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Abstract. The aim of our paper is to present new fixed point theorems
under very general contractive conditions in generalized metric spaces
which were recently introduced by Jleli and Samet in [Fixed Point The-
ory Appl. 2015 (2015), doi:10.1186/s13663-015-0312-7]. Although these
spaces are not endowed with a triangle inequality, these spaces extend
some well known abstract metric spaces (for example, b-metric spaces,
Hitzler–Seda metric spaces, modular spaces with the Fatou property,
etc.). We handle several types of contractive conditions. The main the-
orems we present involve a reflexive and transitive binary relation that
is not necessarily a partial order. We give a counterexample to a recent
fixed point result of Jleli and Samet. Our results extend and unify recent
results in the context of partially ordered abstract metric spaces.
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1. Introduction

Metric fixed point theory was motivated by the Banach fixed point theo-
rem [6]. Recently some researchers have focused on the existence of fixed
points in metric spaces endowed with partial orders. To deduce some appli-
cations to matrix equations, Ran and Reurings [30] and, later, Nieto and
Rodŕıguez-López [28] established fixed point results assuming the classical
Banach contractive condition was only satisfied at comparable (by a partial
order) points; we also refer the reader to [5, 14, 19, 25, 32, 33, 34, 35, 36] and
the references therein.

Recent research in fixed point theory has also focused on generalizing
the underlying metric space. For example, Czerwik [11] introduced the no-
tion of b-metric space and studied contractive mappings in these spaces; see
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also [4, 7, 9, 12, 23, 29]. In 2000, Hitzler and Seda [17] presented the con-
cept of dislocated metric space, which were later considered in [1, 3, 16, 20].
Nakano [27] proposed a different type of space, called modular spaces, which
were later redefined and generalized by Musielak and Orlicz [26]. The main
advantage of modular spaces is that, although a metric is not defined on this
class of spaces, many problems in fixed point theory can be reformulated
using modular spaces (for details, see [13, 15, 21, 22, 24, 31]).

Jleli and Samet [18] introduced a generalization of the notion of a metric
space which they called a generalized metric space. They noted that the
above-mentioned abstract metric spaces may be regarded as particular cases
of their general definition. They also stated and proved fixed point theorems
for some contractions defined on these spaces.

In this paper, we point out that one of the fixed point results in [18] is not
true (we give a counterexample). In this paper, we present fixed point results
under very general contractive conditions. Our main results involve a reflex-
ive and transitive binary relation that is not necessarily a partial order so
our theory extends and unify recent results in the field of partially ordered
abstract metric spaces.

2. Preliminaries

Henceforth, N = {0, 1, 2, . . .} stands for the set of all nonnegative integer num-
bers, and let N∗ = N\{0}. From now on, X will denote a nonempty set and
T : X → X will be a self-mapping. Given a point x0 ∈ X, the Picard sequence
of T based on x0 is the sequence {xn}n≥0 given by xn+1 = Txn for all n ∈ N.
In particular, xn = Tnx0 for all n ∈ N, where Tn denotes the nth iterates of
T (we assume that T 0 denotes the identity mapping on X). The orbit of x0

by T is the set

OT (x0) = {Tnx0 : n ∈ N}.

A binary relation on X is a nonempty subset S of the Cartesian product
X×X. For simplicity, we denote xSy if (x, y) ∈ S. The notions of reflexivity,
transitivity, antisymmetry, preorder and partial order can be found in [37].
The trivial preorder on X is denoted by SX , and is given by xSXy for all
x, y ∈ X.

Following [2, 8], an extended comparison function (or, simply, a com-
parison function) is a function ϕ : [0,∞] → [0,∞] such that

(P1) ϕ is nondecreasing;
(P2) for all t ∈ (0,∞), limn→∞ ϕn (t) = 0.

Let Fcom be the family of all comparison functions. From (P1) and (P2),
it is easy to check that: (1) ϕ (t) < t for all t ∈ (0,∞); (2) ϕ (0) = 0; (3) ϕ is
continuous at t = 0; (4) ϕ (t) ≤ t for all t ∈ [0,∞]; (5) ϕm (t) ≤ ϕn (t) ≤ t for
all t ∈ [0,∞] and all n,m ∈ N such that n ≤ m; and (6) ϕn is nondecreasing
for all n ∈ N.
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Henceforth, let D :X×X→ [0,∞] be a given mapping. For every x ∈ X,
define the set

C(D, X, x) =
{
{xn} ⊆ X : lim

n→∞
D(xn, x) = 0

}
.

Generalized metric and generalized metric space are defined as follows.

Definition 2.1 (Jleli and Samet [18, Definition 2.1]). Let X be a nonempty
set and let D : X × X → [0,∞] be a function which satisfies the following
conditions:

(D1) D(x, y) = 0 implies x = y;
(D2) D(x, y) = D(y, x) for all x, y ∈ X;
(D3) there exists C > 0 such that

if x, y ∈ X and {xn} ∈ C(D, X, x),

then D(x, y) ≤ C lim sup
n→∞

D(xn, y).
(2.1)

Then D is called a generalized metric and the pair (X,D) is called a
generalized metric space (in the sense of Jleli and Samet; for short, a JS-
GMS ).

Remark 2.2. If C > 0 is a constant for which (D3) holds and C ′ ≥ C,
then (D3) also holds for C ′. Then, if (X,D) is a JS-GMS, the set of all
constants for which (D3) holds is a nonempty, non-upper-bounded interval of
nonnegative real numbers. Its infimum, which we will denote by CX,D, is the
lowest (optimal) constant for which (D3) holds. The case CX,D = 0 leads to
a trivial space. Hence, we will assume, from now on, that CX,D > 0.

Jleli and Samet presented in [18] a large list of abstract metric spaces
that can be seen as particular cases of JS-GMSs: metric spaces, b-metric
spaces, Hitzler–Seda metric spaces and modular spaces with the Fatou prop-
erty. We add another one.

Example 2.3. Let X = {0, 1} be endowed with the function D : X × X →
[0,∞] given by

D (0, 0) = 0 and D (1, 0) = D (0, 1) = D (1, 1) = ∞.

Let us show that (X,D) is a JS-GMS. Properties (D1) and (D2) are apparent.
To prove (D3), let x, y ∈ X and {xn} ∈ C(D, X, x). Since

lim
n→∞

D(xn, x) = 0,

there exists n0 ∈ N such that xn = x for all n ≥ n0. If x = y, then xn = x = y
for all n ≥ n0, so (2.1) holds with C = 1. Similarly, if x ̸= y, then xn ̸= y for
all n ≥ n0, so

D(x, y) = ∞ = D(xn, y)

for all n ≥ n0. In any case, (2.1) holds with C = 1.
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Given a JS-GMS (X,D) and a point x ∈ X, a sequence {xn} ⊆ X is
said to be:

• D-convergent to x if {xn} ∈ C(D, X, x), in such a case, we will write

{xn}
D−−→ x;

• D-Cauchy if
lim

n,m→∞
D(xn, xn+m) = 0. (2.2)

A JS-GMS (X,D) is complete if every D-Cauchy sequence in X is D-
convergent.

Remark 2.4. We believe that Jleli and Samet intended to define a D-Cauchy
sequence by

lim
n,m→∞

D(xn, xm) = 0. (2.3)

Clearly, (2.3) implies (2.2), but the converse seems to be false. Henceforth,
we assume that D-Cauchy sequences are given by (2.3).

Jleli and Samet proved that the limit of a D-convergent sequence is
unique.

Proposition 2.5 (Jleli and Samet [18, Proposition 2.4]). Let (X,D) be a JS-
GMS. Let {xn} be a sequence in X and (x, y) ∈ X ×X. If {xn} D-converges
to x and {xn} D-converges to y, then x = y.

Given x0 ∈ X, the same authors denoted by δ (D, T, x0) the D-diameter
of the orbit of x0 by T , that is,

δ (D, T, x0) = sup
({

D (Tnx0, T
mx0) : n,m ∈ N

})
.

Theorem 2.6 (Jleli and Samet [18, Theorem 3.3]). Suppose that the following
conditions hold:

(i) (X,D) is complete;
(ii) f is a k-contraction for some k ∈ (0, 1), that is,

D
(
f(x), f(y)

)
≤ kD(x, y)

for all (x, y) ∈ X ×X;
(iii) there exists x0 ∈ X such that δ(D, f, x0) < ∞.

Then {fn(x0)} converges to ω ∈ X, a fixed point of f . Moreover, if
ω′ ∈ X is another fixed point of f such that D(ω, ω′) < ∞, then ω = ω′.

Theorem 2.7 (Jleli and Samet [18, Theorem 4.3]). Suppose that the following
conditions hold:

(i) (X,D) is complete;
(ii) f is a k-quasicontraction for some k ∈ (0, 1), that is,

D
(
f(x), f(y)

)

≤ k max
{
D(x, y),D

(
x, f(x)

)
,D

(
y, f(y)

)
,D

(
x, f(y)

)
,D

(
y, f(x)

)}

for all (x, y) ∈ X ×X;
(iii) there exists x0 ∈ X such that δ(D, f, x0) < ∞.
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Then {fn(x0)} converges to some ω ∈ X. If D(x0, f(ω)) < ∞ and
D(ω, f(ω)) < ∞, then ω is a fixed point of f . Moreover, if ω′ ∈ X is another
fixed point of f such that D(ω, ω′) < ∞ and D(ω′, ω′) < ∞, then ω = ω′.

Definition 2.8 (Jleli and Samet [18, Definition 5.1]). A mapping f : X → X is
weak continuous if the following condition holds: if {xn} ⊂ X is D-convergent
to x ∈ X, then there exists a subsequence {xnq} of {xn} such that {f(xnq )}
is D-convergent to f(x) (as q → ∞).

Given a partial order ≼ on X, let E≼ = {(x, y) ∈ X ×X : x ≼ y}.

Definition 2.9 (Jleli and Samet [18, Definition 5.3]). We say that the pair
(X,D) is D-regular if the following condition holds: for every sequence {xn} ⊂
X satisfying (xn, xn+1) ∈ E≼, for every n large enough, if {xn} is D-conver-
gent to x ∈ X, then there exists a subsequence {xnq} of {xn} such that
(xnq , x) ∈ E≼, for every q large enough.

Definition 2.10 (Jleli and Samet [18, Definition 5.4]). We say that f : X → X
is a weak k-contraction for some k ∈ (0, 1) if the following condition holds:

(x, y) ∈ E≼ =⇒ D
(
f(x), f(y)

)
≤ kD(x, y).

Theorem 2.11 (Jleli and Samet [18, Theorem 5.5]). Suppose that the following
conditions hold:

(i) (X,D) is complete;
(ii) f is weak continuous;
(iii) f is a weak k-contraction for some k ∈ (0, 1), that is,

D
(
f(x), f(y)

)
≤ kD(x, y) for all (x, y) ∈ E≼;

(iv) there exists x0 ∈ X such that δ(D, f, x0) < ∞ and (x0, f(x0)) ∈ E≼;
(v) f is ≼-monotone.

Then {fn(x0)} converges to ω ∈ X such that ω is a fixed point of f .
Moreover, if D(ω, ω) < ∞, then D(ω, ω) = 0.

Theorem 2.12 (Jleli and Samet [18, Theorem 5.7]). Suppose that the following
conditions hold:

(i) (X,D) is complete;
(ii) (X,D) is D-regular;
(iii) f is a weak k-contraction for some k ∈ (0, 1), that is,

D
(
f(x), f(y)

)
≤ kD(x, y) for all (x, y) ∈ E≼;

(iv) there exists x0 ∈ X such that δ(D, f, x0) < ∞ and (x0, f(x0)) ∈ E≼;
(v) f is ≼-monotone.

Then {fn(x0)} converges to ω ∈ X such that ω is a fixed point of f .
Moreover, if D(ω, ω) < ∞, then D(ω, ω) = 0.
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3. Some considerations concerning the previous results

Basically, Jleli and Samet considered three kinds of contractivity conditions:

(C1) D
(
f(x), f(y)

)
≤ kD(x, y) for all x, y ∈ X;

(C2) D
(
f(x), f(y)

)
≤ k max

{
D(x, y), D

(
x, f(x)

)
, D

(
y, f(y)

)
,

D
(
x, f(y)

)
, D

(
y, f(x)

)}
for all x, y ∈ X.

(C3) D
(
f(x), f(y)

)
≤ kD(x, y) for all (x, y) ∈ E≼.

Conditions (C1) and (C3) are natural extensions of Banach’s original contrac-

tivity condition, and assumption (C2) was inspired by Ćirić quasicontraction-
type mappings (see [10]). Although one can imagine that the techniques em-
ployed with each contractivity condition are similar, we must highlight that
condition (C2) is more complex than (C1) and (C3), especially in the case of
generalized metric spaces in the sense of Jleli and Samet. To illustrate this,
we present an example in which Theorem 2.7 fails (and Theorem 2.12 would

also be incorrect if we had assumed a Ćirić-type contractivity condition).
Let X be the subset of real numbers given by [0, 1] ∪ {2} and let

D : X ×X → [0,∞]

be the function

D (x, y) =

{
10 if either (x, y) = (0, 2) or (x, y) = (2, 0),

|x− y| otherwise.

Notice that

|x− y | ≤ D (x, y) ≤ 10 for all x, y ∈ X. (3.1)

Let us show that (X,D) is a complete JS-GMS. Indeed, properties (D1) and
(D2) are apparent. Let us show that (D3) also holds using C = 5. Let x, y ∈ X
and let {xn} ∈ C(D, X, x). We have to prove that

D(x, y) ≤ 5 lim sup
n→∞

D(xn, y). (3.2)

If x = y, then D(x, y) = 0, so (3.2) trivially holds. Assume that x ̸= y. Since
{D(xn, x)} → 0, there exists n0 ∈ N such that

D(xn, x) ≤ 1 for all n ≥ n0.

Hence D(xn, x) = |xn − x| ≤ 1 for all n ≥ n0 and {|xn − x|} → 0. We con-
sider the following three cases.

• If D (x, y) = |x− y|, it follows from (3.1) that

D (x, y) = |x− y| = lim
n→∞

|xn − y|

= lim sup
n→∞

|xn − y| ≤ lim sup
n→∞

D(xn, y),

so (3.2) holds (even for C = 1). Notice that the limit superior is always
finite because D is bounded.

If D (x, y) = 10, we have two possibilities.
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• If x = 0 and y = 2, then D(x, y) = D(0, 2) = 10 and, on the other hand,
by (3.1),

5 lim sup
n→∞

D(xn, y) ≥ 5 lim sup
n→∞

|xn − y|

= 5 lim
n→∞

(2− xn) = 5 · 2 = 10.

Hence, the equality in (3.2) is reached with C = 5 (for instance, by
using the sequence {xn} given by xn = 1/2n for all n ∈ N).

• If x = 2 and y = 0, taking into account that {|xn − x|} → 0, necessarily
there exists m0 ∈ N such that xn = x = 2 for all n ≥ m0. Then

D(x, y) = D(0, 2) = 10 = D(xn, y)

for all n ≥ m0, and (3.2) holds (even with C = 1).

As a result, property (D3) holds and (X,D) is a JS-GMS. Let us show
that it is complete. Let {xn} ⊆ X be a D-Cauchy sequence. As

|xn − xm| ≤ D (xn, xm) for all n,m ∈ N,

then {xn} is a Cauchy sequence in X endowed with the Euclidean metric
dE(x, y) = |x− y| for all x, y ∈ X. Since X is closed in (R, dE), then it is
also dE-complete. Hence, there exists ω ∈ X such that {|xn − ω |} → 0. If
ω ∈ [0, 1], then there is n0 ∈ N such that xn ∈ [0, 1] for all n ≥ n0. In this
case,

lim
n→∞

D (xn, ω) = lim
n→∞

|xn − ω| = 0,

so {xn} D-converges in X. On the contrary case, if ω = 2, there is an n0 ∈ N
such that xn = 2 for all n ≥ n0. Therefore,

lim
n→∞

D (xn, ω) = lim
n→∞

|ω − ω | = 0,

so {xn} is also D-convergent in X. In any case, {xn} is D-convergent in X,
and (X,D) is a complete JS-GMS.

Next, consider T : X → X defined by

Tx =

{
2 if x = 0,

x/2 if x ∈ (0, 1] ∪ {2} (that is, if x > 0).

We claim that

D(Tx, Ty) ≤ 1

2
max

{
D(x, y),D(x, Tx),D(y, Ty),D(x, Ty),D(y, Tx)

}

(3.3)
for all x, y ∈ X. Indeed, let x, y ∈ X be arbitrary points. If x = y, then
D(Tx, Ty) = 0 and (3.3) trivially holds. Assume that x ̸= y. Since inequal-
ity (3.3) is symmetric in x and y, we can assume that x < y. Necessarily
y > 0 and Ty = y/2. We consider the following cases.

• If x = 0, then D(Tx, Ty) = D(2, y/2) = 2 − y/2 ≤ 2 and D(x, Tx) =
D(0, 2) = 10, so (3.3) holds.

• If x > 0, then D(Tx, Ty) = D(x/2, y/2) = |x/2− y/2| = |x− y| /2 =
D(x, y)/2, so (3.3) also holds.
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In any case, T satisfies the contractivity condition (3.3). If we take
x0 = 1, then Tnx0 = 1/2n for all n ∈ N, which converges to the point ω = 0.
Furthermore, δ(D, T, x0) < ∞, D(x0, Tω) < ∞ and D(ω, Tω) < ∞ because
D is bounded. However, ω is not a fixed point of T . In fact, T is fixed point
free. Therefore, Theorem 2.7 fails.

In addition to this, if we consider on X the partial order ≤, then (X,D)
is ≤-regular (to prove it, take into account that

{xn}
D−−→ x

implies that

{xn}
dE−−−→ x

because |xn − x| ≤ D (xn, x)). However, this property is not strong enough
to guarantee that T has a fixed point.

The main aim of our paper is to present some fixed point theorems in
the context of Jleli and Samet’s generalized metric spaces using the Ćirić-type
contractivity condition (C2).

4. Some notions in generalized metric spaces

In this section, we introduce some preliminaries on Jleli and Samet’s gen-
eralized metric spaces endowed with arbitrary binary relations. Notice that
the following notions are given involving nondecreasing sequences. Similar
concepts can be introduced for nonincreasing sequences (we leave this task
to the reader).

From now on, let (X,D) be a JS-GMS and let S be a binary relation
on X.

Definition 4.1. A sequence {xn} ⊆ X is S-nondecreasing if xnSxn+1 for all
n ∈ N.

Definition 4.2. The JS-GMS (X,D) is S-nondecreasing-regular if

{xn} ∈ C (D, X, z)

{xn} S-nondecreasing

}
=⇒ xnSz for all n ∈ N.

Every regular JS-GMS is also S-nondecreasing-regular, whatever the
binary relation S, but the converse is false.

Example 4.3. Let X be the real interval [0, 1] endowed with the Euclidean
metric d (x, y) = |x− y| for all x, y ∈ X. Let S be the binary relation on X
given by xSy if 0 < x ≤ y ≤ 1. Then (X, d) is ≤-nondecreasing-regular.
However, the sequence {1/n}n≥1 shows that (X, d) is not regular.

Definition 4.4. The JS-GMS (X,D) is S-nondecreasing-complete if

{xn} ⊆ X is D-Cauchy

{xn} S-nondecreasing

}
=⇒ {xn} is D-convergent in X.
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Every complete JS-GMS is also S-nondecreasing-complete, whatever the
binary relation S. However, Example 4.3 shows that the converse is false.

Definition 4.5. A mapping T is S-nondecreasing-continuous at z ∈ X if
{Txn} ∈ C (D, X, Tz) for all S-nondecreasing sequence {xn} ∈ C (D, X, z).
The mapping T is S-nondecreasing-continuous if it is S-nondecreasing-conti-
nuous at each point of X.

Every continuous mapping is also S-nondecreasing-continuous, what-
ever the binary relation S, but the converse is false.

Example 4.6. Let X = R be endowed with the Euclidean metric dE (x, y) =
|x− y| for all x, y ∈ X. If ≤ denotes the canonical order in R and T : X → X
is given by

Tx =

{
0 if x ≤ 0,

1 if x > 0,

then T is ≤-nondecreasing-continuous at x = 0, but it is not continuous at
x = 0.

Definition 4.7. Given a nonempty subset A of X, we will say that S is tran-
sitive on A if

x, y, z ∈ A, xSy, ySz =⇒ xSz.

Given n0 ∈ N, we will use the notation

δn0 (D, T, x0) = sup
({

D
(
Tnx0, T

mx0

)
: n,m ∈ N, n,m ≥ n0

})

and

δ (D, T, x0) = δ0
(
D, T, x0

)
= sup

({
D
(
Tnx0, T

mx0

)
: n,m ∈ N

})
.

By the symmetry of D, we can alternatively express

δn0 (D, T, x0) = sup
({

D
(
Tnx0, T

mx0

)
: n,m ∈ N, m ≥ n ≥ n0

})
.

Notice that if n,m ∈ N verify n ≤ m, then

δm (D, T, x0) ≤ δn (D, T, x0) ≤ δ (D, T, x0) . (4.1)

Example 4.8. Let X = {0, 1} and let D be given by

D (0, 0) = 0, D (1, 0) = D (0, 1) = D (1, 1) = ∞.

In Example 2.3 we showed that (X,D) is a JS-GMS. Let T : X → X be
defined by Tx = 0 for all x ∈ X. If we take x0 = 1 ∈ X, then

δ (D, T, x0) = δ0 (D, T, x0) ≥ D (x0, x0) = D (1, 1) = ∞,

but δ1 (D, T, x0) = 0.
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5. Fixed point theorems in the context of generalized
metric spaces

In this section we will introduce the main results of this paper. We divide this
section into four parts: in the first one, we present general results in order to
deduce that a Picard sequence is D-Cauchy and, when the space is appro-
priately complete, we describe an upper bound concerning how the sequence
approximates its limit; in the second part, we prove that its limit is a fixed
point of the operator by assuming some kind of continuity; in the third part,
we show that the limit of the sequence is a fixed point if we replace the con-
tinuity with regularity and other appropriate conditions; finally, in the last
part, we explain that, when the contractivity condition is the simplest one
and is assumed for all pairs of points of the space, the operator is continuous.

Remark 5.1. For simplicity, we will always consider a preorder S on X. How-
ever, the reader may notice that the same results can also be obtained by
using a binary relation S ′ on X that has only to be reflexive and transitive
on the orbit OT (x0) (or in O′

T (x0) or in ES = {(x, y) ∈ X ×X : xSy}, when
these sets are considered).

5.1. General scheme and an upper bound for convergence

From now on, let (X,D) be a JS-GMS and let S be a binary relation onX. We
begin this section by explaining why, although our main results will involve
a binary relation, we will only assume the contractivity condition over pairs
of points in the orbit of an initial condition.

Lemma 5.2. Let (X,D) be a JS-GMS endowed with a preorder S and let
T : X → X be an S-nondecreasing self-mapping. Let x0 ∈ X be a point
such that x0 and Tx0 are S-comparable. Suppose that there exists a function
ϕ : [0,∞] → [0,∞] such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,D (x, Ty) ,D (y, Tx)

})
(5.1)

for x, y ∈ X such that xSy. Then (5.1) holds for all x, y ∈ OT (x0).

Proof. Let us consider the Picard sequence {xn+1 = Txn = Tn+1x0}n∈N of T
based on x0. If we suppose that x0STx0 = x1 (the case Tx0Sx0 is similar),
as T is S-nondecreasing, then x1 = Tx0STx1 = x2. Repeating this argument,
xnSxn+1 for all n ∈ N, and as S is a preorder, then xnSxm for all n,m ∈ N
such that n ≤ m. Furthermore, as condition (5.1) is symmetric on x and y
(because D is symmetric), then (5.1) holds for all xn and xm (being n,m ∈ N
arbitrary), so it holds for all x, y ∈ OT (x0). �

In the following result we establish a relationship between δk (D, T, x0)
and δk+1 (D, T, x0) under a contractivity condition that must be only satisfied
by pairs of points in an orbit.

Lemma 5.3. Let (X,D) be a JS-GMS, let T : X → X be a self-mapping and
let x0 ∈ X be a point for which there exists n0 ∈ N such that

δn0 (D, T, x0) < ∞.
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Suppose that there exists a nondecreasing function ϕ : [0,∞] → [0,∞] such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,D (x, Ty) ,D (y, Tx)

})
(5.2)

for x, y ∈ OT (x0). Then

δk+1 (D, T, x0) ≤ ϕ
(
δk(D, T, x0)

)
for all k ∈ N, k ≥ n0.

In particular,

δn0+k (D, T, x0) ≤ ϕk
(
δn0(D, T, x0)

)
for all k ∈ N.

Proof. Let k ∈ N be an arbitrary integer number such that k ≥ n0. By (4.1),

δk+1 (D, T, x0) ≤ δk (D, T, x0) ≤ δn0 (D, T, x0) < ∞.

Let n,m ∈ N be such that m ≥ n ≥ k + 1, and let us define m′ = m− 1 and
n′ = n− 1. Then m′ ≥ n′ ≥ k. By (5.2),

D (Tnx0, T
mx0) = D

(
Tn′+1x0, T

m′+1x0

)
= D

(
TTn′

x0, TT
m′

x0

)

≤ ϕ
(
max

{
D
(
Tn′

x0, T
m′

x0

)
,D

(
Tn′

x0, TT
n′
x0

)
,

D
(
Tm′

x0, TT
m′

x0

)
,D

(
Tn′

x0, TT
m′

x0

)
,

D
(
Tm′

x0, TT
n′
x0

)})

= ϕ
(
max

{
D
(
Tn′

x0, T
m′

x0

)
,D

(
Tn′

x0, T
n′+1x0

)
,

D
(
Tm′

x0, T
m′+1x0

)
,D

(
Tn′

x0, T
m′+1x0

)
,

D
(
Tm′

x0, T
n′+1x0

)})
.

If we denote

Ωk =
{
D (T px0, T

qx0) : p, q ∈ N, p, q ≥ k
}
,

then

D
(
Tn′

x0, T
m′

x0

)
,D

(
Tn′

x0, T
n′+1x0

)
,D

(
Tm′

x0, T
m′+1x0

)
,

D
(
Tn′

x0, T
m′+1x0

)
,D

(
Tm′

x0, T
n′+1x0

)
∈ Ωk.

Hence,

max
{
D
(
Tn′

x0, T
m′

x0

)
,D

(
Tn′

x0, T
n′+1x0

)
,D

(
Tm′

x0, T
m′+1x0

)
,

D
(
Tn′

x0, T
m′+1x0

)
,D

(
Tm′

x0, T
n′+1x0

)}
≤ supΩk = δk (D, T, x0) .

As a result, as ϕ is nondecreasing, for all m ≥ n ≥ k + 1,

D (Tnx0, T
mx0) ≤ ϕ

(
max

{
D
(
Tn′

x0, T
m′

x0

)
,D

(
Tn′

x0, T
n′+1x0

)
,

D
(
Tm′

x0, T
m′+1x0

)
,D

(
Tn′

x0, T
m′+1x0

)
,

D
(
Tm′

x0, T
n′+1x0

)})

≤ ϕ
(
δk (D, T, x0)

)
.
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Therefore,

δk+1 (D, T, x0) = sup
({

D (Tnx0, T
mx0) : n,m ∈ N, m ≥ n ≥ k + 1

})

≤ ϕ
(
δk(D, T, x0)

)
.

Repeating this argument and taking into account that ϕ is nondecreasing, it
follows that for all k ∈ N,

δn0+k (D, T, x0) ≤ ϕ
(
δn0+k−1(D, T, x0)

)
≤ ϕ2

(
δn0+k−2(D, T, x0)

)

≤ · · · ≤ ϕk
(
δn0(D, T, x0)

)
. �

The following statement will be useful to prove that a Picard sequence
is D-Cauchy.

Lemma 5.4. Let (X,D) be a JS-GMS, let T : X → X be a self-mapping and
let x0 ∈ X be a point for which there exists n0 ∈ N such that

δn0 (D, T, x0) < ∞.

Suppose that there exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,D (x, Ty) ,D (y, Tx)

})
(5.3)

for all x, y ∈ OT (x0). Then the Picard sequence {Tnx0}n∈N of T based on x0

is a D-Cauchy sequence.

Proof. Let us consider the Picard sequence {xn+1 = Txn = Tn+1x0}n∈N of T
based on x0. Taking into account that ϕ (t) ≤ t (in particular, ϕk (t) ≤ t < ∞)
for all t ∈ (0,∞), Lemma 5.3 guarantees that

δn0+k (D, T, x0) ≤ ϕk
(
δn0(D, T, x0)

)
< ∞ for all k ∈ N.

Let us show that the sequence {xn} is D-Cauchy. Let t0 = δn0 (D, T, x0). If
t0 = 0, then D (xn, xm) = 0 for all n,m ≥ n0. In particular,

lim
n,m→∞

D (xn, xm) = 0,

so {xn} is D-Cauchy. In this case, the proof is finished. Next, assume that
t0 = δn0 (D, T, x0) ∈ (0,∞). Let ε > 0 be arbitrary. Since limn→∞ ϕn (t0) = 0,
then there exists k0 ∈ N such that ϕk (t0) < ε for all k ≥ k0. In such a case,
by the symmetry of D,

sup
({

D (Tnx0, T
mx0) : n,m ∈ N, n,m ≥ n0 + k0

})

= δn0+k0 (D, T, x0) ≤ ϕk0
(
δn0(D, T, x0)

)
= ϕk0 (t0) < ε.

Hence, limn,m→∞ D (xn, xm) = 0 and {xn} is a D-Cauchy sequence. �

In the following result, a preorder S and an S-nondecreasing opera-
tor are considered. Under the appropriate class of completeness, the Picard
sequence is convergent and its limit satisfies some properties. In fact, we
describe upper bounds for the estimated error depending on the constant
C = CX,D, which is the (lowest) constant for which (X,D) satisfies prop-
erty (D3).
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Theorem 5.5. Let (X,D) be a JS-GMS with respect to a preorder S and let
T : X → X be an S-nondecreasing self-mapping. Let x0 ∈ X be a point such
that x0STx0 and δn0 (D, T, x0) < ∞ for some n0 ∈ N. Suppose that there
exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,

D (x, Ty) ,D(y, Tx)
})

for all x, y ∈ OT (x0).

Then the Picard sequence {Tnx0}n∈N of T based on x0 is an S-nondecreasing,
D-Cauchy sequence.

Furthermore, if (X,D) is S-nondecreasing-complete, then {Tnx0}n∈N
D-converges to a point ω ∈ X that verifies the following conditions:

D (ω, ω) = 0 (5.4)

and

D (Tnx0, ω) ≤ C ϕn−n0
(
δn0 (D, T, x0)

)
for all n ∈ N,n ≥ n0, (5.5)

where C = CX,D is the (lowest) constant for which (X,D) satisfies prop-
erty (D3).

Proof. As shown in the proof of Lemma 5.2, the Picard sequence {Tnx0}n∈N
is S-nondecreasing, and Lemma 5.4 guarantees that it is a D-Cauchy se-
quence. Additionally, assume that (X,D) is S-nondecreasing-complete. Hence
the sequence {Tnx0} is D-convergent, that is, there exists ω ∈ X such that

{xn}
D−−→ ω.

By using (D3),

D (ω, ω) ≤ C lim sup
m→∞

D (Tmx0, ω) = 0,

so D (ω, ω) = 0. Moreover, it follows from (D3) and Lemma 5.3 that, for all
n ∈ N such that n ≥ n0,

D (ω, Tnx0) ≤ C lim sup
m→∞

D
(
Tm+n0x0, T

nx0

)

≤ Cδn (D, T, x0)

≤ Cϕn−n0
(
δn0 (D, T, x0)

)
. �

In the next result, we slightly change the points for which the contrac-
tivity condition must hold.

Corollary 5.6. Let (X,D) be a JS-GMS with respect to a preorder S and let
T : X → X be an S-nondecreasing self-mapping. Let x0 ∈ X be a point such
that x0STx0 and δn0 (D, T, x0) < ∞ for some n0 ∈ N. Suppose that there
exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,D (x, Ty) ,

D(y, Tx)
})

for all x, y ∈ X such that xSy.
Then the Picard sequence {Tnx0}n∈N of T based on x0 is an S-nondecreasing,
D-Cauchy sequence.
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Furthermore, if (X,D) is S-nondecreasing-complete, then {Tnx0}n∈N
D-converges to a point ω ∈ X that verifies D (ω, ω) = 0 and

D (Tnx0, ω) ≤ Cϕn−n0
(
δn0

(D, T, x0)
)

for all n ∈ N,n ≥ n0,

where C = CX,D is the (lowest) constant for which (X,D) satisfies prop-
erty (D3).

Proof. If the contractivity condition holds for all x, y ∈ X such that xSy, then
Lemma 5.2 guarantees that it also holds for all x, y ∈ OT (x0), so Theorem 5.5
is applicable. �
5.2. Some fixed point theorems under S-nondecreasing-continuity
In this section, we introduce some fixed point results by showing that the
limit ω of the Picard sequence is a fixed point of T . To do this, we will
assume that T is S-nondecreasing-continuous. Hence, we obtain the following
statement.

Theorem 5.7. Let (X,D) be an S-nondecreasing-complete JS-GMS with re-
spect to a preorder S and let T : X → X be an S-nondecreasing self-mapping.
Let x0 ∈ X be a point such that x0STx0 and δn0 (D, T, x0) < ∞ for some
n0 ∈ N. Suppose that there exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,D (x, Ty) ,

D (y, Tx)
})

for all x, y ∈ OT (x0).
(5.6)

Additionally, assume that

(a) T is S-nondecreasing-continuous.
Then the Picard sequence {Tnx0}n∈N of T based on x0 D-converges to

a fixed point ω of T . Furthermore, D (ω, ω) = 0 and

D (Tnx0, ω) ≤ Cϕn−n0
(
δn0(D, T, x0)

)
for all n ∈ N,n ≥ n0,

where C = CX,D is the (lowest) constant for which (X,D) satisfies prop-
erty (D3).

In addition to this, if condition (5.6) holds for all x, y ∈ X such that
xSy, and ω′ is another fixed point of T such that ωSω′, D (ω, ω′) < ∞ and
D (ω′, ω′) < ∞, then ω = ω′.

The main advantages of Theorem 5.7 over Theorems 2.6 and 2.11 are
the following ones.

• S is a preorder, but it has not to be a partial order (as a consequence,
an interesting particular case is the binary relation SX given by xSXy
for all x, y ∈ X).

• The class of auxiliary function Fcom is wider than the subclass{
ϕk(t) = kt

}
k∈[0,1]

.

• The contractivity condition (5.6) must only be satisfied over points x
and y in the orbit of x0, but we do not have to prove it for all x, y ∈ X.

• The generalized metric space (X,D) is S-nondecreasing-complete, but
it does not have to be complete (see Example 4.3).
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• The mapping T is S-nondecreasing-continuous, but it does not have to
be continuous (see Example 4.6).

• We assume that

δn0 (D, T, x0) < ∞
for some n0 ∈ N rather than δ (D, T, x0) < ∞ (see Example 4.8).

Proof. By Theorem 5.5, the Picard sequence {Tnx0}n∈N of T based on x0 is
S-nondecreasing and it converges to a point ω ∈ X verifying (5.4) and (5.5).
Moreover, as we additionally assume that T is S-nondecreasing-continuous,
then

{xn+1 = Txn}
D−−→ Tω.

Proposition 2.5 guarantees that Tω = ω, so ω is a fixed point of T .
Next suppose that condition (5.6) holds for all x, y ∈ X such that xSy,

and assume that ω′ is another fixed point of T such that ωSω′, D (ω, ω′) < ∞
and D (ω′, ω′) < ∞. As S is reflexive, then ω′Sω′, and condition (5.6) yields

D (ω′, ω′) = D (Tω′, Tω′)

≤ ϕ
(
max

{
D (ω′, ω′) ,D (ω′, Tω′) ,D (ω′, Tω′) ,

D (ω′, Tω′) ,D(ω′, Tω′)
})

= ϕ
(
D(ω′, ω′)

)
.

As D (ω′, ω′) < ∞, then necessarily D (ω′, ω′) = 0. As a consequence,

D (ω, ω′) = D (Tω, Tω′)

≤ ϕ
(
max

{
D (ω, ω′) ,D (ω, Tω) ,D (ω′, Tω′) ,

D (ω, Tω′) ,D(ω′, Tω)
})

= ϕ
(
max

{
D (ω, ω′) ,D (ω, ω) ,D(ω′, ω′)

})

= ϕ
(
D(ω, ω′)

)
.

Similarly, as D (ω, ω′) < ∞, then D (ω, ω′) = 0, so ω = ω′. �

In order to illustrate the power and usability of Theorem 5.7, we could
list here several corollaries by replacing some of its hypotheses by stronger
ones. For instance, the following statements are easy consequences of Theo-
rem 5.7.

Corollary 5.8. Let (X,D) be a complete JS-GMS and let T : X → X be a
self-mapping. Let x0 ∈ X be a point such that δn0 (D, T, x0) < ∞ for some
n0 ∈ N. Suppose that there exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,D (x, Ty) ,

D (y, Tx)
})

for all x, y ∈ OT (x0).
(5.7)

Additionally, assume that

(a) T is continuous.
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Then the Picard sequence {Tnx0}n∈N of T based on x0 D-converges to
a fixed point ω of T . Furthermore, D (ω, ω) = 0 and

D (Tnx0, ω) ≤ C ϕn−n0
(
δn0

(D, T, x0)
)

for all n ∈ N,n ≥ n0,

where C = CX,D is the (lowest) constant for which (X,D) satisfies prop-
erty (D3).

In addition to this, if condition (5.7) holds for all x, y ∈ X, and ω′ is
another fixed point of T such that D (ω, ω′) < ∞ and D (ω′, ω′) < ∞, then
ω = ω′.

Proof. It follows from Theorem 5.7 by using the trivial preorder SX given by
xSXy for all x, y ∈ X. �

Corollary 5.9. Let (X,D) be an ≼-nondecreasing-complete JS-GMS with re-
spect to a partial order ≼ on X and let T : X→X be an ≼-nondecreasing self-
mapping. Let x0 ∈ X be a point such that x0 ≼ Tx0 and δn0 (D, T, x0) < ∞
for some n0 ∈ N. Suppose that there exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,D (x, Ty) ,

D (y, Tx)
})

for all x, y ∈ OT (x0).
(5.8)

Additionally, assume that

(a) T is ≼-nondecreasing-continuous.

Then the Picard sequence {Tnx0}n∈N of T based on x0 D-converges to
a fixed point ω of T . Furthermore, D (ω, ω) = 0 and

D (Tnx0, ω) ≤ C ϕn−n0
(
δn0(D, T, x0)

)
for all n ∈ N,n ≥ n0,

where C = CX,D is the (lowest) constant for which (X,D) satisfies prop-
erty (D3).

In addition to this, if condition (5.8) holds for all x, y ∈ X such that
x ≼ y, and ω′ is another fixed point of T such that ω ≼ ω′, D (ω, ω′) < ∞
and D (ω′, ω′) < ∞, then ω = ω′.

Proof. It follows from Theorem 5.7 by using the a partial order ≼ as the
binary relation S. �

In order not to enlarge this manuscript, we only point out that Theo-
rem 5.7 remains true (that is, the operator T has at least a fixed point) if we
do one or more of the following changes in its statement:

• replace the preorder S by the trivial preorder SX given by xSXy for all
x, y ∈ X (in this case, we obtain Corollary 5.8);

• replace the preorder S by a partial order ≼ (in this case, we obtain
Corollary 5.9);

• replace the preorder S on X by a binary relation on X that has only to
be reflexive and transitive on the orbit OT (x0);

• replace, in the contractivity condition, “for all x, y ∈ OT (x0)” by “for
all x, y ∈ X such that xSy”;
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• replace the contractivity condition (5.6) by one of the following list:

• D (Tx, Ty) ≤ ϕ (D (x, y)) ;

• D (Tx, Ty) ≤ ϕ (max {D (x, y) ,D (x, Tx) ,D (y, Ty)}) ;
• D (Tx, Ty) ≤ ϕ (max {D (x, y) ,D (x, Ty) ,D (y, Tx)}) ;

• D (Tx, Ty) ≤ ϕ

(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,

D (x, Ty) +D (y, Tx)

2

})
;

• D (Tx, Ty) ≤ ϕ

(
max

{
D (x, y) ,

D (x, Tx) +D (y, Ty)

2
,

D (x, Ty) +D (y, Tx)

2

})

for all x, y ∈ OT (x0) (take into account that (t + s)/2 ≤ max{t, s} for
all t, s ∈ [0,∞]);

• replace the contractivity condition (5.6) by one of the previous list,
considered for all x, y ∈ X such that xSy;

• replace the function ϕ ∈ Fcom by the particular case ϕλ(t) = λ t for all
t ∈ [0,∞], where λ ∈ [0, 1);

• replace the S-nondecreasing-completeness of (X,D) by the completeness
of D;

• replace the S-nondecreasing-continuity of T by continuity;
• replace the condition “δn0 (D, T, x0) < ∞ for some n0 ∈ N” by

δ (D, T, x0) < ∞;

• replace the JS-GMS by any of the abstract metric spaces that Jleli and
Samet showed in [18] that could be considered as a JS-GMS: metric
spaces, b-metric spaces, Hitzler–Seda metric spaces and modular spaces
with the Fatou property.

5.3. Some fixed point theorems under S-nondecreasing-regularity
The main objective of the current subsection is to introduce some fixed point
theorems in which T does not necessarily satisfy any continuity condition.
The regularity (or S-regularity) of the space (X,D) is not a sufficient property
as we showed in Section 3. In order to do this, the following result will play
an important role.

Proposition 5.10. Let {an} ⊂ [0,∞) be a sequence of nonnegative real num-
bers such that {an} → 0 and let ϕ ∈ Fcom. If

bn = max
{
ϕ (an) , ϕ

2(an−1), ϕ
3(an−2), . . . , ϕ

n(a1), ϕ
n+1(a0)

}

for all n ∈ N, then bn < ∞ for all n ∈ N. Furthermore, {bn} → 0.

Proof. As an < ∞ for all n ∈ N and ϕm(t) ≤ t < ∞ for all m ∈ N and all
t ∈ [0,∞), then bn < ∞ for all n ∈ N.
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Fix ε > 0 arbitrarily, and we are going to find k0 ∈ N such that bn ≤ ε
for all n ≥ k0. Indeed, as {an} → 0, there exists n0 ∈ N such that

an ≤ ε for all n ≥ n0.

Notice that, for n ≥ n0,

bn = max
{
ϕ (an) , ϕ

2(an−1), ϕ
3(an−2), . . . , ϕ

n(a1), ϕ
n+1(a0)

}

= max
0≤i≤n

ϕn+1−i(ai) = max

{
max

0≤i≤n0−1
ϕn+1−i(ai), max

n0≤i≤n
ϕn+1−i(ai)

}
.

As ϕm(t) ≤ t for all t ∈ [0,∞) and all m ∈ N, then

max
n0≤i≤n

ϕn+1−i(ai) ≤ max
n0≤i≤n

ai ≤ ε.

Therefore, for all n ≥ n0,

bn = max

{
max

0≤i≤n0−1
ϕn+1−i(ai), max

n0≤i≤n
ϕn+1−i(ai)

}

≤ max

{
max

0≤i≤n0−1
ϕn+1−i(ai), ε

}
.

(5.9)

Next, let t0 = max {a0, a1, a2, . . . , an0−1}. If t0 = 0, then ai = 0 for
all i ∈ {0, 1, . . . , n0 − 1}. In such a case, ϕn+1−i(ai) = ϕn+1−i(0) = 0 for all
i ∈ {0, 1, . . . , n0− 1}, and (5.9) guarantees that bn ≤ ε for all n ≥ n0. On the
contrary case, assume that t0 > 0. Since ϕ ∈ Fcom, there exists m0 ∈ N (we
can assume that m0 > n0) such that

ϕn(t0) ≤ ε for all n ≥ m0.

Let k0 = m0 + n0 ∈ N. If n ∈ N and n ≥ k0, then

n ≥ k0 = m0 + n0 > m0 + n0 − 2 =⇒ n− n0 + 2 > m0.

If i ∈ {0, 1, . . . , n0 − 1}, then

i ≤ n0 − 1 =⇒ −n0 + 1 ≤ −i

=⇒ n− n0 + 1 ≤ n− i

=⇒ n− n0 + 2 ≤ n+ 1− i.

Therefore,

m0 < n− n0 + 2 ≤ n+ 1− i for all i ∈ {0, 1, . . . , n0 − 1}.

As each ϕm is a nondecreasing function, then

ϕn+1−i(ai) ≤ ϕn+1−i(t0) ≤ ε for all i ∈ {0, 1, . . . , n0 − 1}.

Hence, by (5.9), for all n ≥ k0 ≥ n0,

bn ≤ max

{
max

0≤i≤n0−1
ϕn+1−i(ai), ε

}
≤ max {ε, ε} = ε,

which implies that {bn} → 0. �
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Given a self-mapping T : X → X of a JS-GMS (X,D) and a point
x0 ∈ X, we will use the notation

O′
T (x0) = OT (x0) ∪

{
ω ∈ X : lim

n→∞
D (Tnx0, ω) = 0

}
.

By Proposition 2.5, the second part of O′
T (x0) contains, at most, a single

point.
In the next result, we shall assume that δ (D, T, x0) < ∞ rather than

“δn0 (D, T, x0) < ∞ for some n0 ∈ N”. Obviously, the second condition is
more general but, when it is satisfied, we can take y0 = Tn0x0 for which
δ (D, T, y0) < ∞. Nevertheless, in order to make the proof easier, we directly
suppose δ (D, T, x0) < ∞.

Theorem 5.11. Let (X,D) be an S-nondecreasing-complete JS-GMS with re-
spect to a preorder S and let T : X → X be an S-nondecreasing self-mapping.
Let x0 ∈ X be a point such that x0STx0 and δ (D, T, x0) < ∞. Suppose that
there exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) ,D (x, Tx) ,D (y, Ty) ,D (x, Ty) ,

D (y, Tx)
})

for all x, y ∈ O′
T (x0).

(5.10)

Then the Picard sequence {Tnx0}n∈N of T based on x0 converges to a
point ω ∈ X that verifies D (ω, ω) = 0 and

D (Tnx0, ω) ≤ CX,D ϕn
(
δ (D, T, x0)

)
for all n ∈ N.

Additionally, assume that

(b) D (ω, Tω) < ∞, D (x0, Tω) < ∞ and, if ϕ(D (ω, Tω)) > 0, then

CX,D ϕ
(
D (ω, Tω)

)
< D (ω, Tω) .

Then ω is a fixed point of T .
Furthermore, if condition (5.10) holds for all x, y ∈ X such that xSy,

and ω′ is another fixed point of T such that ωSω′, D (ω, ω′) < ∞ and
D (ω′, ω′) < ∞, then ω = ω′.

Proof. As OT (x0) ⊆ O′
T (x0), it follows from Theorem 5.5 that the Picard

sequence {Tnx0}n∈N of T based on x0 is S-nondecreasing, D-Cauchy, and
it D-converges to a point ω ∈ X verifying (5.4) and (5.5). Suppose that
D (ω, Tω) < ∞ and D (x0, Tω) < ∞. Since

{xn}
D−−→ ω,

then ω ∈ O′
T (x0). Let us define

an = max
{
D (xn, ω) ,D (xn, xn+1) ,D (ω, xn+1)

}
for all n ∈ N.

As {xn}
D−→ ω and {xn} is D-Cauchy, then {an} → 0. Also

D (xn, xn+1) ≤ δ (D, T, x0) < ∞,

D (xn, ω) = D (Tnx0, ω) ≤ CX,D ϕn
(
δ (D, T, x0)

)
< ∞
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for all n ∈ N, then an < ∞ for all n ∈ N. By Proposition 5.10,
{
bn = max

{
ϕ (an) , ϕ

2(an−1), ϕ
3(an−2), . . . , ϕ

n(a1), ϕ
n+1(a0)

}}
→ 0

and bn < ∞ for all n ∈ N. We claim that D (xn, Tω) < ∞ for all n ∈ N.
Indeed, by hypothesis, D (x0, Tω) < ∞. Assume that, for some n ∈ N, we
have that D (xn, Tω) < ∞. Therefore, as ω ∈ O′

T (x0),

D (xn+1, Tω) = D (Txn, Tω)

≤ ϕ
(
max

{
D (xn, ω) ,D (xn, Txn) ,D (ω, Tω) ,

D (xn, Tω) ,D (ω, Txn)
})

≤ ϕ
(
max

{
D (xn, ω) ,D (xn, xn+1) ,D (ω, Tω) ,

D (xn, Tω) ,D (ω, xn+1)
})

= max
{
ϕ
(
max

{
D (xn, ω) ,D (xn, xn+1) ,D (ω, xn+1)

})
,

ϕ
(
D (ω, Tω)

)
, ϕ

(
D (xn, Tω)

)}

= max
{
ϕ(an), ϕ

(
D (ω, Tω)

)
, ϕ

(
D (xn, Tω)

)}
.

(5.11)

Since all terms in the maximum are finite, then D (xn+1, Tω) < ∞, which
completes the induction. We have just proved that, for all n ∈ N,

D (xn, Tω) < ∞,

D (xn+1, Tω) ≤ max
{
ϕ(an), ϕ

(
D (ω, Tω)

)
, ϕ

(
D (xn, Tω)

)}
.

(5.12)

As ϕ is nondecreasing, applying (5.12), we deduce that

ϕ
(
D (xn, Tω)

)
≤ ϕ

(
max

{
ϕ(an−1), ϕ

(
D (ω, Tω)

)
, ϕ

(
D (xn−1, Tω)

)})

= max
{
ϕ2(an−1), ϕ

2
(
D (ω, Tω)

)
, ϕ2

(
D (xn−1, Tω)

)}
.
(5.13)

By joining (5.12) and (5.13), and taking into account that

ϕ2
(
D (ω, Tω)

)
≤ ϕ

(
D (ω, Tω)

)
,

we obtain that

D (xn+1, Tω) ≤ max
{
ϕ(an), ϕ

(
D (ω, Tω)

)
, ϕ

(
D (xn, Tω)

)}

≤ max
{
ϕ(an), ϕ

(
D (ω, Tω)

)
, ϕ2(an−1), ϕ

2
(
D (ω, Tω)

)
,

ϕ2
(
D (xn−1, Tω)

)}

= max
{
ϕ(an), ϕ

2(an−1), ϕ
(
D (ω, Tω)

)
, ϕ2

(
D (xn−1, Tω)

)}
.

Repeating this process n times, we derive that, for all n ∈ N,

D (xn+1, Tω) ≤ max
{
ϕ(an), ϕ

2(an−1), . . . , ϕ
n(a1), ϕ

n+1(a0),

ϕ
(
D (ω, Tω)

)
, ϕn+1

(
D (x0, Tω)

)}

= max
{
bn, ϕ

(
D (ω, Tω)

)
, ϕn+1

(
D (x0, Tω)

)}
.

(5.14)

Next, we consider two cases.
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• If ϕ(D (ω, Tω)) = 0, it follows from (5.14) that

0 ≤ D (xn+1, Tω) ≤ max
{
bn, ϕ

n+1
(
D (x0, Tω)

)}
for all n ∈ N.

Letting n → ∞, we deduce that limn→∞ D (xn, Tω) = 0. Hence, (D3)
leads to

D (ω, Tω) ≤ C lim sup
n→∞

D(xn+1, Tω) = C lim
n→∞

D (xn, Tω) = 0.

Therefore, D (ω, Tω) = 0 and Tω = ω by (D1).
• Assume that ϕ(D (ω, Tω)) ∈ (0,∞). In this case, by hypothesis,

ϕ
(
D (ω, Tω)

)
<

D (ω, Tω)

CX,D
. (5.15)

In order to prove that Tω = ω, we are going to show that D (ω, Tω) = 0
reasoning by contradiction. On the contrary case, if D (ω, Tω) > 0,
taking into account that D (ω, Tω) < ∞, we have that

D (ω, Tω) ∈ (0,∞) .

Taking ε = ϕ(D (ω, Tω)) > 0, we can find n0 ∈ N such that

bn ≤ ϕ
(
D (ω, Tω)

)
and ϕn+1

(
D (x0, Tω)

)
≤ ϕ

(
D (ω, Tω)

)

for all n ≥ n0. Then, from (5.14),

D (xn+1, Tω) ≤ max
{
bn, ϕ

(
D (ω, Tω)

)
, ϕn+1

(
D (x0, Tω)

)}

= ϕ
(
D (ω, Tω)

)

for all n ≥ n0. Using (D3) and (5.15), we conclude that

D (ω, Tω) ≤ C lim sup
n→∞

D (xn+1, Tω) ≤ C ϕ
(
D (ω, Tω)

)

< C
D (ω, Tω)

C
= D (ω, Tω) ,

which is a contradiction. Then D (ω, Tω) = 0 and Tω = ω, so ω is a
fixed point of T .

The rest of the proof follows, point by point, as in the proof of Theo-
rem 5.7. �

A natural way to guarantee the condition “if ϕ(D (ω, Tω)) > 0, then
CX,D ϕ(D (ω, Tω)) < D (ω, Tω)” consists in assuming that ϕ(t) < t/CX,D for
all t ∈ (0,∞). In this case, we obtain the following consequence.

Corollary 5.12. Let (X,D) be an S-nondecreasing-complete JS-GMS with re-
spect to a preorder S and let T : X → X be an S-nondecreasing self-mapping.
Let x0 ∈ X be a point such that x0STx0 and δ (D, T, x0) < ∞. Suppose that
there exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) , D (x, Tx) , D (y, Ty) , D (x, Ty) ,

D (y, Tx)
})

for all x, y ∈ O′
T (x0).
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Then the Picard sequence {Tnx0}n∈N of T based on x0 converges to a point
ω ∈ X that verifies D (ω, ω) = 0 and

D (Tnx0, ω) ≤ CX,D ϕn
(
δ (D, T, x0)

)
for all n ∈ N.

Additionally, assume that

(b′) D (ω, Tω) < ∞, D (x0, Tω) < ∞ and ϕ(t) < t/CX,D for all t ∈ (0,∞) .

Then ω is a fixed point of T .
Furthermore, if condition (5.10) holds for all x, y ∈ X such that xSy,

and ω′ is another fixed point of T such that ωSω′, D (ω, ω′) < ∞ and
D (ω′, ω′) < ∞, then ω = ω′.

In the next statement, we slightly change the points for which the con-
tractivity condition must hold, and we involve a kind of regularity. Hence,
the following result is not a direct consequence of Theorem 5.11. However,
their proofs are very similar.

Theorem 5.13. Let (X,D) be an S-nondecreasing-complete JS-GMS with re-
spect to a preorder S and let T : X → X be an S-nondecreasing self-mapping.
Let x0 ∈ X be a point such that x0STx0 and δ (D, T, x0) < ∞. Suppose that
there exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
max

{
D (x, y) , D (x, Tx) , D (y, Ty) , D (x, Ty) ,

D (y, Tx)
})

for all x, y ∈ X such that xSy.
(5.16)

Then the Picard sequence {Tnx0}n∈N of T based on x0 converges to a
point ω ∈ X that verifies D (ω, ω) = 0 and

D (Tnx0, ω) ≤ CX,D ϕn
(
δ (D, T, x0)

)
for all n ∈ N.

Additionally, assume that

(b′′) (X,D) is S-nondecreasing-regular, D (ω, Tω) < ∞, D (x0, Tω) < ∞
and, if ϕ(D (ω, Tω)) > 0, then

CX,D ϕ
(
D (ω, Tω)

)
< D (ω, Tω)

(this last condition can be replaced by the fact that ϕ(t) < t/CX,D for
all t ∈ (0,∞)).

Then ω is a fixed point of T .
Furthermore, if ω′ is another fixed point of T such that ωSω′, D (ω, ω′) <

∞ and D (ω′, ω′) < ∞, then ω = ω′.

Notice that, in the previous result, the space (X,D) is S-nondecreasing-
regular, but it does not have to be regular (see Example 4.3).

Proof. As the contractivity condition (5.16) holds for all x, y ∈ X such that
xSy, Lemma 5.2 ensures that it also holds for all x, y ∈ OT (x0), so Theo-
rem 5.5 guarantees that the Picard sequence {Tnx0}n∈N of T based on x0

is S-nondecreasing, D-Cauchy, and it D-converges to a point ω ∈ X veri-
fying (5.4) and (5.5). As (X,D) is S-nondecreasing-regular, we deduce that
xnSω for all n ∈ N. Thus, as the contractivity condition (5.16) is applicable
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to xn and ω, we can repeat, point by point, the arguments of the proof of
Theorem 5.11 in order to conclude that ω is a fixed point of T . �

We can also deduce a large list of corollaries from Theorems 5.11 and 5.13
as we commented in the last lines of Subsection 5.2. However, we leave this
task to the reader.

5.4. Fixed point theorems under an easier contractive condition

Finally, in this subsection, we wish to highlight some fixed point theorems in
the context of JS-GMSs under the stronger contractivity condition

D (Tx, Ty) ≤ ϕ
(
D (x, y)

)

considered over an appropriate subset of X. For example, the following state-
ment is an immediate consequence of Corollary 5.8.

Corollary 5.14. Let (X,D) be a complete JS-GMS and let T : X → X be a
continuous self-mapping. Let x0 ∈ X be a point such that δn0 (D, T, x0) < ∞
for some n0 ∈ N. Suppose that there exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
D (x, y)

)
for all x, y ∈ OT (x0). (5.17)

Then the Picard sequence {Tnx0}n∈N of T based on x0 D-converges to a fixed
point ω of T . Furthermore, D (ω, ω) = 0 and

D (Tnx0, ω) ≤ C ϕn−n0
(
δn0 (D, T, x0)

)
for all n ∈ N,n ≥ n0,

where C = CX,D is the (lowest) constant for which (X,D) satisfies prop-
erty (D3).

In addition to this, if condition (5.17) holds for all x, y ∈ X, and ω′

and ω′′ are two fixed points of T such that D(ω′, ω′′) < ∞, then ω′ = ω′′.

In the next result, we observe that if the contractivity condition holds
for all x, y ∈ O′

T (x0), then we can avoid the continuity of T . In fact, when
the contractivity condition holds for all pairs of points, we can deduce it.

Theorem 5.15. Let (X,D) be a complete JS-GMS and let T : X → X be a
self-mapping. Let x0 ∈ X be a point such that δn0 (D, T, x0) < ∞ for some
n0 ∈ N. Suppose that there exists ϕ ∈ Fcom such that

D (Tx, Ty) ≤ ϕ
(
D (x, y)

)
for all x, y ∈ O′

T (x0). (5.18)

Then the Picard sequence {Tnx0}n∈N of T based on x0 D-converges to a fixed
point ω of T . Furthermore, D (ω, ω) = 0.

In addition to this, if (5.18) holds for all x, y ∈ X, then T is continuous.
Moreover, if ω′ and ω′′ are two fixed points of T such that D(ω′, ω′′) < ∞,
then ω′ = ω′′.

Proof. Let us consider on X the trivial preorder SX given by xSXy for all
x, y ∈ X. Then T is SX -nondecreasing and (X,D) is SX -nondecreasing-
complete. Theorem 5.5 ensures us that {xn = Tnx0}n∈N is an SX -nondecrea-
sing, D-Cauchy sequence. Since (X,D) is complete, there is an ω ∈ X
such that

{Tnx0}
D−−→ ω.
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As ω ∈ O′
T (x0), we observe that

D
(
Tn+1x0, Tω

)
= D (TTnx0, Tω) ≤ ϕ

(
D (Tnx0, ω)

)
for all n ∈ N.

Taking into account that {D (Tnx0, ω)} → 0 and ϕ is continuous at t = 0,
with ϕ(0) = 0, we deduce that

{Tn+1x0}
D−−→ ω.

Hence Tω = ω by Proposition 2.5, and ω is a fixed point of T . By using (D3),

D (ω, ω) ≤ C lim sup
m→∞

D (Tmx0, ω) = 0,

so D (ω, ω) = 0.
Next, assume that (5.18) holds for all x, y ∈ X, and let z ∈ X be an

arbitrary point. We claim that T is continuous at z. Indeed, let {yn} ⊆ X be
a sequence such that

{yn}
D−−→ z.

Then {D (yn, z)} → 0. By using the contractivity condition (5.18), we derive
that

D (Tyn, T z) ≤ ϕ
(
D (yn, z)

)
for all n ∈ N.

Since ϕ is continuous at t = 0, with ϕ(0) = 0, we deduce that

{Tyn}
D−−→ Tz.

Therefore, T is continuous at z.
Finally, if ω′ and ω′′ are two fixed points of T such that D(ω′, ω′′) < ∞,

then

D (ω′, ω′′) = D (Tω′, Tω′′) ≤ ϕ
(
D (ω′, ω′′)

)
,

which means that ω′ = ω′′. �

Corollary 5.16. Theorem 2.6 immediately follows from Theorem 5.15.

Proof. It is only necessary to apply Theorem 5.15 using n0 = 0 and ϕ(t) = k t
for all t ∈ [0,∞], where k ∈ [0, 1). �

Notice that Theorem 5.15 improves Theorem 2.6 in three aspects:

(1) the function ϕ ∈ Fcom is arbitrary;
(2) the number n0 ∈ N is arbitrary;
(3) we deduce that T is continuous.
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[9] M. Boriceanu, M. Bota and A. Petruşel, Multivalued fractals in b-metric spaces.
Cent. Eur. J. Math. 8 (2010), 367–377.
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[28] J. J. Nieto and R. Rodŕıguez-López, Contractive mapping theorem in partially
ordered sets and applications to ordinary differential equations. Order 22 (2005),
223–239.
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