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Abstract. The purpose of this paper is threefold. Firstly, recognizing the
concept of Piri and Kumam (Fixed Point Theor Appl 210, 2014), we de-
fine generalized F -contractive mappings in the framework of G-metric
spaces and by employing this, some fixed point theorems in the struc-
ture of G-metric spaces are established that can not be obtained from
the existing results in the context of allied metric spaces and do not
meet the remarks of Samet et al. (Int J Anal. Article ID 917158, 2013)
and Jleli et al. (Fixed Point Theor Appl 210, 2012). Infact, we utilize
the pattern, mentioned in Karapinar and Agrawal (Fixed Point Theor
Appl 154, 2013), a counter paper to remarks of Samet et al. (Int J Anal.
Article ID 917158, 2013) and Jleli et al. (Fixed Point Theor Appl 210,
2012). Secondly, in the setting of G-metric spaces, certain fixed point
results for integral inequalities under generalized F -contraction are pre-
sented. Finally, as an application, our results are utilized to establish the
existence and uniqueness of solution the equations arising in Oscillation
of a spring. In the sequel, another application is given to set-up the ex-
istence and uniqueness of solution of functional equations occurring in
dynamic programming. Our investigations are also authenticated with
the aid of some appropriate and innovative examples.
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1. Introduction and preliminaries

The origination of fixed point theory on complete metric space is coupled
with Banach contraction principle due to Banach [6], announced in 1922. Ba-
nach contraction principle enunciates that any contractive self-mappings on a
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complete metric space has a unique fixed point. This principle is one of a very
ascendancy test for the existence and uniqueness of the solution of substantial
problems arising in mathematics. Because of its implication in mathemati-
cal theory, Banach Contraction Principle has been extended and generalized
in many directions (see [5,7,8,11,14,15,17,22,26,27,29,30]). Recently, one of
the most interesting generalization of it, was placed by Wardowski [35]. He
introduced a new contraction called F -contraction and established a fixed
point result as a generalization of the Banach contraction principle in a dis-
similar way than in the other acknowledged results from the literature (see
more [23,25]). Afterward, Secelean [33] altered the condition (F2) of [35] by
an equivalent and more simple one. Most recently, Piri et al. [24] revealed a
large class of functions by replacing condition (F3) by the condition (F3′)
in the definition of F -contraction due to Wardowski [35]. Utilizing this new
idea, they established a fixed point theorem as a generalization of results of
Wardowski [35].

Mustafa and Sims [20,21] initiated the notion of G-metric spaces as a
generalization of metric spaces and investigated the topology of such spaces.
In the last decade, the notion of G-metric spaces has concerned wide-ranging
attention from researchers, more than ever from fixed point theorists [1–
4,13,18,19,31,32,34]. Samet et al. [32] and Jleli et al. [13] explored that
some theorems in the context of a G-metric spaces in the literature can be
obtain directly by some existing results in the setting of usual metric spaces.
Further E. Karapinar et al. [16] answered the approach of [13,32] with the
remark that techniques used in [13,32] are inapplicable unless the contraction
condition in the statement of the theorem can be reduced into two variables.

The aim of our paper is to define Ciric [10]-type generalized F -contrac-
tive mappings in G-metric spaces, recognizing the concepts of Piri et al. [24].
Employing the same, certain fixed point results are also proved under relaxed
F -contraction i. e. without utilizing the condition F2′. In the process, the
technique pointed out in [16] is exploited to obtain such type of fixed point
results in G-metric spaces that cannot be obtained from the existing results
in the setting of associated metric spaces. Moreover, applications of aforesaid
fixed point results to real life physical problems and dynamic programming
are also presented. In what follows, we collect the background material to
make our presentation as self-contained as possible.

Definition 1.1. [21] Let X be a nonempty set and let G : X × X × X → R+

be a function satisfying the following properties:

(G-1) G(x, y, z) = 0 if x = y = z;
(G-2) 0 < G(x, x, y), for all x, y ∈ X with x �= y;
(G-3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with y �= z;
(G-4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , symmetry in all three vari-

ables;
(G-5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X.

The function G is called a generalized or a G-metric on X and the pair (X,G)
is called a G-metric space.
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Definition 1.2. [21] Let (X,G) be a G-metric space and let {xn} be a sequence
of points of X. We say that the sequence {xn} is G-convergent to x ∈ X if

lim
n,m→+∞ G(x, xn, xm) = 0,

that is, for any ε > 0, there exists N ∈ N such that

G(x, xn, xm) < ε,

for all m,n > N . We call x, the limit of the sequence and write xn → x or
lim

n,m→+∞ xn = x.

Proposition 1.1. [21] Let (X,G) be a G-metric space. Then the following
statements are equivalent:
(1) {xn} is G-convergent to x;
(2) G(xn, xn, x) → 0 as n → +∞;
(3) G(xn, x, x) → 0 as n → +∞;
(4) G(xn, xm, x) → 0 as n,m → +∞.

Definition 1.3. [21] Let (X,G) be a G-metric space. A sequence {xn} is called
G-Cauchy if for every ε > 0, there is N ∈ N such that

G(xn, xm, xl) < ε,

for all n,m, l ≥ N , that is G(xn, xm, xl) → 0 as n,m, l → +∞.

Proposition 1.2. [21] Let (X,G) be a G-metric space. Then the following
statements are equivalent:

(1) {xn} is G-Cauchy;
(2) For every ε > 0, there is N ∈ N such that G(xn, xn, xm) < ε for all

n,m ≥ N .

Definition 1.4. [21] A G-metric space (X,G) is called G-complete if every
G-Cauchy sequence is G-convergent in (X,G).

Lemma 1.1. [20] By the rectangle inequality (G5) together with the symmetry
(G4), we have

G(x, y, y) = G(y, y, x) ≤ G(y, x, x) + G(x, y, x) = 2G(y, x, x).

Wardowski [35] initiated and considered a new contraction called F -
contraction to prove a fixed point result as a generalization of the Banach
contraction principle.

Definition 1.5. [35] Let F : R
+ → R be a mapping satisfying the following

conditions:
(F1) F is strictly increasing;
(F2) for all sequence αn ⊆ R+ , lim

n→∞ αn = 0 if and only if lim
n→∞ F (αn) =

−∞;
(F3) there exists 0 < k < 1 such that lim

α→0+
αkF (α) = 0.

Wordowski [35], defined the class of all functions F : R
+ → R by � and

introduced the notion of F -contraction as follows.



1456 D. Singh et al. JFPTA

Definition 1.6. [35] Let (X, d) be a metric space. A self-mapping T on X is
called an F−contraction if there exists τ > 0 such that for x, y ∈ X

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),

where F ∈ �.

Afterward Secelean [33] established the following lemma and utilized an
equivalent but a more simple condition (F2′) instead of condition (F2).

Lemma 1.2. [33] Let F : R
+ → R be an increasing map and αn be a sequence

of positive real numbers. Then the following assertions hold:
(a) if limn→∞ F (αn) = −∞ then limn→∞ αn = 0;
(b) if infF = −∞ and limn→∞ αn = 0; then limn→∞ F (αn) = −∞.

He forwarded the following conditions.
(F2′) infF = −∞ or
(F2′′) there exists a sequence αn be a sequence of positive real numbers
such that limn→∞ F (αn) = −∞.

Very recently Piri et al. [24] replaced the condition (F3) by (F3′)
in Definition (1.5) due to Wardowski as follows.
(F3′) F is continuous on (0,∞). Thus Piri and Kumam [24] estab-
lished the generalization of result of Wordowski [35] using the conditions
F1, F2′ and F3′. Throughout our subsequent discussion, We drop-out
the condition F2′ and named the contraction as relaxed F - contraction.
Thus we denote, the family of all functions F : R

+ → R by Δ� which
satisfy the following conditions.

(F1) F is strictly increasing;
(F3′) F is continuous on (0,∞).

Example 1.1. [24] Let F1(α) = − 1
α , F2(α) = − 1

α +α, F3(α) = 1
1−eα , F4(α) =

1
eα−e−α . Then F1, F2, F3, F4 ∈ Δ�.

2. Ciric-type generalized F -contraction in G-metric spaces

In this section, Ciric-type generalized F -contractive mapping is defined in the
setting of G-metric spaces. Moreover some fixed point results are established
for such type of mappings.

Definition 2.1. A mapping T : X → X is said to be a Ciric-type generalized
F- contractive mappings in G-metric spaces if F ∈ Δ� and there exists τ > 0,
such that

G(Tx, Ty, T 2y) > 0 ⇒ τ + F (G(Tx, Ty, T 2y)) ≤ F (αM(x, y)). (2.1)

For all x, y,∈ X, where 0 < α < 1 and

M(x, y) = max
{

G(x, y, Ty), G(x, Tx, Ty), G(x, Tx, T 2x),

1
2
[G(y, Ty, T 2y) + G(y, T 2x, T 2y)]

}
.
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Example 2.1. Let (X,G) be a G-metric space. Define F : R
+ → R by F (α) =

− 1
α for α > 0. Then clearly F ∈ Δ�. Each mapping T : X → X satisfying

(2.1) is a Ciric-type generalized F -contraction such that G(Tx, T 2x, Ty) >
0 ⇒

G(Tx, T 2x, Ty)

≤ αmax{G(x,y,Ty),G(x,Tx,Ty),G(x,Tx,T 2x), 12 [G(y,Ty,T 2y)+G(y,T 2x,T 2y)]}
1+ταmax{G(x,y,Ty),G(x,Tx,Ty),G(x,Tx,T 2x), 12 [G(y,Ty,T 2y)+G(y,T 2x,T 2y)]} ,

for all x, y ∈ X.

Example 2.2. Let (X,G) be a G-metric space. Consider F (α) = ln(α) + α.
Then obviously F ∈ Δ�. In this case each mapping T : X → X satisfying
(2.1) is a Ciric-type generalized F -contraction such that

G(Tx, T
2
x, Ty) > 0

⇒

G(Tx, Ty, T 2y)

eG(T x,T y,T 2y)−{α max{G(x,y,T y),G(x,T x,T y),G(x,T x,T 2x), 1
2
[G(y,T y,T 2y)+G(y,T 2x,T 2y)]}}

αmax{G(x, y, Ty), G(x, Tx, Ty), G(x, Tx, T 2x), 1
2 [G(y, Ty, T 2y)

+G(y, T 2x, T 2y)]}
≤ e

−τ
,

for all x, y ∈ X.

Next theorem is proved for the Ciric-type generalized F -contractive
mappings in G-metric spaces.

Theorem 2.1. Let (X,G) be a G-complete metric space and T : X → X be
a Ciric-type generalized F-contractive mapping that is, if F ∈ Δ� and there
exists τ > 0, such that

G(Tx, Ty, T 2y) > 0 ⇒ τ + F (G(Tx, Ty, T 2y)) ≤ F (αM(x, y)),
for all x, y ∈ X. (2.2)

where M(x, y) = max{G(x, y, Ty), G(x, Tx, Ty), G(x, Tx, T 2x), 1
2 [G(y, Ty,

T 2y) + G(y, T 2x, T 2y)]} and α ∈ (0, 1). Then T has a fixed point in X.
Moreover, if 2α ≤ 1 then fixed point of T is unique.

Proof. Let x0 ∈ X be an arbitrary point in X. Now constructing the sequence
{xn} in X such that xn+1 = Txn.

Clearly xn �= xn+1, if for any n0, we have xn0+1 = xn0 then Txn0 = xn0

and so T has a fixed point.
Consequently, one can obtain

G(Txn−1, Txn, T 2xn) > 0.
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Then from (2.2) with x = xn−1, y = xn, we have

τ + F (G(xn, xn+1, xn+2))
= τ + F (G(Txn−1, Txn, T 2xn))

≤ F

(
α max

{
G(xn−1, xn, Txn), G(xn−1, Txn−1, Txn),

G(xn−1, Txn−1, T
2xn−1),

1
2
[G(xn, Txn, T 2xn) + G(xn, T 2xn−1, T

2xn)]
})

= F

(
α max

{
G(xn−1, xn, xn+1), G(xn−1, xn, xn+1),

G(xn−1, xn, xn+1),
1
2
[G(xn, xn+1, xn+2)

+ G(xn, xn+1, xn+2)]
})

. (2.3)

If there exist n ∈ N such that

max{G(xn−1, xn, xn+1), G(xn, xn+1, xn+2)} = G(xn, xn+1, xn+2)

then from (2.3)

τ + F (G(xn, xn+1, xn+2)) ≤ F (αG(xn, xn+1, xn+2)).

Which is a contradiction in view of F1 and α ∈ (0, 1). Therefore,

max{G(xn−1, xn, xn+1), G(xn, xn+1, xn+2)} = G(xn−1, xn, xn+1).

Then (2.3) yields

τ + F (G(xn, xn+1, xn+2)) ≤ F (αG(xn−1, xn, xn+1)). (2.4)

Taking Gn = G(xn, xn+1, xn+2), (2.4) becomes

τ + F (Gn) ≤ F (αGn−1). (2.5)

On utilizing (F1), one gets

Gn < αGn−1. (2.6)

Repeated applications of the same give rise to

Gn < αn G0 or G(xn, xn+1, xn+2) < αnG(x0, x1, x2).

From (G-3), one has

G(xn, xn, xn+1) ≤ G(xn, xn+1, xn+2), with xn+1 �= xn+2.

Utilizing Lemma 1.1, we get

G(xn+1, xn+1, xn) ≤ 2 G(xn, xn, xn+1)
< 2 αn G(x0, x1, x2).
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Furthermore, for all m,n ∈ N (n < m) using the Property (G-5), one gets

G(xm, xm, xn) ≤ G(xn, xn+1, xn+1) + G(xn+1, xn+2, xn+2)
+G(xn+2, xn+3, xn+3) + · · · + G(xm−1,xm, xm)

< 2(αn + αn+1 + αn+2 + · · · + αm−1)G(x0, x1, x2)

<
2αn

1 − α
G(x0, x1, x2). (2.7)

Which on making m,n → ∞, reduces to

G(xm, xm, xn) → 0.

Thus {xn} is G-Cauchy sequence. Since X is G complete, there exists a point
t ∈ X such that {xn} converges to t.

Now from (2.2) with x = xn and y = t, we have

τ + F (G(Txn, T t, T 2t)) ≤ F (αM(xn, t))

= F

(
α max

{
G(xn, t, T t), G(xn, Txn, T t),

G(xn, Txn, T 2xn),
1
2
[G(t, T t, T 2t) + G(t, T 2xn, T 2t)]

})

= F

(
α max

{
G(xn, t, T t), G(xn, Txn+1, T t),

G(xn, Txn+1, xn+2),
1
2
[G(t, T t, T 2t) + G(t, xn+2, T

2t)]
})

.

Letting n → ∞ and using F3′, one finds that

τ + F (G(t, T t, T 2t)) ≤ F

(
α max

{
G(t, t, T t), G(t, t, T t),

G(t, t, t),
1
2
[G(t, T t, T 2t) + G(t, t, T 2t)]

})
.

(2.8)

To show t to be fixed point, suppose that t �= Tt �= T 2t. On utilizing the
property G-3 in (2.8) , we acquire

τ +F (G(t, T t, T 2t)) ≤ F (α max{G(t, t, T t), 1
2 [G(t, T t, T 2t) + G(t, T t, T 2t)]})

= F (αG(t, T t, T 2t)).

Which is a contradiction in view of F1 and α < 1. Then we must have
t = Tt = T 2t. Therefore t is a fixed point of T .

In order to show the uniqueness of fixed point. Suppose u and w be the
two fixed points of T , such that u �= w.

So that

G(Tu, Tw, T 2w) > 0.
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Then on utilizing the condition (2.2) with x = u and y = w also on using
(F1), Lemma (1.1), one can obtain

τ + F (G(u,w,w)) = τ + F (G(Tu, Tw, T 2w))

≤ F

(
α max

{
G(u,w, Tw), G(u, Tu, Tw)

G(u, Tu, T 2u),
1
2
[G(w, Tw, T 2w) + G(w, T 2u, T 2w)]

})

= F

(
α max

{
G(u,w,w), G(u, u, w)

×G(u, u, u),
1
2
[G(w,w,w) + G(w, u,w)]

})

= F (α max{G(u,w,w), G(u, u, w)})

≤ F (α max{G(u,w,w), 2G(u,w,w)}
= F (2αG(u,w,w)).

This is a contradiction, in perception of F1 and 2α ≤ 1, therefore u = w.
This concludes the proof. �

Next, we furnish an illustrative example which demonstrates the validity
of the hypotheses and degree of generality of Theorem 2.1.

Example 2.3. Consider the sequence {Sn}n∈N as
S1 = 3.1,
S2 = 3.1 + 32.3,
S3 = 3.1 + 32.3 + 33.5,
...
Sn = 3.1 + 32.3 + 33.5 + · · · + 3n.(2n − 1) = (n − 1)3n+1 + 3.
Let X = {Sn : n ∈ X} and

G(x, y, z) =

{
0, if and only if x = y = z,

max{x, y, z}, otherwise.

Then (X,G) is a complete G-metric space.
Define the mapping T : X → X by T (S1) = S1 and T (Sn) = Sn−1 for

every n > 1.
Now we claim that T is a Ciric-type generalized F-contraction in the

framework of G-metric spaces with F (α) = lnα + α, then clearly F ∈ Δ�.
We notice following

G(TSn, TSm, T 2Sm) > 0
⇔ (n = 1 ∧ m > 2) ∨ (m = 1 ∧ n > 2) ∨ (1 < n < m) ∨ (1 < m < n).

For all the possible cases, we will show that

G(Tx, Ty, T 2y)eG(T x,T y,T 2y)−α max{G(x,y,T y),G(x,T x,T y),G(x,T x,T 2x), G(y,T y,T2y)+G(y,T2x,T2y)
2

}

α max{G(x, y, Ty), G(x, Tx, Ty), G(x, Tx, T 2x), G(y,T y,T 2y)+G(y,T 2x,T 2y)
2

}
≤ e

−τ
, (2.9)
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for x = Sn, y = Sm, n,m ∈ N and for τ = 24 > 0 with α = 1
3 . Clearly

2α ≤ 1.

In view of structure of {Sn}, one can easily notice that

Sn

3 = (n − 1)3n + 1
= (n − 2)3n + 3 + (3n − 2)
= Sn−1 + 3n − 2.

This yields

Sn−1 <
Sn

3
.

Case I When n = 1,m > 2.
Then

G(Tx, Ty, T 2y) = G(TSn, TSm, T 2Sm) = Sm−1,
G(x, y, Ty) = G(S1, Sm, TSm) = Sm,
G(x, Tx, Ty) = G(S1, TS1, TSm) = Sm−1,
G(x, Tx, T 2x) = G(S1, TS1, T

2S1) = 0,
G(y, Ty, T 2y) = G(Sm, TSm, T 2Sm) = Sm,
G(y, T 2x, T 2y) = G(Sm, T 2S1, T

2Sm) = Sm.

Utilizing (2.9) and the fact that Sn−1 < αSn,∀n > 1 with α = 1
3 , we have

Sm−1.eSm−1−αSm

αSm
≤ eSm−1− 1

3Sm

= e−( 1
3Sm−Sm−1)

< e−24, since 1
3Sm − Sm−1 > 24 (for m > 2).

Thus in this case T is a Ciric-type generalized F -contractive mapping with
τ = 24.
Case II When m = 1, n > 2.

G(Tx, Ty, T 2y) = G(TSn, TS1, T
2S1) = Sn−1,

G(x, y, Ty) = G(Sn, S1, TS1) = Sn,

G(x, Tx, Ty) = G(Sn, TSn, TS1) = Sn,

G(x, Tx, T 2x) = G(Sn, TSn, T 2Sn) = Sn,

G(y, Ty, T 2y) = G(S1, TS1, T
2S1) = 0,

G(y, T 2x, T 2y) = G(S1, T
2Sn, T 2S1) = 0 or Sn−2.

Thus from (2.9), we have

Sn−1.e
Sn−1−αSn

αSn
≤ eSn−1− 1

3Sn

= e−( 1
3Sn−Sn−1)

< e−24, since
1
3
Sn − Sn−1 > 24 (for n > 2).

Thus we get desired.
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Case III When 1 < n < m. Then consider

G(Tx, Ty, T 2y) = G(TSn, TSm, T 2Sm) = Sm−1,

G(x, y, Ty) = G(Sn, Sm, TSm) = Sm,

G(x, Tx, Ty) = G(Sn, TSn, TSm) = Sm−1,

G(x, Tx, T 2x) = G(Sn, TSn, T 2Sn) = Sn,

G(y, Ty, T 2y) = G(Sm, TSm, T 2Sm) = Sm,

G(y, T 2x, T 2y) = G(Sm, T 2Sn, T 2Sm) = Sm.

Using (2.9), we have

Sm−1.e
Sm−1−αSm

αSm
≤ eSm−1− 1

3Sm

= e−( 1
3Sm−Sm−1)

< e−24, since
1
3
Sm − Sm−1 > 24 (for m > 2).

This follows T is a Ciric-type generalized F contractive mapping with τ = 24.
Case IV When 1 < m < n. Then

G(Tx, Ty, T 2y) = G(TSn, TSm, T 2Sm) = Sn−1,
G(x, y, Ty) = G(Sn, Sm, TSm) = Sn,
G(x, Tx, Ty) = G(Sn, TSn, TSm) = Sn,
G(x, Tx, T 2x) = G(Sn, TSn, T 2Sn) = Sn

G(y, Ty, T 2y) = G(Sm, TSm, T 2Sm) = Sm,
G(y, T 2x, T 2y) = G(Sm, T 2Sn, T 2Sm) = Sm or Sn−2.

Employing (2.9), one gets

Sn−1.e
Sn−1−αSn

αSn
≤ eSn−1− 1

3Sn

= e−( 1
3Sn−Sn−1)

< e−24, since
1
3
Sn − Sn−1 > 24 (for n > 2).

As required.
Thus T is a Ciric-type F -contraction mapping and S1 is a fixed point which
is indeed unique.

Next, we present one more example which demonstrates the validity of
Theorem 2.1, pictorially.

Example 2.4. Let X = [0, 0.9] and G(x, y, z) ={
0, if and only if x = y = z,

max{x, y} + max{y, z} + max{x, z}, otherwise.

Then (X,G) is a complete G-metric space.
Define a mapping T : X → X by Tx = x4

1+x .

In order to verify the Condition (2.2) with τ = 0.35, α = 0.9 < 1 and
F (β) = 1

1−eβ , then clearly F ∈ Δ�, we notice that,

G(Tx, Ty, T 2y) ⇔ (x = 0 ∧ y > 0) ∨ (x > 0 ∧ y = 0) ∨ (x > 0 ∧ y > 0).
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Now various cases are discussed.
Case I When x = 0, y > 0. Then

G(Tx, Ty, T 2y) = y4

1+y +

(
y4
1+y

)4

1+ y4
1+y

,

G(x, y, Ty) = 2y + y4

1+y ,

G(x, Tx, Ty) = 2y4

1+y ,

G(x, Tx, T 2x) = 0,

G(y, Ty, T 2y) = 2y + y4

1+y ,

G(y, T 2x, T 2y) = 2y +

(
y4
1+y

)4

1+ y4
1+y

.

Utilizing aforementioned values, consider the L.H.S. of (2.2)

τ + F (G(Tx, Ty, T 2y)) = 0.35 +
1

1 − e

2y4
1+y +

(
y4
1+y

)4

1+ y4
1+y

and R.H.S. is

F (αM(x, y)) =
1

1 − e
0.9

(
2y+ 2y4

1+y

) .

Following figures (Figs. 1, 2) show that R.H.S. expression dominates
the L.H.S. expression for x = 0 and y > 0 in [0, 0.9], which validates our
inequality in this case.

Figure 1. Plot of inequality for Case I , 3D view
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Figure 2. Plot of inequality for Case I , 2D view

Case II When y = 0, x > 0. Then

G(Tx, Ty, T 2y) = 2x4

1+x ,

G(x, y, Ty) = 2x,

G(x, Tx, Ty) = 2x + 2x4

1+x ,

G(x, Tx, T 2x) = 2x + 2x4

1+x ,

G(y, Ty, T 2y) = 0,

G(y, T 2x, T 2y) =

(
2 x4

1+x

)4

1+ x4
1+x

.

L.H.S. of (2.2) corresponding to above values is

τ + F (G(Tx, Ty, T 2y)) = 0.35 +
1

1 − e
2x4
1+x

and R.H.S. is

F (αM(x, y)) =
1

1 − e
0.9

(
2x+ 2x4

1+x

) .

Subsequent figures (Figs. 3, 4) demonstrate that R.H.S. with green surface
dominates the black doted surface i.e. L.H.S and they interchange their dom-
ination after x = 1.04, this amounts to say that for x, y ∈ [0, 0.9], inequality
(2.2) is satisfied.
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Figure 3. Plot of inequality for Case II , 3D view

Figure 4. Plot of inequality for Case I , 2D view

Case III When x > 0, y > 0. Now following sub-cases arise.

(i) When x < T 2y < Ty < y
This sub-case can easily be verified as in Case I

(ii) When T 2y < Tx < Ty < x < y,
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after calculating various terms appearing in the inequality (2.2) we come to
L.H.S. as

τ + F (G(Tx, Ty, T 2y)) = 0.35 +
1

1 − e

(
x4
1+x+ 2y4

1+y

)

and R.H.S. is
F (αM(x, y)) =

1

1 − e
0.9

(
2y+ 2y4

1+y

) .

By the following figure (Fig. 5) it is verified that L.H.S. ≤ R.H.S.
(iii) When Ty < Tx < y < x,
following the above calculation approach it is inferred as L.H.S. <

R.H.S.
Which is verified by following figure (Fig. 6).
Similarly one can verify that inequality (2.2) is verified for all other

sub-cases and cases.
Thus all the conditions of Theorem 2.1 are satisfied and T has a unique

fixed point x = 0 ∈ X, which is shown by following figure (Fig. 7).

Figure 5. Plot of inequality for Case III(ii)
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Figure 6. Plot of inequality for Case III(iii), 3D view

Figure 7. Plot showing fixed point of T

Utilizing (F1), resulting subsequent corollary which is new in case of
G-metric spaces.

Corollary 2.1. Let (X,G) be a G-complete metric space and T be a self-
mapping on X such that
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G(Tx, Ty, T 2y) ≤ α max
{

G(x, y, Ty), G(x, Tx, Ty),

G(x, Tx, T 2x),
1
2
[G(y, Ty, T 2y) + G(y, T 2x, T 2y)])

}
.

(2.10)

For all x, y,∈ X and α ∈ (0, 1). Then T has a fixed point. Moreover if 2α ≤ 1
then fixed point is unique.

With a view to demonstrate the validity of Corollary (2.1), following
example is adopted.

Example 2.5. Let X = [0,∞) and

G(x, y, z) =

{
0, if and only if x = y = z,

max{x, y, z}, otherwise.

Then (X,G) is a complete G-metric space.
Define a self-mapping T : X → X by Tx = x

3 . In view of verification
of condition (2.10), subsequent terms are evaluated and accordingly various
possible cases are discussed with α = 2

5 .

G(Tx, Ty, T 2y) = 1
3max{x, y},

G(x, y, Ty) = max{x, y},
G(x, Tx, Ty) = max{x, y

3},
G(x, Tx, T 2x) = x,
1
2 [G(y, Ty, T 2y) + G(y, T 2x, T 2y)] = 1

2 [y + max{y, x
9}].

Case I When y
3 ≤ x ≤ y, immediately we have

G(Tx, Ty, T 2y) = y
3 and

max{G(x, y, Ty), G(x, Tx, Ty), G(x, Tx, T 2x), G(y,Ty,T 2y)+G(y,T 2x,T 2y)
2 }

= y.
Clearly
1
3 y ≤ α y with α = 2

5 .
Case II When x ≤ y

3 , then one can obtain
G(Tx, Ty, T 2y) = y

3 and

max{G(x, y, Ty), G(x, Tx, Ty), G(x, Tx, T 2x), G(y,Ty,T 2y)+G(y,T 2x,T 2y)
2 }

= y.
Therefore
1
3 y ≤ α y with α = 2

5 .
Case III When x

9 ≤ y ≤ x, then one can obtain
G(Tx, Ty, T 2y) = x

3 and

max{G(x, y, Ty), G(x, Tx, Ty), G(x, Tx, T 2x), G(y,Ty,T 2y)+G(y,T 2x,T 2y)
2 }

= x.
Therefore
1
3 x ≤ α x with α = 2

5 .
Arguing the same with y ≤ x

9 , condition (2.10) remains true.
Thus all the conditions of Corollary 2.1 are satisfied and x = 0 is the

unique fixed point of T .
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Theorem 2.2. Let (X,G) be a G-complete metric space and T be a self-map-
ping on X. Assume that there exist F ∈ Δ� and τ > 0 such that

G(Tx, Ty, T 2y) > 0
⇒ τ + F (G(Tx, Ty, T 2y)) ≤ F (aG(x, y, Ty) + bG(x, Tx, Ty)

+cG(x, Tx, T 2x) + d[G(y, Ty, T 2y) + G(y, T 2x, T 2y)]), (2.11)

for all x, y,∈ X, where a, b, c, d ≥ 0 and a + b + c + 2d < 1. Then T has a
fixed point in X. Moreover if 2(a + b + c + 2d) ≤ 1, then fixed point of T is
unique.

Proof. Utilizing F1 and for all x, y ∈ X, we have

G(Tx, Ty, T 2y) > 0

⇒ τ + F (G(Tx, Ty, T 2y)) ≤ F (aG(x, y, Ty) + bG(x, Tx, Ty)

+ cG(x, Tx, T 2x) + d[G(y, Ty, T 2y) + G(y, T 2x, T 2y)])

≤ F

(
(a + b + c + 2d)max

{
G(x, y, Ty), G(x, Tx, Ty),

G

(
x, Tx, T 2x),

1
2
[G(y, Ty, T 2y) + G(y, T 2x, T 2y)]

)})

= F

(
α max

{
G(x, y, Ty), G(x, Tx, Ty),

G(x, Tx, T 2x),
1
2
[G(y, Ty, T 2y) + G(y, T 2x, T 2y)])

})
.

Remaining proof follows on the similar lines as done in Theorem (2.1) with
a + b + c + 2d = α < 1. �
Remark 2.1. On choosing suitable values of the constants a, b, c, and d in
Theorem 2.2, a multitude of the corollaries can be obtained which comprise
new versions of Chatterjea-type result [9], Kannan-type theorem [15], Reich-
type result [28] and Hardy–Rogers-type theorem [12] in the context of G-
metric spaces; e.g. if we set a = b = c = 0 then Chatterjea[9]-type fixed point
result in the context of G-metric space is obtained.

3. Results with integral inequalities under generalized
F-contraction

Subsequent fixed point results for integral inequalities are inferred in the
setting of G-metric spaces.

Theorem 3.1. Let (X,G) be a G-complete metric space and T : X → X be a
continuous self-mapping such that for x, y ∈ X with∫ G(Tx,Ty,T 2y)

0

ϕ(t)dt > 0

⇒ τ + F

(∫ G(Tx,Ty,T 2y)

0

ϕ(t)dt

)
≤ F

(
α

∫ M(x,y)

0

ϕ(t)dt

)
,
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where F ∈ Δ�, α ∈ (0, 1) and ϕ : [0,∞] → [0,∞] is a Lebesgue-
integrable mapping satisfying ∫ ε

0

ϕ(t)dt > 0

for ε > 0 and M(x, y) = max{G(x, y, Ty), G(x, Tx, Ty), G(x, Tx, T 2x),
1
2 [G(y, Ty, T 2y) + G(y, T 2x, T 2y)]}. Then T has a fixed point. Furthermore
if 2α ≤ 1 then fixed point is unique.

Proof. Proof of the theorem is an easy consequence of Theorem 2.1. �

Following example demonstrates the validity of hypotheses of Theorem
(3.1).

Example 3.1. Consider the following sequence {Sn}n∈N defined by
S1 = 4,
S2 = 4 + 42,
S3 = 4 + 42 + 43,
...
Sn = 4 + 42 + 43 + · · · + 4n = 4

3 (4n − 1).
Let X = {Sn : n ∈ X} and

G(x, y, z) =

{
0, if and only if x = y = z,

max{x, y, z}, otherwise.

Then (X,G) is a complete G-metric space.
Define the mapping T : X → X by T (S1) = S1 and T (Sn) = Sn−1 for

every n > 1.
Now we assert that T is a Ciric-type generalized F-contraction for inte-

gral inequality of Theorem 3.1 in the framework of G-metric spaces with
F (α) = ln α + α, clearly F ∈ Δ� and for Lebesgue-integrable function
ϕ(t) = 2t.

First of all, we examine that∫ G(Tx,Ty,T 2y)

0

ϕ(t)dt > 0

⇔ (n = 1 ∧ m > 2) ∨ (m = 1 ∧ n > 2) ∨ (1 < n < m) ∨ (1 < m < n).

For all the possible cases, we claim that
∫ G(T x,T y,T 2y)
0 ϕ(t)dte

∫ G(T x,T y,T2y)
0 ϕ(t)dt−α

∫ max{G(x,y,T y),G(x,T x,T y),G(x,T x,T2x),
G(y,T y,T2y)+G(y,T2x,T2y)

2 }
0 ϕ(t)dt

α
∫ max{G(x,y,T y),G(x,T x,T y),G(x,T x,T 2x), G(y,T y,T2y)+G(y,T2x,T2y)

2
}

0 ϕ(t)dt

≤ e
−τ

, (3.1)

for x = Sn, y = Sm, n,m ∈ N and for τ = 50 > 0 with α = 1
4 . Clearly

2α ≤ 1.
In view of structure of {Sn}, one can conclude that

Sn−1 <
Sn

4
.

Case I When n = 1,m > 2.
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Then

G(Tx, Ty, T 2y) = G(TSn, TSm, T 2Sm) = Sm−1,
G(x, y, Ty) = G(S1, Sm, TSm) = Sm,
G(x, Tx, Ty) = G(S1, TS1, TSm) = Sm−1,
G(x, Tx, T 2x) = G(S1, TS1, T

2S1) = 0,
G(y, Ty, T 2y) = G(Sm, TSm, T 2Sm) = Sm,
G(y, T 2x, T 2y) = G(Sm, T 2S1, T

2Sm) = Sm.

Then on utilizing (3.1) with α = 1
4 , one gets

{Sm−1}2·e{Sm−1}2−α{Sm}2

αSm
2 ≤ eSm−1

2− 1
4Sm

2

= e−( 1
4Sm

2−Sm−1
2)

< e−50, since 1
4Sm

2 − Sm−1
2 > 50 ( for m > 2).

Thus in this case T is a Ciric-type generalized F -contractive mapping under
integral inequality with τ = 50.
Applying the routine calculations as done in Example 2.3, one can easily
verify that T satisfies all the conditions of Theorem 3.1. Whereas S1 is the
unique fixed point of T .

Theorem 3.2. Let (X,G) be a G-complete metric space and T : X → X be a
continuous self-mapping such that for x, y ∈ X with

∫ G(Tx,Ty,T 2y)

0

ϕ(t)dt > 0

⇒ τ + F

(∫ G(Tx,Ty,T 2y)

0

ϕ(t)dt

)

≤ F

(
a

∫ G(x,y,Ty)

0

ϕ(t)dt + b

∫ G(x,Tx,Ty)

0

ϕ(t)dt

+c

∫ G(x,Tx,T 2x)

0

ϕ(t)dt

+ d

∫ G(y,T y,T2y)+G(y,T2x,T2y)
2

0

ϕ(t)dt

⎞
⎠ ,

for all x, y ∈ X. Where F ∈ Δ� , a, b, c, d ≥ 0 with a + b + c + 2d < 1
and ϕ : [0,∞] → [0,∞] is a Lebesgue-integrable mapping satisfying

∫ ε

0

ϕ(t)dt > 0

for ε > 0. Then T has a fixed point.

Proof. Proof can easily be obtained in view of Theorem 2.2. �
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Theorem 3.3. Let (X,G) be a G-complete metric space and T be a self-map-
ping on X such that∫ G(Tx,Ty,T 2y)

0

ϕ(t)dt > 0

≤ α

∫ max{G(x,y,Ty),G(x,Tx,Ty),G(x,Tx,T 2x), 12 [G(y,Ty,T 2y)+G(y,T 2x,T 2y)]}

0

ϕ(t)dt,

for all x, y,∈ X. Where α ∈ (0, 1) and ϕ : [0,∞] → [0,∞] is a Lebesgue-
integrable mapping satisfying ∫ ε

0

ϕ(t)dt > 0.

Then T has a fixed point. Moreover if 2α ≤ 1 then fixed point is unique.

Proof. Proof can easily be obtained in view of Corollary 2.1. �

4. Some applications

(1) Application to spring mass system
Considering the motion of a spring that is subject to a frictional force

(in the case of horizontal spring) or a damping force (in the case of a vertical
spring moves through a fluid, an example is the damping force supplied by
a shock absorber in a car or a bicycle). In addition to these, the motion of
spring is affected by an external force. Then such type of system for critical
damped motion is represented by{

d2u
dt2 + c

m
du
dt = K(t, u(t));

u(0) = 0, u′(0) = a,
(4.1)

where K : [0, I] × R+ → R is a continuous function and I > 0.
Above problem is equivalent to the integral equation

u(t) =
∫ t

0

G(t, s)K(s, u(s))ds, t ∈ [0, I], (4.2)

where G(t, s) is the Green’s function, given by

G(t, s) =

{
(t − s)eτ(t−s), 0 ≤ s ≤ t ≤ I;
0, 0 ≤ t ≤ s ≤ I.

(4.3)

where τ > 0 is a constant, calculated in terms of c and m, mentioned in (4.1).
Let X = C([0, I], R+) be the set of all non negative continuous real functions
defined on [0, I]. For an arbitrary u ∈ X, we define

‖u‖τ = sup
t∈[0,I]

{|u(t)|e−2τt}, where τ > 0. (4.4)

Define G : X × X × X → R+ by

G(u, v, w) = max{‖u − v‖τ , ‖v − w‖τ , ‖w − u‖τ}, (4.5)

where ‖u‖τ is defined by (4.4). Then clearly (X,G) is a complete G-metric
space.
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Consider the self-map T : X × X, defined by

Tu(t) =
∫ t

0

G(t, s)K(s, u(s))ds, t ∈ [0, I]. (4.6)

Then clearly u∗ is a solution of (4.2), if and only if u∗ is a fixed point of T .
Now we prove the subsequent theorem to guarantee the existence of

fixed point of T .

Theorem 4.1. Suppose the following hypotheses hold:

(i) K is increasing function ,
(ii) there exists τ > 0 such that

|K(s, u)−K(s, v)| ≤ τ2e−τ
[
a|u − v| + c|u − Tu| + d

(|v − Tv| + |v − T 2u|)] ,

for all s ∈ [0, I], u, v ∈ R+. Where a ≥ 0, c ≥ 0 and d ≥ 0 such that
a + c + 2d < 1.

Then the integral equation (4.2) has a solution.

Proof. Already noted that (C([0, I], R+), G) is a complete G-metric space,
where G(u, v, w) is given by (4.5).
From assumption (i), T is increasing. Next, for all u, v ∈ X such that Tu(t) �=
Tv(t), we have

|Tu(t) − Tv(t)| ≤
∫ t

0

G(t, s)|K(s, u(s)) − K(s, v(s))|ds

≤
∫ t

0

G(t, s)τ2e−τ [a|u(s) − v(s)| + c|u(s) − Tu(s)|

+ d(|v(s) − Tv(s)| + |v(s) − T 2u(s)|]ds

=

∫ t

0

τ2e−τe2τse−2τs[a|u(s) − v(s)| + c|u(s) − Tu(s)|

+ d(|v(s) − Tv(s)| + |v(s) − T 2u(s)|)] G(t, s)ds

≤ τ2e−τ [a‖u − v‖τ + c‖u − Tu‖τ + d(‖v − Tv‖τ + ‖v − T 2u‖τ )]

×
∫ t

0

e2τs(t − s)eτ(t−s)ds

= τ2e−τ
[
a‖u − v‖τ + c‖u − Tu‖τ

+ d(‖v − Tv‖τ + ‖v − T 2u‖τ )]e
τt

∫ t

0

eτs(t − s)ds

= τ2e−τ [a‖u − v‖τ + c‖u − Tu‖τ + d(‖v − Tv‖τ + ‖v − T 2u‖τ )]

× eτt eτt

τ2
(1 − τte−τt − e−τt)

≤ e−τ [a‖u − v‖τ + c‖u − Tu‖τ + d
(‖v − Tv‖τ+‖v − T 2u‖τ

)
]e2τt.

Clearly, in above expression (1 − τte−τt − e−τt) ≤ 1.
This implies that

|Tu(t) − Tv(t)|e−2τt ≤ e−τ [a‖u − v‖τ

+ c‖u − Tu‖τ + d(‖v − Tv‖τ + ‖v − T 2u‖τ )],
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or equivalently,

‖Tu−Tv‖τ ≤ e−τ [a‖u−v‖τ +c‖u−Tu‖τ +d(‖v−Tv‖τ +‖v−T 2u‖τ )]. (4.7)

Similarly, one can derive that

‖Tv−T 2v‖τ≤e−τ [a‖v−Tv‖τ +c‖Tu−T 2u‖τ +d(‖Tv−T 2v‖τ +‖T 2v−T 2u‖τ )]
(4.8)

and

‖T 2v−Tu‖τ ≤ e−τ [a‖Tv−u‖τ +c‖T 2u−u‖τ +d(‖v−T 2v‖τ +‖v−T 2v‖τ )].
(4.9)

Utilizing (4.7), (4.8) and (4.9), one can get

max{‖Tu − Tv‖τ , ‖Tv − T 2v‖τ , ‖T 2 − Tu‖τ}
≤ e−τ [amax{‖u − v‖τ , ‖v − Tv‖τ , ‖Tv − u‖τ}
+ cmax{‖u − Tu‖τ , ‖Tu − T 2u‖τ , ‖T 2u − u‖τ}
+ d max{‖v − Tv‖τ , ‖Tv − T 2v‖τ , ‖T 2v − v‖τ}
+ d max{‖v − T 2u‖τ , ‖T 2u − T 2v‖τ , ‖T 2v − v‖τ}.

This leads to say that

G(Tu, Tv, T 2v) ≤ e−τ [aG(u, v, Tv) + cG(u, Tu, T 2u)

+ d
(
G(v, Tv, T 2v) + G(v, T 2u, T 2v)

)
].

Consequently, by passing to logarithms, one can obtain

ln(G(Tu, Tv, T 2v)) ≤ ln[e−τ (aG(u, v, Tv) + cG(u, Tu, T 2u)

+ d(G(v, Tv, T 2v) + G(v, T 2u, T 2v)))].

or

τ + ln(G(Tu, Tv, T 2v)) ≤ ln[aG(u, v, Tv) + cG(u, Tu, T 2u)

+ d(G(v, Tv, T 2v) + G(v, T 2u, T 2v))].

Here, we notice that the function F : R+ → R defined by F (α) = ln(α),
for each α ∈ C([0, I], R+) and for τ > 0, is in Δ�. Consequently all the
conditions of Theorem 2.2 are satisfied by operator T with a ≥ 0, c ≥ 0, d ≥ 0
and b = 0 such that a + c + 2d < 1. Consequently T has a fixed point which
is the solution of integral equation (4.2) and hence spring mass system has a
solution. �

Remark 4.1. Moreover our Theorem 2.2 can be utilized to find the solution
of following real time problems:

(i) Solution of electrical circuit equation.
(ii) Solution of equation generating by the motion of pendulum.
(iii) Problems related simple harmonic motion etc.

(2) Existence and uniqueness of bounded solutions of functional equa-
tions in dynamic programming:

In this section, the existence of solution for a class of functional equa-
tions through generalized F -contraction in G-metric spaces is established.
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Let U and V be Banach spaces, and R is the field of real numbers. Let
X = B(W ) denotes the set of all bounded real valued function on W . We
define G : X × X × X → R+ by

G(x, y, z) = max{d(x, y), d(y, z), d(z, x)},

where d(x, y) = supt∈W {|h1(t)−h2(t)|}. Then (X,G) is G− complete metric
space.

Consider the following functional equation

q(x) = sup
y∈D

{g(x, y) + H(x, y, q(ρ(x, y)))}, x ∈ W. (4.10)

where g : W × D → R and H : W × D × R → R are bounded function.
We consider W and D as the state and the decision spaces, respectively,
ρ : W ×D → W represents transformation of the process and q(x) represents
the optimal return function with initial state x. We also define T : B(W ) →
B(W ) by

T (h(x)) = sup
y∈D

{g(x, y) + H(x, y, h(ρ(x, y)))}, for all x ∈ W and h ∈ X.

(4.11)
Naturally, if functions g and H are bounded then T is well-defined.

Let

M(h, k) = max
{

G(h, k, Tk), G(h, Th, Tk), G(h, Th, T 2h),

1
2
[G(k, Tk, T 2k) + G(k, T 2h, T 2k)]

}
.

Now, we prove the existence and uniqueness of the solution of functional Eq.
(4.10).

Theorem 4.2. Let T : X → X be an upper-semi-continuous operator defined
by (4.11) and assume that the following conditions are satisfied.

(i) H : W × D × R → R and g : W × D × R → R are continuous and
bounded,

(ii) There exists τ ∈ R+ such that

|H(x, y, h(x)) − H(x, y, k(x))| ≤ e−3λM(h, k), ∀h, k,∈ B(W ),

where x ∈ W and y ∈ D.
Then the functional Eq. 4.10 has a bounded solution.

Proof. Let λ be any arbitrary positive number, x ∈ W and h, k ∈ B(W ), we
select y1, y2 ∈ D so that

T (h(x)) < g(x, y1) + H(x, y1, h(ρ(x, y1))) + λ, (4.12)

T (k(x)) < g(x, y2) + H(x, y2, k(ρ(x, y2))) + λ. (4.13)
On the other hand, by the definition of T , we have

T (h(x)) ≥ g(x, y2) + H(x, y2, h(ρ(x, y2))), (4.14)

T (k(x)) ≥ g(x, y1) + H(x, y1, k(ρ(x, y1))). (4.15)
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Utilizing (4.12) and (4.15) with T (h(x)) �= T (k(x)),one can get

T (h(x)) − T (k(x)) < H(x, y1, h(ρ(x, y1))) − H(x, y1, k(ρ(x, y1))) + λ
≤ |H(x, y1, h(ρ(x, y1))) − H(x, y1, k(ρ(x, y1)))| + λ.

That is
T (h(x)) − T (k(x)) ≤ e−3τM(h, k) + λ. (4.16)

Similarly from (4.13) and (4.14)

T (k(x)) − T (h(x)) ≤ e−3τM(h, k) + λ. (4.17)

From (4.16) and (4.17),

|T (h(x)) − T (k(x))| ≤ e−3τM(h, k) + λ

or equivalently
d(T (h), T (k)) ≤ e−3τM(h, k) + λ (4.18)

on the similar lines, one can obtain that

d(T (k), T 2(k)) ≤ e−3τM(h, k) + λ (4.19)

and
d(T 2(k), T (h)) ≤ e−3τM(h, k) + λ. (4.20)

From (4.18),(4.19) and (4.20), we have

max{d(T (h), T (k)), d(T (k), T 2(k)), d(T 2(k), T (h))} ≤ e−3τM(h, k) + λ

this implies that

G(Th, Tk, T 2k) ≤ e−3τM(h, k) + λ.

Since above inequality does not depend on x ∈ W and λ > 0 is taken arbi-
trary, then we conclude that

G(Th, Tk, T 2k) ≤ e−3τM(h, k), ∀x ∈ W.

By passing to logarithms, we have

ln(G(Th, Tk, T 2k)) ≤ ln(e−3τM(h, k))

or

τ + ln((Th, Tk, T 2k)) ≤ ln(e−2τM(h, k)).

We notice that the function F : R+ → R defined by F (x) = ln(x), for each
x ∈ W , is in Δ�. This amounts to say that the operator T is a Ciric-type
generalized F -contraction. Thus, in view of continuity of T , Theorem 2.1
applies to the operator T with α = e−2τ < 1, τ > 0. Indeed, T has a fixed
point h∗ ∈ B(W ) that is, h∗ is a bounded solution of the functional equation
(4.10). Moreover, if τ ≥ 0.35 then this solution is unique. �
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