‖2 ≤ α2
n‖f(xn) − xn‖2 + 2αn〈f(xn) − xn, xn − q〉

+ 2αn(1 − αn)〈f(xn) − xn, Uxn − xn〉
− α(1 − αn)‖xn − Uxn‖2.

Therefore

α(1 − αn)‖xn − Uxn‖2 ≤ α2
n‖f(xn) − xn‖2 + 2αn〈f(xn) − xn, xn − q〉

+ ‖xn − q‖2 − ‖xn+1 − q‖2. (3.5)

Let us consider the following two cases.
Case 1 There exists N ∈ N, such that ‖xn+1 − q‖2 ≤ ‖xn − q‖2 for all n ≥ N.
This implies that limn→∞ ‖xn − q‖2 exists. Since (3.5), we have

lim
n→∞ ‖xn − Uxn‖ = 0. (3.6)

Now, we show that

lim sup
n→∞

〈xn − q, f(q) − q〉 ≤ 0. (3.7)

Indeed, we take a subsequence {xnj
} of {xn}, such that

lim sup
n→∞

〈xn − p, f(p) − p〉 = lim
j→∞

〈xnj
− q, f(q) − q〉.

We may assume that xnj
⇀ x∗. By (3.6), we have x∗ ∈ Fix(U). Thus

lim sup
n→∞

〈xn − q, f(q) − q〉 = lim
j→∞

〈xnj
− q, f(q) − q〉 = 〈x∗ − q, f(q) − q〉 ≤ 0.

Next, we will show that xn → q. we get

‖xn+1 − q‖2 = ‖αn(f(xn) − q) + (1 − αn)(Uxn − q)‖2
= (1 − αn)2‖Uxn − q)‖2 + α2

n‖f(xn) − q‖2
+ 2αn(1 − αn)〈Uxn − q, f(xn) − q〉

≤ (1 − αn)2‖xn − q‖2 + α2
n‖f(xn) − q‖2

+ 2αn(1 − αn)〈Uxn − q, f(xn) − f(q)〉
+ 2αn(1 − αn)〈Uxn − q, f(q) − q〉

≤ (1 − αn)2‖xn − q‖2 + α2
n‖f(xn) − q‖2

+ 2αn(1 − αn)ρ‖xn − q‖2 + 2αn(1 − αn)〈Uxn − p, f(q) − q〉
= [1 − αn(2 − αn − 2ρ(1 − αn))]‖xn − q‖2 + α2

n‖f(xn) − q‖2
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+ 2αn(1 − αn)〈Uxn − q, f(q) − q〉
= (1 − γn)‖xn − q‖2 + γnδn,

where

γn = αn(2 − αn − 2ρ(1 − αn)),

δn =
αn‖f(xn) − q‖2 + 2(1 − αn)〈Uxn − q, f(q) − q〉

2 − αn − 2ρ(1 − αn)
.

We have γn → 0,
∑∞

n=1 γn = ∞, and by (3.7), we get lim supn→∞ δn ≤
0. By Lemma 2.5, we conclude that xn → q.
Case 2 There exists a subsequence {‖xnj

− q‖2} of {‖xn − q‖2}, such that
‖xnj

− q‖2 < ‖xnj+1 − q‖2 for all j ∈ N. In this case, it follows from
Lemma 2.4 that there exists a nondecreasing sequence {mk} of N, such that
limk→∞ mk = ∞, and the following inequalities hold for all k ∈ N:

‖xmk
− q‖2 ≤ ‖xmk+1 − q‖2 and ‖xk − q‖2 ≤ ‖xmk

− q‖2. (3.8)

Similarly, we get
lim

n→∞ ‖xmk
− Uxmk

‖ = 0, (3.9)

lim sup
k→∞

〈xmk
− q, f(q) − q〉 ≤ 0, (3.10)

and
‖xmk+1 − q‖2 ≤ (1 − γmk

)‖xmk
− q‖2 + γmk

δmk
, (3.11)

where

γmk
= αmk

(2 − αmk
− 2ρ(1 − αmk

)),

δmk
=

αmk
‖f(xmk

) − q‖2 + 2(1 − αmk
)〈Uxmk

− q, f(q) − q〉
2 − αmk

− 2ρ(1 − αmk
)

.

By Lemma 2.5, we obtain xmk
→ q. By (3.8), we get ‖xk−q‖ ≤ ‖xmk

−q‖ ∀k ∈
N. Therefore, xk → q. �

Corollary 3.2 Let U : H → H be a β demicontractive, such that I − U is
demiclosed at zero. Suppose that f : H → H is a contraction with constant
ρ ∈ (0, 1). Let {xn} be a sequence in H defined by

x0 ∈ H, xn+1 = αnf(xn) + (1 − αn)Uλxn, (3.12)

where the parameter λ and the sequence {αn} satisfy the following conditions:
(a) λ ∈ (0, 1 − β);
(b) αn ∈ (0, 1), limn→∞ αn = 0 and

∑∞
n=0 αn = ∞.

Then, {xn} strongly converges to an element q ∈ Fix(U), where q = PFix(U)◦
f(q).

Proof By Lemma 2.8, we have Uλ is α-strongly quasi- nonexpansive with

α =
1
λ

(1 − β − λ). Since λ ∈ (0, 1 − β), we get α > 0. On the other hand,

Fix(U) = Fix(Uλ) and λ(I − U) = I − Uλ, and thus, I − Uλ is demiclosed
at zero. The remaining of the proof is followed from Theorem 3.1. �
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Corollary 3.3 Let U : H → H be a quasi-nonexpansive operator, such that
I − U is demiclosed at zero. Suppose that f : H → H is a contraction with
constant ρ ∈ (0, 1). Let {xn} be a sequence in H defined by

x0 ∈ H, xn+1 = αnf(xn) + (1 − αn)Uλxn, (3.13)

where the parameter λ ∈ (0, 1) and the sequence {αn} satisfy the following
conditions: αn ∈ (0, 1), limn→∞ αn = 0 and

∑∞
n=0 = ∞. Then, {xn} strongly

converges to an element q ∈ Fix(U), where q = PFix(U) ◦ f(q).

Corollary 3.3 extends Maingé’s result in [10] from λ ∈ (0,
1
2
) to λ ∈

(0, 1).

Theorem 3.4 Let U : H1 → H1 be a α2-strongly quasi-nonexpansive operator
and T : H2 → H2 be a μ-demicontractive operator that both I − U and I − T
are demiclosed at zero. Let A : H1 → H2 be a bounded linear operator with
L = ‖A∗A‖, and f : H1 → H1 be a contraction with constant ρ ∈ (0, 1).
Suppose Γ 
= ∅. Let {xn} ⊂ H1 be a sequence generated by{

x0 ∈ H1,

xn+1 = αnf(xn) + (1 − αn)U(I + γA∗(T − I)A)xn,
(3.14)

where the parameters γ and the sequence {αn} satisfy the following condi-
tions:

(a) γ ∈ (0,
1 − μ

L
);

(b) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

Then, xn → q, where q = PΓ ◦ f(q).

Proof We will show as follows:
(a) The operator UV is α-strongly quasi-nonexpansive, where V := I +

γA∗(T − I)A;
(b) The operator I − UV is demiclosed at zero.

By Lemma 2.9, then V := I +γA∗(T −I)A is α1-strongly quasi-nonexpansive

with α1 =
1

γL
(1 − μ − γL). By Lemma 2.6, then UV is α-strongly quasi-

nonexpansive and Fix(U) ∩ Fix(V ) = Fix(UV ), where α =
α1α2

α1 + α2
.

First, we show that Γ = Fix(U)∩Fix(V ) = Fix(UV ). Indeed, it follows
from Lemma 2.9 that

Γ = {x ∈ H1 : x ∈ Fix(U) and Ax ∈ Fix(T )}
= {x ∈ H1 : x ∈ Fix(U) and x ∈ Fix(V )}
= Fix(U) ∩ Fix(V )

= Fix(UV ).

Let {xn} be a sequence such that xn −UV xn → 0 and xn ⇀ x. We have
‖xn − q‖ ≤ ‖xn − UV xn‖ + ‖UV xn − q‖, that is ‖xn − q‖ − ‖UV xn − q‖ ≤
‖xn − UV xn‖ → 0. This implies that

‖xn − q‖2 − ‖UV xn − q‖2 → 0.
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We have

‖UV xn − q‖2 ≤ ‖V xn − q‖2 − α2‖UV xn − V xn‖2
≤ ‖xn − q‖2 − α1‖V xn − xn‖2 − α2‖UV xn − V xn‖2.

It follows

V xn − xn → 0 and UV xn − V xn → 0.

This implies that V xn ⇀ x, and by the demiclosedness of I − U , we get
x ∈ Fix(U).

On the other hand, by Lemma 2.9, we get

‖UV xn − q‖2 ≤ ‖V xn − q‖2 − α2‖UλV xn − V xn‖2
≤ ‖xn − q‖2 − γ(1 − μ − γL)‖(T − I)Axn‖2

− α2‖UλV xn − V xn‖2.
It follows

γ(1 − μ − γL)‖(T − I)Axn‖2 ≤ ‖xn − q‖2 − ‖UV xn − q‖2
−α2‖UV xn − V xn‖2 → 0.

Since Axn ⇀ Ax and the demiclosedness of I −T , we get Ax ∈ Fix(T ), that
is x ∈ Fix(V ). Therefore, x ∈ Fix(U)∩Fix(V ) = Fix(UV ). That is, I −UV
is demiclosed at zero. �

Corollary 3.5 Let U : H1 → H1 be a β-demicontractive operator and T :
H2 → H2 be a μ-demicontractive operator that both I − U and I − T are
demiclosed at zero. Let A : H1 → H2 be a bounded linear operator with
L = ‖A∗A‖ and f : H1 → H1 be a contraction with constant ρ ∈ (0, 1).
Suppose Γ 
= ∅. Let {xn} ⊂ H1 be a sequence generated by{

x0 ∈ H1,

xn+1 = αnf(xn) + (1 − αn)Uλ(I + γA∗(T − I)A)xn,
(3.15)

where the parameters λ, γ, and the sequence {αn} satisfy the following con-
ditions:
(a) λ ∈ (0, 1 − β);

(b) γ ∈ (0,
1 − μ

L
);

(c) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

Then, xn → q, where q = PΓ ◦ f(q).

Proof By Lemma 2.9, then V := I + γA∗(T − I)A is α1-strongly quasi-

nonexpansive with α1 =
1

γL
(1 − μ − γL), and by Lemma 2.8, then Uλ is

α2-strongly quasi-nonexpansive with α2 =
1
λ

(1 − β − λ). The remaining of
the proof is followed from Theorem 3.4. �

Corollary 3.6 Let U : H1 → H1 be a quasi-nonexpansive operator and T :
H2 → H2 be a quasi-nonexpansive operator that both I − U and I − T are
demiclosed at zero. Let A : H1 → H2 be a bounded linear operator with
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L = ‖A∗A‖ and f : H1 → H1 be a contraction with constant ρ ∈ (0, 1).
Suppose Γ 
= ∅. Let {xn} ⊂ H1 be a sequence generated by{

x0 ∈ H1,

xn+1 = αnf(xn) + (1 − αn)Uλ(I + γA∗(T − I)A)xn,
(3.16)

where the parameters λ, γ, and the sequence {αn} satisfy the following con-
ditions:
(a) λ ∈ (0, 1);

(b) γ ∈ (0,
1
L

);

(c) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

Then, xn → q, where q = PΓ ◦ f(q).

Theorem 3.7 Let S : H1 → H1 be a β-demicontractive operator and T :
H2 → H2 be a μ-demicontractive operator. Let A : H1 → H2 be a bounded
linear operator with L = ‖A∗A‖ and f : H1 → H1 be a contraction with
constant ρ ∈ (0, 1). Suppose Γ 
= ∅. Let {xn} ⊂ H1 be a sequence generated
by {

x0 ∈ H1,

xn+1 = αnf(xn) + (1 − αn)Uλxn,
(3.17)

where U := S(I +γA∗(T −I)A). Assume that I −U is demiclosed at zero and
the parameters β, λ, γ, and the sequence {αn} satisfy the following conditions:

(a) γ ∈ (0,
1 − μ

L
);

(b) β < α1, where α1 :=
1

γL
(1 − μ − γL);

(c) λ ∈ (0, 1 − α1β

α1 + β
);

(d) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

Then, xn → q, where q = PΓ ◦ f(q).

Proof Let V := I + γA∗(T − I)A, by Lemma 2.9, then the operator V is
α1-strongly quasi-nonexpansive. Therefore, by Lemma 2.7, then the operator

SV is
α1β

α1 − β
demicontractive and Fix(S) ∩ Fix(V ) = Fix(SV ). We show

that Γ = Fix(S) ∩ Fix(V ) = Fix(SV ). Indeed, it follows from Lemma 2.9
that

Γ = {x ∈ H1 : x ∈ Fix(S) and Ax ∈ Fix(T )}
= {x ∈ H1 : x ∈ Fix(S) and x ∈ Fix(V )}
= Fix(S) ∩ Fix(V ).

The remaining of the proof is followed by Corollary 3.2. �

Corollary 3.8 Let S : H1 → H1 be a quasi-nonexpansive operator T : H2 →
H2 be a μ-demicontractive operator that both I −S and I −T are demiclosed
at zero. Let A : H1 → H2 be a bounded linear operator with L = ‖A∗A‖ and
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f : H1 → H1 be a contraction with constant ρ ∈ (0, 1). Suppose Γ 
= ∅. Let
{xn} ⊂ H1 be a sequence generated by{

x0 ∈ H1,

xn+1 = αnf(xn) + (1 − αn)Uλxn,
(3.18)

where U := S(I + γA∗(T − I)A) and the parameters λ, γ and the sequence
{αn} satisfy the following conditions:

(a) λ ∈ (0, 1);

(b) γ ∈ (0,
1 − μ

L
);

(c) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

Then, xn → q, where q = PΓ ◦ f(q).

Proof We will show that I − SV is demiclosed at zero.
To prove (b), let {xn} be a sequence, such that xn − SV xn → 0 and

xn ⇀ x. We have ‖xn − q‖ ≤ ‖xn −SV xn‖+‖SV xn − q‖, that is, ‖xn − q‖−
‖SV xn − q‖ ≤ ‖xn − SV xn‖ → 0. This implies that

‖xn − q‖2 − ‖SV xn − q‖2 → 0.

On the other hand

‖SV xn − q‖2 ≤ ‖V xn − q‖2
≤ ‖xn − q‖2 − α1‖V xn − xn‖2.

It follows

V xn − xn → 0.

This implies that V xn ⇀ x. Since ‖SV xn − V xn‖ ≤ ‖SV xn − xn‖ + ‖xn −
V xn‖ → 0 and by the demiclosedness of I − S we get x ∈ Fix(S). On the
other hand, by Lemma 2.9, we have

‖SV xn − q‖2 ≤ ‖V xn − q‖2
≤ ‖xn − q‖2 − γ(1 − μ − γL)‖(T − I)Axn‖2.

It follows γ(1−μ−γL)‖(T −I)Axn‖2 ≤ ‖xn −q‖2 −‖SV xn −q‖2 → 0. Since
Axn ⇀ Ax and(I −T )Axn → 0, by the demiclosedness of I −T , we get Ax ∈
Fix(T ), that is x ∈ Fix(V ). Therefore, x ∈ Fix(S) ∩ Fix(V ) = Fix(SV ).

�

Corollary 3.8 extends Zhao’s and He’s result in [20] from λ ∈ (0,
1
2
) to

λ ∈ (0, 1) and Corollary 3.8 answers the question’s Moudafi in [12].

4. The split variational inequality problem

Given operators f : H1 → H1, g : H2 → H2, and a bounded linear operator
A : H1 → H2 and nonempty closed convex subsets C ⊂ H1 and Q ⊂ H2, the
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split variational inequality problem (SVIP) is the problem of finding a point
x∗ ∈ V IP (C, f), such that Ax∗ ∈ V IP (Q, g), that is{

x∗ ∈ C such that 〈f(x∗), x − x∗〉 ≥ 0 for all x ∈ C,

Ax∗ ∈ Q such that 〈g(Ax∗), y − Ax∗〉 ≥ 0 for all y ∈ Q.

This is equivalent to the problem of finding x∗ ∈ Fix(PC(I −ηf)), such
that Ax∗ ∈ Fix(PQ(I − ηg)), where η > 0. We denote the set of solutions
by SV IP (A,C,Q, f, g). Therefore, SVIP can be viewed as SCFP. Under ap-
propriate conditions of the operators f and g, we can apply our results for
SVIP.

Lemma 4.1 [4,8] Let f : H1 → H1 be a monotone and k-Lipschitz continuous
on C. Let S := PC(I − ηf), where η > 0. If xn is a sequence in C satisfying
xn ⇀ x∗ and xn − Sxn → 0, then x∗ ∈ V IP (C, f).

Lemma 4.2 [9] Let f : H1 → H1 be a monotone and k-Lipschitz operator on
C and η > 0. Let W := PC(I − ηf) and S := PC(I − ηfW ). Then, for all
z ∈ V IP (C, f), we have

‖Sx − z‖2 ≤ ‖x − z‖2 − (1 − k2η2)‖x − Wx‖2.
In particular, if kη < 1, S is a quasi-nonexpansive operator and Fix(S) =
Fix(W ) = V IP (C, f).

Corollary 4.3 Let C and Q be nonempty closed convex subsets of Hilbert
spaces H1 and H2, respectively. Let f : H1 → H1 and g : H2 → H2 be
monotone and k-Lipschitz continuous operators on C and Q, respectively,
and A : H1 → H2 a bounded linear operator with ‖A∗A‖ = L. Suppose
SV IP (A,C,Q, f, g) 
= ∅. Let {xn} ⊂ H1 be a sequence generated by{

x0 ∈ H1,

xn+1 = αnx0 + (1 − αn)Uλxn,
(4.1)

where U = ST, S := PC(I − ηfPC(I − ηf)), T := PQ(I − ηgPQ(I − ηg)), and
the parameters λ, γ, η, and the sequence {αn} satisfy the following conditions:

(a) η ∈ (0,
1
k

);

(b) λ ∈ (0, 1);

(c) γ ∈ (0,
1
L

);

(d) αn ∈ (0, 1), limn→∞ αn = 0, and
∑∞

n=0 αn = ∞.

Then, {xn} converges strongly to x∗ ∈ SV IP (A,C,Q, f, g).

Proof Since Lemma 4.2, we obtain that both operators S and T are two
quasi-nonexpansive operators. Next, we show that I − S is demiclosed at
zero. Let {xn} be a sequence in H1, such that xn − Sxn → 0 and xn ⇀ x as
n → ∞. For some q ∈ V IP (C, f) we have ‖xn − q‖2 − ‖Sxn − q‖2 → 0 as
n → ∞. By Lemma 4.2, we get

(1 − η2k2)‖xn − PC(I − ηf)xn‖2 ≤ ‖xn − q‖2 − ‖Sxn − q‖2.
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This implies xn−PC(I−ηf)xn → 0. By Lemma 4.1, we obtain x ∈ V IP (C, f)
= Fix(S). Similarly, I −T is also demiclosed at zero. The result implies from
Corollary 3.8. �

5. The split common null point problem

Given two set-valued operators B1 : H1 → 2H1 and B2 : H2 → 2H2 and a
bounded linear operator A : H1 → H2, the split common null point problem
(SCNP) is the problem of finding

x ∈ H1 such that 0 ∈ B1(x) and 0 ∈ B2(Ax). (5.1)

Recently, Byrne et al.[3] and Kazmi et al. [7] proposed a strong convergence
theorem for finding such a solution x when B1 and B2 are maximal monotone.
Recall that B : H → 2H is said to be monotone if

〈x − y, u − v〉 ≥ 0 ∀x, y ∈ D(B), u ∈ Bu, v ∈ By,

where B(D) := {x ∈ H,Bx 
= ∅}.
A monotone operator is said to be maximal if its graph is not properly

contained in the graph of any other monotone operator.
For a maximal monotone operator B : H → 2H and λ > 0, we can

define a single-valued operator:

JB
λ := (I + λB)−1 : H → H.

It is known that JB
λ is firmly nonexpansive and 0 ∈ B(x) iff x ∈

Fix(JB
λ ).

Therefore, the problem (5.1) is equivalently to the problem of finding

x ∈ H1 such that x ∈ Fix(JB1
λ ) and Ax ∈ Fix(JB2

λ ),

where λ > 0, that is, the SCNP reduces to the SCFP.

Theorem 5.1 Let B1 : H1 → 2H1 and B : H2 → BH2
2 be two set-valued

maximal monotone operators. Let A : H1 → H2 be a bounded linear operator
with L = ‖A∗A‖ and f : H1 → H1 be a contraction with constant ρ ∈ (0, 1).
Suppose Γ 
= ∅. Let {xn} ⊂ H1 be a sequence generated by{

x0 ∈ H1,

xn+1 = αnf(xn) + (1 − αn)JB1
λ (I + γA∗(JB2

λ − I)A)xn,
(5.2)

where the parameters γ and the sequence {αn} satisfy the following condi-
tions:

(a) γ ∈ (0,
1
L

);

(b) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

Then, xn → q, where q = PΓ ◦ f(q).

Proof We have JB1
λ and JB2

λ are two firmly nonexpansive operators and hence
nonexpansive. Therefore, I − JB1

λ and I − JB2
λ are demiclosed at zero. JB1

λ is
1-strongly quasi-nonexpansive and JB2

λ is 0 demicontractive. Therefore, the
remaining of the proof is followed from Theorem 3.4. �
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Table 1. With αn =
1

n + 1

n tn zn ||xn − x∗||
1 0.3417 0.8333 2.23606797749
2 0.1177 0.3704 0.90065562539
3 0.0407 0.1698 0.38861808251
4 0.0141 0.0792 0.17456390343
. . . .
. . . .
. . . .
34 0.0000 0.0000 0.00000000007
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0.5
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2.5

Number of iterations (n)

||x
n−

x* ||

α
n
=1/(n+1)

Figure 1. Figure for Case 1

The result of Byrne et al. [3] is a consequence of our Theorem 5.1.

Corollary 5.2 Let B1 : H1 → 2H1 and B : H2 → BH2
2 be two set-valued

maximal monotone operators. Let A : H1 → H2 be a bounded linear operator
with L = ‖A∗A‖. Suppose Γ 
= ∅. Let {xn} ⊂ H1 be a sequence generated by{

x0 ∈ H1,

xn+1 = αnx0 + (1 − αn)JB1
λ (I + γA∗(JB2

λ − I)A)xn,
(5.3)

where the parameters γ and the sequence {αn} satisfy the following condi-
tions:

(a) γ ∈ (0,
1
L

);

(b) αn ∈ (0, 1), limn→∞ αn = 0 and
∑∞

n=0 αn = ∞.

Then, xn → x0, where x0 = PΓ x0.
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Table 2. With αn =
1

(n + 1)0.1

n tn zn ||xn − x∗||
1 0.1121 0.2416 0.76587354093
2 0.0376 0.0857 0.26633371649
3 0.0126 0.0307 0.09362927367
4 0.0126 0.0307 0.03320182345
. . . .
. . . .
. . . .
25 0.0000 0.0000 0.00000000005

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

Number of iterations (n)

||x
n−

x* ||

α
n
=1/(n+1)0.1

Figure 2. Figure for Case 2

6. Numerical example

In this section, let us show numerical example to demonstrate the convergence
of our algorithm.

Let H1 = R
2 and H2 = R

2. Let U : R2 → R
2 be defined Ux = (

1
2
t,

1
2
z)t

and T : R2 → R
2 be defined by Tx = (0, z)t, where x = (t, z)t. It is easy to see

that U is 1-strongly quasi-nonexpansive mapping and T is 0-demicontractive
mapping.

Choose γ = 0.3 and x0 = (1, 2)t. The stopping criterion for our testing
method is taken as: ‖xn+1 − x∗‖ < 10−10, where xn = (tn, zn)t and x∗ are

a solution problem. Let assume that f(x) =
1
3
x and A =

[
1 0
0 2

]
. We set

L = ‖A∗A‖2 and γ ∈ (0,
1
L

), where ‖.‖2 is the matrix 2-norm.
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Case 1: Take αn =
1

n + 1
. Then, using (3.14), we have Table 1 and Fig. 1.

Case 2: Take αn =
1

(n + 1)0.1
. Then, using (3.14), we have Table 2 and

Fig. 2.
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