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1. Introduction

Let C' and @ be nonempty closed convex subsets of real Hilbert spaces H;
and Ho, respectively. The split feasibility problem (SFP) is formulated as
finding a point = satisfying the property
x € C such that Az € Q,

where A : H; — H; is a bounded linear operator. Recently, the SFP has been
widely studied by many authors (see [1,14,16,17,19]), due to its application
in signal processing [2]. In particular, Byrne [1] introduced the so-called CQ
algorithm. For xzy € H; and define the iteration {x,} as

Tny1 = Po(I —vA*(I — Pg)A)z,, (1.1)

2
where 0 < v < m and where Po denotes the projector onto C' and
p

p(A*A) is the spectral radius of the operator A*A. It is known that the
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CQ algorithm converges weakly to a solution of the SFP if such a solution
exists.

In the case, where both C and @) consist of fixed-point sets of some non-
linear operators, the SFP is known as the split common fixed-point problem
(SCFP). More specifically, the SCFP is to find

x € Fiz(U) such that Az € Fiz(T),

where Fiz(U) and Fixz(T) are the fixed-point sets of U : H; — H; and
T : Hy — Hs, respectively. We denote the solution set of the SCFP by

I''={zx e Hy:2 € Fiz(U) and Az € Fiz(T)}.

When U and T are directed operators, Censor and Segal [5] proposed
and proved the convergence of the following algorithm in the setting of the
finite-dimensional spaces:

Tnp1 = Ul —yA*(I — T)Az,). (1.2)

Note that a class of directed operators includes the metric projection.
Therefore, the results of Censor and Segal recover Byrne’s CQ algorithm.
Moudafi [11] introduced the following algorithm:

{un =ux, —vA (I —T)Ax,,

1.3
Tpy1 = (1 — ap)tyn + aUuy, (13)

to solve the SCFP for demicontractive operators and he obtained the weak
convergence. It is known that demicontractive operators include the directed
operators. Hence, Moudafi’s algorithm is an extension of the algorithm (1.2).

Recently, Moudafi [12] and Zhao and He [20] proposed the viscosity ap-
proximation methods for solving the SCFP for quasi-nonexpansive operators.
Motivated by their work, in this paper, we introduce a generalized algorithm
to solve the SCFP and their results are as our consequences.

2. Preliminaries

Let H be a real Hilbert space and C' be a nonempty closed convex subset of
H. The weak convergence of {z,}5%, to x is denoted by z, — x as n — oo,
while the strong convergence of {x,,}22 ; to z is written as x,, — x as n — oo.

For every point x € H, there exists a unique nearest point in C', denoted
by Pcx, such that ||z — Poz|| < ||z — y|| Yy € C. Pc is called the metric
projection of H onto C. It is known that P¢ is nonexpansive.

Lemma 2.1 [6] Let C' be a nonempty closed convex subset of a real Hilbert
space H. Given © € H and z € C. Then, z = Pox < (v — 2,z — y) >
0 VyeC.

Definition 2.2 [6] Assume that 7' : H — H is a nonlinear operator. Then,
I — T is said to be demiclosed at zero if for any {x,} in H, the following
implication holds:

2 = xzand (I —T)z, - 0=z € Fiz(T).
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Definition 2.3 Let T': H — H be an operator with Fiz(T) # (. Then
e T : H — H is called firmly nonexpansive if

Tz - Ty|* < (Tz - Ty,z —y),
or equivalently
I T = Tyll? < =yl = (I = T)x — (I - Ty
e T: H— H is called directed if
(z—Tz,x—Tzx) <0 Vze Fiz(T),z € H,
or equivalently
Tz —2||> < ||z — 2||* — ||z — Tz||* Vz € Fiz(T),r € H;
e T : H — H is called a-strongly quasi-nonexpansive with o > 0 if
Tz — 2||> < ||z — 2||? — aljz — Tz||* Vz € Fixz(T),z € H,
or equivalently
-1 -«
2
e T : H — H is called quasi-nonexpansive if

|Tx — z|| < ||z — 2| Vze€ Fiz(T),z € H;
e T': H — H is called f-demicontractive with 0 < g < 1 if
Tz — z||* < ||z — 2||* + BI(I — T)z||* Vz € Fiz(T),r € H,

or equivalently

(T —x,x—z) < |z — Tz||?> Vze€ Fiz(T),r € H;

/6’,

1
5 |z — Tz||> Vz € Fiz(T),» € H. (2.1)

(x — 2z, Te —x) <

To prove its convergence, we will need the two following lemmas.

Lemma 2.4 [9] Let {a,} be a sequence of non-negative real numbers, such
that there exists a subsequence {ay,} of {an}, such that an; < an, 41 for
all j € N. Then, there exists a nondecreasing sequence {my} of N, such that
limy_. oo mg = 00, and the following properties are satisfied by all (sufficiently
large) number k € N:

Uy, < Qy+1 and  ap < Apyg1-

In fact, my, 1is the largest number n in the set {1,2,...,k}, such that a, <
Ap+1-

Lemma 2.5 [13,15] Let {a,} be sequences of non-negative real numbers, such
that

ant1 < (1 — ap)an + anby,
where {ay,} C (0,1) and {b,} are a sequence, such that
(a) Yoo an = 00;
(b) limsup,, . by, = 0.
Then, lim,, ., a,, = 0.
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Lemma 2.6 [18] If U : H — H is (1-strongly quasi-nonexpansive and T :
H — H is (B9-strongly quasi-nonexpansive with Fixz(U) N Fiz(T) # (, then
UT is B132

B1 + B2
Fix(T).

-strongly quasi-nonexpansive and Fiz(UT) = Fiz(U) N

Lemma 2.7 Let U : H — H be a B-demicontractive operator and T : H — H
be a oy -strongly quasi-nonexpansive operator with 3 < aq. Then, the operator
UT is 3 demicontractive and Fix(U) N Fiz(T) = Fix(UT).

a1 —
Proof Tt is suffices to show that Fiz(UT) C Fix(U) N Fix(T). Let p €
Fix(UT), it is enough to show that p € Fix(T). We take z € Fiz(U) N
Fiz(T), we have

Ip =zl = |lUTp — 2|
< | Tp— =2+ BIUTp — Tp|?
<|p— 2> = ea|Tp — pl* + BIUTp — Tp|?
= [lp = 21> = ea||Tp — p|* + BIITp — p|?
= llp—z)* = (1 = AITp - pl*.
This implies that T'p = p, that is, p € Fixz(T). Therefore, Fix(U)NFiz(T) =
Fiz(UT).

Take z € Fiz(U) N Fiz(T),z € H, let a := ||z — z||, b := ||[Tx — z]|,
c¢:=|[UTxz —z||, we have |[a—c|| = |[UTx—z||, |[la=0b|| = ||Tz—z||,||b—c¢| =
|{UTx—Tx||. Since the definition of U and T', we obtain ||b]|? < ||a* —a1|la—
b||? and ||c||> < ||b]|* + B||b — ¢||?. This implies

—2a1(a,b) < (1= ay)llaf* = (1 +a1)|b]?,
26(b,c) < (1= B)IIblI* — (1 — B)llel|.
On the other hand
0 < ||ara — (a1 — B)b — Bel?
20112 20012 1 32|12
= a2l + (ar — BBl + B el — 201 (a1 — B)(a,b)
+ 2,8(041 - 5)<ba C> - 2a15<aa C>
= ofllall® + (a1 = B)*[1bl* + 52lc||*
+ (a1 = B) [(1 = an)fal® = (1 + o) [1b]|]
+ (a1 = ) [(1 = B)IIbII* = (1 = B)lel*] - 2a15(a, )
= (a1 + a1 = B)lla]* + (~a1 + a1 B+ B)|l¢]* — 201 5{a, c)

= (a1 — Oélﬁ a2 o1 — — Oélﬁ 02—0é a,C
= (o1 = B)(1+ )l ~ (en = B0 — el — 2an(ac)

— (- ) (|a||2 el 4 22— ef?).
1
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Thus
2 2 a3 2
cl|” < la||” + a—cl”,
lell” < llall o _ﬁl\ |
that is, the operator UT is o3 -demicontractive. d

o —f3
Lemma 2.8 Let U : H — H is 3 demicontractive with F(U) # 0 and set
Uy=1—-XNI+XU, A€(0,1—0) then
(a) Fix(U) = Fix(Uy);
(b) Uz —=2|* < ||~’L“*Z||2*%(1*5*%)”(1*%)%\\2 Ve e H,z € Fiz(U);
(c) F(U) is a closed convex subset of H;.

Proof (a) It is obvious.
(b) We have

|Uxz — 2> = ||(1 = Nz + AUz — 2|2
= [|(z = 2) + AUz — 2)|?
= ||z — 2| + 2Xz — 2, Uz — x) + N?|Uz — 2|2
< o =212 + A6 = DUz —z|* + N |Uz — 2|
= [lz = 2> =21 = 8= NI - U)z]?

1
= o =2 = £ (1= B =N = U]
(c) It is a consequence of Proposition 1 in [18]. O

Lemma 2.9 Let T : Hy — Hs be a p-demicontractive operator, A : Hy — Hy
be a linear bounded operator with L = ||A*Al|. For a positive real number -,
define the operator V.: Hy — H; by

Vi=I+~A"(T -1)A.
Then:
(a) for all z € Hy and z € A=Y (Fiz(T)),

1
— (1= p—~L)|I(I - .
7L( p=L)|[(I = V)z|
(b) for allx € Hy and z € A=Y (Fiz(T)),

Ve —2|* < |lz = 2]* = 4(1 — p =7 L) (I = T)A|>.

Ve —2|* < llo — 2] -

(c) v € Fiz(V) if Az € Fiz(T) provided that v € (0, 1_TM)

Proof (a) Given x € Hy and z € A=Y (Fiz(T)), we have

(A(I = T)Az,x — z) = (I — T) Az, Ax — Az)

1—p
> — DI -T)Az|>

-2
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On the other hand
|A*(I — T)Az||® = (A*(I — T) Az, A*(I — T)Ax)
= (I —T)Ax, AA*(I — T)Ax)
< LI(I = T)Ax|?.
Thus
(A*(I - T)Az,z — z) > 12_TM||A*(I —T)Az|*.
We have
Ve —2|* = ||z — vA*(I - T)Az — z||?
— Jle — 2|2 = 2y(x — 2, A*(I = T) Az) + || A (I — T) x|
< o —2)* - 271 EJlA*(I = T)Ax|® + 72| A*(I - T) Az

= o —2l* - E(l —p—L)||A*(I - T)Ax|f?

1 *

=z —2[* - 7L(l — = yL)|lyA* (I - T)Az|?
1

= |z —2|* - 7L(l —p =L = Vx|

(b) Given x € Hy and z € A=Y (Fiz(T)), we have
Ve — 2|2 = ||z + yA (T — I) Az — z||?
= ||z = 2|* + 2v{z — 2, A(T — D) Az) ++*||A*(T — I) Az|]?
= ||z — 2||? + 2y(Az — Az, (T — I)Ax)
VAT — I) Az, A*(T — I)Ax)
<o =2 + (=1 + wI(T - 1) Az|?
v} (AA*(T — I) Az, (T — I)Az)
<o =2l + (=1 + wI(T = D) Az||* + 2| AA ||| (T — I) Az|?
= [lz = z[I” = y(1 = p =y L) (T — 1) Az|*.

(c) It is obvious that Az € Fixz(T) then x € Fiz(V'). We show the converse,
let # € Fiz(V) and z € A=Y (Fiz(T)), we have

o =2l = Ve = 2)|* < ||lz — 2)* = y(1 — p = L) (T — I) Ax||*.

1—
Since v € (0, TM), we obtain (T'— I)Az = 0, that is, Az € Fix(T).

3. Main results

Theorem 3.1 Let U : H — H be a a-strongly quasi-nonexpansive operator
such that I —U is demiclosed at zero. Suppose that f : H — H 1is a contraction
with constant p € (0,1). Let {x,} be a sequence in H defined by

20 € H, zpi1 = anf(zy) + (1 —apn)Uxy, (3.1)
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where the sequence {a,} satisfies the following conditions:

o0
€(0,1), lim a, =0 and Zan = 00.
n=0

Then {x,} strongly converges to an element q € Fix(U), where ¢ = Ppiyu)©

f(q).

Proof First, we note that Fiz(U) is a closed convex subset by Lemma 2.8.
Thus, the mapping Ppi,@y) o f : H — H is a contraction. By Banach’ s
contraction principle that there exists a unique element ¢ € H, such that
q = Ppizy o f(q). In particular, ¢ € Fiz(U) and

((I-1)(q),q—2) <0 Vze Fiz(U). (3.2)
Now, we show that {z,} is bounded. Indeed, we have

[znt1 = qll = llanf(zn) + (1 — an)Uzy, — ||
= llan(f(#n) = ) + (1 — o) (Uzn — q)||
< anllf(zn) —all + (1 = an)[Uzn — 4|
< anl[f(@n) = f(@)] + anllf(a) —all + (1 — o) [[Uzn — g
< anpllzn — qll + anll f(@) — gll + (1 = an)[[zn — g
=[1—an(=plllzn — qll + anllf(q) — 4l

/() —dll
P

= [ = an(l = p)llwn — gl + an 5

< max{nxn . Ilf( ) pqn}

I ||f() qll}

<~-~<max{||x0 q|
—p

This implies that the sequence {z,} is bounded and {f(x,)},{Ux,} are
bounded.
On the other hand, we get

Tnt1 — Tn = @ (f(@n) —x0) + (1 — ) Uz, — x4).
This implies that

1- an)2||an — xn||2
—xp, Uz 71’n>
1= ) |Uzn — x|

—xn, Uy, — ) (3.3)

201 = zall® = o} [l f (2n) — zall +
+2an(1 - an)<f(xn
< apllf(@n) =l +
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and
|Zn+1 — Q||2 — |zn — Q||2 = lzns1 — xn||2 = 2(Tnt1 — Tn, Tn — q)
=20, (f(zn) = Tn,Tn — q)
+2(1 — ap)(Uxy — Tpyp — q)
< 20 (f(zn) — Tn,Tn — q)
—(1 = )1+ )|z — Uy |*
(3.4)
From (3.3) and (3.4), we obtain
%741 — QH2 — |2 — Q||2 < O‘i”f(xn) - anQ + 200 (f (Tn) = Tny Tn — q)
+ 20, (1 — an){f(zn) — xn, Uy — zp)
—a(l = ap)||zn — Uz,
Therefore
a(l = ap)llzn = Uzn|? < ap[|f(20) — 20]|* + 200 (f (2n) = Tn, 20 — @)
+llzn = all* = Izt — gl*. (3.5)

Let us consider the following two cases.
Case 1 There exists N € N, such that ||z,+1 —¢||* < ||z, —q||? for all n > N.
This implies that lim,, . ||, — ¢||* exists. Since (3.5), we have

lim |x, —Ux,|| =0. (3.6)
Now, we show that
lim sup(z, — q, f(q¢) — ¢) < 0. (3.7)
n—oo

Indeed, we take a subsequence {z,,} of {z,}, such that

limsup(z,, —p, f(p) — p) = Jlggo@nj -q,f(q) —q)-

n—00

We may assume that z,,, — x*. By (3.6), we have 2* € Fiz(U). Thus
limsup(z, — ¢, f(q) —q) = j{rrolo@nj —q,f(q) —q) = (=" —q, f(q) —q) <0.

n—00

Next, we will show that z,, — ¢. we get
[n+1 = all* = llan(f(zn) = q) + (1 = @) Uz, — q)|?
= (1 - an)’||Uzn = @)|I* + ap [l f(zn) - al®
+2an(1 — ap)(Uzn — q, f(zn) — q)
< (1= an)?zn — qll* + @il f(zn) — all?
+ 20 (1 — a )(Uzn — q, fzn) — f(q))
+ 200 (1 = ) (Uzn — q, fq) — )
< (1= an)?zn — qll* + il f(z0) — all?
+ 200 (1 = a)pllzn — ql|* + 200 (1 — @) (U — p, f(q) — )
= [1 - an(2 — an — 2p(1 — an))llzn — al* + a7 || f(za) - al®
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+ 20, (1 — o )(Uzn — g, f(q) — q)
= (=) llzn = qll* + nbn,
where
T = (2 — an = 2p(1 — o)),

anllf (xn) = gl|* + 201 = an) (Uzn — g, f(9) — q)

0p =
2— oy —2p(1 — )

We have v, — 0,37 | v, = 00, and by (3.7), we get limsup,, 6, <
0. By Lemma 2.5, we conclude that z,, — q.
Case 2 There exists a subsequence {||z,, — ¢||*} of {||z, — ¢||*}, such that
2n, — qll* < l[&n,+1 — q||* for all j € N. In this case, it follows from
Lemma 2.4 that there exists a nondecreasing sequence {my} of N, such that
limy oo My = 00, and the following inequalities hold for all £ € N:

lzm, = all® < emesr =gl and Jzx —gl* < lam, —ql®. (38)
Similarly, we get
lim |z, — Uzm, || =0, (3.9)
hqun sup{@m, —q, f(q) —q) <0, (3.10)
and
Zmet1 = al* < (1 =y o, = all* + Vo, (3.11)
where

Yy = Cmy, (2 = Qmy, — 2P(1 - amk))’

5 = Gl f(@m,) — qlI> + 200 = am, ) (Uzm, —a, f(qg) —q)
Tk 2 =, —2p(1 — am,)

By Lemma 2.5, we obtain z,,,, — ¢. By (3.8), we get ||z —q|| < ||zm, —q|| VE €
N. Therefore, z — q. O

Corollary 3.2 Let U : H — H be a 8 demicontractive, such that I — U 1is
demiclosed at zero. Suppose that f : H — H is a contraction with constant
p € (0,1). Let {z,} be a sequence in H defined by
20 € H, xpi1 = anf(zn) + (1 — apn)Usxy, (3.12)

where the parameter A and the sequence {ay, } satisfy the following conditions:

(a) A€ (07 1- ﬂ)y

(b) an € (0,1),limy, o0 ay, =0 and Y7 5 o, = 0.
Then, {x,,} strongly converges to an element q € Fix(U), where ¢ = Prjzu©
fa).
Proof By Lemma 2.8, we have U, is a-strongly quasi- nonexpansive with

1

o= X(l — B —A). Since A € (0,1 — f3), we get @ > 0. On the other hand,

Fix(U) = Fiz(Uy) and A(I — U) = I — Uy, and thus, I — U, is demiclosed
at zero. The remaining of the proof is followed from Theorem 3.1. O
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Corollary 3.3 Let U : H — H be a quasi-nonexpansive operator, such that
I — U is demiclosed at zero. Suppose that f : H — H is a contraction with
constant p € (0,1). Let {x,} be a sequence in H defined by

x0 € H, xpi1 = anf(zn) + (1 — apn)Usxy, (3.13)
where the parameter A € (0,1) and the sequence {ay,} satisfy the following
conditions: o, € (0,1), limy, o0 o, = 0 and Y~ = co. Then, {x,,} strongly
converges to an element q € Fix(U), where ¢ = Ppizw) © f(q)-

1

Corollary 3.3 extends Maingé’s result in [10] from A € (0, 5) to A €
(0,1).
Theorem 3.4 Let U : Hi — Hy be a as-strongly quasi-nonexpansive operator
and T : Hy — Hy be a p-demicontractive operator that both I —U and I —T
are demiclosed at zero. Let A : Hiy — Hsy be a bounded linear operator with
L = ||A*A||, and f : Hi — H; be a contraction with constant p € (0,1).
Suppose I' # (. Let {x,,} C Hy be a sequence generated by

{IO € Hy, (3.14)
Tni1 = anf(rn) + (1 — an) U +~yA(T — 1) A)z,,

where the parameters v and the sequence {,} satisfy the following condi-
tions:
I—p
(a’) S (Oa T)7
(b) ay, € (0,1),lim, ooy, =0 and Y07 5 vy = 0.

Then, x, — q, where ¢ = Pr o f(q).

Proof We will show as follows:
(a) The operator UV is a-strongly quasi-nonexpansive, where V := I +
VA(T — D) A;
(b) The operator I — UV is demiclosed at zero.
By Lemma 2.9, then V := I+~ A*(T —I)A is a;-strongly quasi-nonexpansive
with o = ’YLL(l — p—~vL). By Lemma 2.6, then UV is a-strongly quasi-

nonexpansive and Fixz(U) N Fiz(V) = Fiz(UV), where a = ez
o1 + a2

First, we show that I' = Fix(U)NFiz(V) = Fiz(UV). Indeed, it follows
from Lemma 2.9 that

I'={x € Hy :z € Fiz(U) and Az € Fiz(T)}
={x € H,:2 € Fix(U) and z € Fiz(V)}
= Fiz(U) N Fixz(V)
= Fiz(UV).
Let {x,} be a sequence such that x,, —UVx,, — 0 and x,, = z. We have

[en = qll < |20 — UVan||+ UV, —qll, that is [zn — gl = [UVan —ql| <
|z, — UVa,|| — 0. This implies that

lzn = all* = lUVz, — q]* — 0.



Vol. 19 (2017) Viscosity approximation methods 1491

We have
[UVEn —ql* < [Van —ql? — a2|UVay — Va,|?
< lan —qll” = en|[Van — 24 — aol[UVz, — V|,
It follows
Ve, -2, —0 and UV, —Vzx, — 0.
This implies that Vx,, — z, and by the demiclosedness of I — U, we get
x € Fix(U).
On the other hand, by Lemma 2.9, we get
[UVa, —q|? < [Vay — ql]* = a2l UV, — Vay|?
< len = all* = (1 = p = yL) (T — 1) Az, |?
— w||U\Vz, — V,|>
It follows
(1= p =L (T — DAz, |* < |z — gl* = |UVZ, — q])?
—||UVz, — V,|* — 0.
Since Ax,, = Az and the demiclosedness of I — T, we get Az € Fix(T), that

is ¢ € Fiz(V). Therefore, x € Fix(U)NFix(V) = Fiz(UV). That is, [ -UV
is demiclosed at zero. O

Corollary 3.5 Let U : Hi — H;y be a (B-demicontractive operator and T :
Hy; — Hs be a p-demicontractive operator that both I — U and I — T are
demiclosed at zero. Let A : Hy — Hy be a bounded linear operator with
L = ||A*A|| and f : Hy — Hy be a contraction with constant p € (0,1).
Suppose I' # 0. Let {x,,} C Hy be a sequence generated by

{xo < Hi, (3.15)
Tn+1 = anf(xn) + (1 - an)U)\(I + ’YA*(T - I)A)Cﬂn,

where the parameters X, v, and the sequence {,} satisfy the following con-
ditions:
(0,) A€ (07 1- 6)7
I—p
(b) gaS (07 7);
(c) an € (0,1),limy, o0y =0 and Y7 o, = 0.

Then, x, — q, where ¢ = Pr o f(q).
Proof By Lemma 2.9, then V' := I + yA*(T — I)A is ay-strongly quasi-

1
nonexpansive with a; = —L(l — p— L), and by Lemma 2.8, then U, is
Y

1
as-strongly quasi-nonexpansive with ay = X(l — B — A). The remaining of
the proof is followed from Theorem 3.4. 0
Corollary 3.6 Let U : Hi — H;y be a quasi-nonexpansive operator and T :

Hs — Hy be a quasi-nonexpansive operator that both I — U and I — T are
demiclosed at zero. Let A : Hy — Hs be a bounded linear operator with
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L = ||[A*A|| and f : Hi — H; be a contraction with constant p € (0,1).
Suppose I' # 0. Let {x,,} C Hy be a sequence generated by

o € I‘Il7
{$n+1 =apf(zn) + (1 —an)Ur(I +vA (T — I)A)xy, (3.16)

where the parameters X, v, and the sequence {a,} satisfy the following con-
ditions:

(a) A€ (0,1);

1

(b) A (Oa E):

(¢) an € (0,1),limy, oo @, = 0 and Y7 5 v, = 0.

Then, x, — q, where ¢ = Pr o f(q).
Theorem 3.7 Let S : Hy — H; be a (B-demicontractive operator and T :
Hy — Hy be a p-demicontractive operator. Let A : Hy — Hy be a bounded

linear operator with L = ||A*A|| and f : Hi — H; be a contraction with
constant p € (0,1). Suppose I' # (). Let {x,,} C H; be a sequence generated

by
g € Hl, (3 17)
Tp41 = anf(xn) + (1 - an)Uz\xna

where U := S(I+~vA*(T' —I)A). Assume that I —U is demiclosed at zero and
the parameters 3, X, v, and the sequence {c, } satisfy the following conditions:

I—p
@oeoI
(b) B < ay, where oy 1= 77(1 —p—~L);

a3 .
(C) )‘E(O’l_a1+ﬂ)7

(d) o € (0,1),limy, oo v, =0 and Y2, = 00.
Then, x, — q, where ¢ = Pr o f(q).

Proof Let V := I + vA*(T — I)A, by Lemma 2.9, then the operator V is
ai-strongly quasi-nonexpansive. Therefore, by Lemma 2.7, then the operator

SV is 04156 demicontractive and Fiz(S) N Fiz(V) = Fiz(SV). We show

o —
that I" = Fiz(S) N Fix(V) = Fiz(SV). Indeed, it follows from Lemma 2.9
that

I'={zxe€ Hy :x € Fiz(S) and Az € Fiz(T)}
={z € Hy:x € Fiz(S) and = € Fiz(V)}
= Fiz(S) N Fiz(V).
The remaining of the proof is followed by Corollary 3.2. U
Corollary 3.8 Let S : H — H; be a quasi-nonexpansive operator T : Hy —

Hs be a u-demicontractive operator that both I — S and I —T are demiclosed
at zero. Let A : Hy — Hs be a bounded linear operator with L = ||A*A|| and
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f: Hi — H;y be a contraction with constant p € (0,1). Suppose I' # (). Let
{z,} C Hy be a sequence generated by

Zo € Hi, (3.18)
Tpt1 = nf(xn) + (1 — an)Unzy, ’

where U := S(I +~vA*(T — I)A) and the parameters X\, v and the sequence
{an} satisfy the following conditions:

(a) A€ (0,1);
L—p
1) v 0.-1);
(c) an € (0,1),limy, oo @, = 0 and Y7 5 v, = 0.
Then, x, — q, where ¢ = Pr o f(q).
Proof We will show that I — SV is demiclosed at zero.
To prove (b), let {z,} be a sequence, such that z,, — SVx, — 0 and

Zp — x. We have ||z, — q|| < ||xn — SV a,|| +||SV ez, — 4|, that is, ||z, —q|| —
1SVx, —q|| <||zn — SVzy,| — 0. This implies that

lzn = qll* = ISVzn — q]|* — 0.
On the other hand
1SV, — gl < ||V, — gl
< len = qll* = anl|Van — a*.
It follows
Ve, —x, — 0.

This implies that Vz,, — z. Since ||SVx, — Va,| < ||SVz, — xu|| + |20 —
Va,| — 0 and by the demiclosedness of I — S we get x € Fiz(S). On the
other hand, by Lemma 2.9, we have
1SV, —ql* < [V, —q?
<l = ql* =71 = p =y L) (T — D) Az |*.
It follows v(1 — p—yL) (T = I)Azp|* < ||z —q||* = | SV 2, —q||* — 0. Since
Az, — Az and(I —T)Az,, — 0, by the demiclosedness of I —T', we get Ax €
Fix(T), that is € Fiz(V). Therefore, x € Fix(S) N Fixz(V) = Fiz(SV).
O

1
Corollary 3.8 extends Zhao’s and He’s result in [20] from A € (0, 5) to

A € (0,1) and Corollary 3.8 answers the question’s Moudafi in [12].

4. The split variational inequality problem

Given operators f : Hi — Hy, g : Hy — H>, and a bounded linear operator
A : Hy — Hjy and nonempty closed convex subsets C' C Hy and Q C Hs, the



1494 D. V. Thong JFPTA

split variational inequality problem (SVIP) is the problem of finding a point
x* € VIP(C, f), such that Az* € VIP(Q,g), that is

x* € C such that (f(z*),z —a*) >0 for all z € C,
Ax* € Q such that (g(Az*),y — Az*) >0 for all y € Q.

This is equivalent to the problem of finding 2* € Fiz(Pc(I —nf)), such
that Az* € Fix(Pgo(I — ng)), where n > 0. We denote the set of solutions
by SVIP(A,C,Q, f,g). Therefore, SVIP can be viewed as SCFP. Under ap-
propriate conditions of the operators f and g, we can apply our results for
SVIP.

Lemma 4.1 [4,8] Let f : Hy — H; be a monotone and k-Lipschitz continuous
on C. Let S := Pc(I —nf), where n > 0. If z,, is a sequence in C satisfying
Tp — * and x, — Sz, — 0, then v* € VIP(C, f).

Lemma 4.2 [9] Let f : Hy — H; be a monotone and k-Lipschitz operator on
C andn>0. Let W := Po(I —nf) and S := Pc(I — nfW). Then, for all
z € VIP(C, f), we have

1Sz — 2||* < [|lz — 2> = (1 — k*i) ||z — W]
In particular, if kn < 1, S is a quasi-nonexpansive operator and Fixz(S) =

Fiz(W) = VIP(C, f).

Corollary 4.3 Let C' and @ be monempty closed convexr subsets of Hilbert
spaces Hy and Hs, respectively. Let f : Hi — Hy and g : Hy — Hs be
monotone and k-Lipschitz continuous operators on C and Q, respectively,
and A : Hi — Hs a bounded linear operator with ||A*A| = L. Suppose
SVIP(A,C,Q, f,g) # 0. Let {x,} C Hy be a sequence generated by

{xo € (4.1)

Tn+1 = QnTo + (1 - an)U)\xn;

where U = ST, S := Pc(I —nfPc(I—nf)), T := Po(I —ngPo(I —ng)), and
the parameters X\, v,n, and the sequence {ay, } satisfy the following conditions:

1
(a) n € (Oa E)7
(b) A€ (0,1);
1
(C) Y € (Oa E):
(d) ay, € (0,1),lim, oo v, =0, and Y, vy, = 00.
Then, {x,} converges strongly to x* € SVIP(A,C,Q, f,g).

Proof Since Lemma 4.2, we obtain that both operators S and T are two
quasi-nonexpansive operators. Next, we show that I — S is demiclosed at
zero. Let {x,} be a sequence in Hy, such that =, — Sx,, — 0 and z,, — x as
n — oo. For some q € VIP(C, f) we have |z, — q||> — [|Sz, — ¢||*> — 0 as
n — o0o. By Lemma 4.2, we get

(1 =k |2 — Po(I = nf)zall* < llzn — qll* = 1Sz0 — ql*.
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This implies x,,— Po(I—nf)x, — 0. By Lemma 4.1, we obtain z € VIP(C, f)
= Fix(S). Similarly, I —T is also demiclosed at zero. The result implies from
Corollary 3.8. g

5. The split common null point problem

Given two set-valued operators By : H; — 2t and By : Hy — 272 and a
bounded linear operator A : Hy — Hs, the split common null point problem
(SCNP) is the problem of finding

x € Hy such that 0 € By(x) and 0 € By(Ax). (5.1)

Recently, Byrne et al.[3] and Kazmi et al. [7] proposed a strong convergence
theorem for finding such a solution z when B; and Bs are maximal monotone.
Recall that B : H — 29 ig said to be monotone if

(x —y,u—v) >0 Va,y € D(B),u € Bu,v € By,

where B(D) := {z € H, Bz # 0}.

A monotone operator is said to be maximal if its graph is not properly
contained in the graph of any other monotone operator.

For a maximal monotone operator B : H — 27 and A > 0, we can
define a single-valued operator:

JB.=(T+AB)"':H - H.

It is known that JP is firmly nonexpansive and 0 € B(z) iff = €
Fiz(JB).
Therefore, the problem (5.1) is equivalently to the problem of finding

x € Hy such that z € Fiz(JJ") and Az € Fix(JJ?),
where A > 0, that is, the SCNP reduces to the SCFP.

Theorem 5.1 Let B; : Hy — 2™ and B : Hy — sz be two set-valued
mazimal monotone operators. Let A : Hy — Hy be a bounded linear operator
with L = ||A*A|| and f : Hy — Hy be a contraction with constant p € (0,1).
Suppose I' # 0. Let {x,} C Hy be a sequence generated by

o € Hl, (5 2)
Tna1 = Qn f(xn) + (1 — ozn)Jfl (I+ ’yA*(sz —DA)x,, '

where the parameters v and the sequence {c,} satisfy the following condi-
tions:

1
(CL) v e (07 Z)f
(b) an € (0,1),limy, o0 ayy =0 and Y7 5 o, = 0.
Then, x, — q, where ¢ = Pr o f(q).

Proof We have J f tand J f 2 are two firmly nonexpansive operators and hence
nonexpansive. Therefore, I — J )1\3 tand I —J f 2 are demiclosed at zero. J )1\3 tis

1-strongly quasi-nonexpansive and .J f 2 is 0 demicontractive. Therefore, the
remaining of the proof is followed from Theorem 3.4. O
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. 1
TABLE 1. With o, = ——
n+1
1 0.3417 0.8333 2.23606797749
2 0.1177 0.3704 0.90065562539
3 0.0407 0.1698 0.38861808251
4 0.0141 0.0792 0.17456390343
34 0.0000 0.0000 0.00000000007
25 ; ;
ol
15
a?c
x
= |
05f
0 ) ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35

FIGURE 1. Figure for Case 1

Number of iterations (n)

The result of Byrne et al. [3] is a consequence of our Theorem 5.1.

Corollary 5.2 Let By : Hy — 21 and B : Hy — Bé% be two set-valued
mazimal monotone operators. Let A : Hy — Hy be a bounded linear operator
with L = ||A*A||. Suppose I" # 0. Let {x,} C Hy be a sequence generated by

xo € Hy,
Tpy1 = @pxo+ (1 — an)J/{Bl (I+7A*(Jf"' —DA)x,,

(5.3)

where the parameters v and the sequence {c,} satisfy the following condi-

tions:

() 7€ (0, 1);

(b) ay, € (0,1),lim, oo vy, =0 and Y07 5 vy = 0.

Then, x, — xg, where g = Prxg.
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1
TABLE 2. With a), = ————
1 « (n T 1)0.1
1 0.1121 0.2416 0.76587354093
2 0.0376 0.0857 0.26633371649
3 0.0126 0.0307 0.09362927367
4 0.0126 0.0307 0.03320182345
25 0.0000 0.0000 0.00000000005
25 T T T T
ol
_15f
*?C
<
= |
0.5
o ‘ ‘ ‘
0 5 10 15 20 25

Number of iterations (n)

FI1GURE 2. Figure for Case 2

6. Numerical example

In this section, let us show numerical example to demonstrate the convergence

of our algorithm.

1.1
Let H; = R? and Hy = R2. Let U : R? — R? be defined Uz = (it’ §Z)t

and T : R? — R? be defined by Tx = (0, 2)*, where z = (t, 2)*. It is easy to see
that U is 1-strongly quasi-nonexpansive mapping and 7" is O-demicontractive
mapping.

Choose v = 0.3 and o = (1,2)*. The stopping criterion for our testing
method is taken as: ||z,11 — 2*| < 10710, where z,, = (t,, 2,)" and a* are

1 0} We set

1
a solution problem. Let assume that f(z) = 3% and A = 09

1
L =||A*A]j2 and v € (0, f)’ where ||.]|2 is the matrix 2-norm.
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1
Case 1: Take o, = ——. Then, using (3.14), we have Table 1 and Fig. 1.
n

+1
1
Case 2: Take a,, = ———==. Then, using (3.14), we have Table 2 and
(n+41)01
Fig. 2.
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