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Abstract. In this paper, we deal with the nonlocal Cauchy problem for a
class of two-term time fractional differential equations in Banach spaces.
By constructing a suitable measure of noncompactness on the space of
solutions, we prove the existence of a compact set containing decay mild
solutions to the mentioned problem.
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1. Introduction

We consider fractional differential equations with nonlocal conditions in a
Banach space X of the form

Dα+1
0 u(t) + µDβ

0u(t)−Au(t) = F (t, u(t)), t > 0, µ ≥ 0, (1.1)

u(0) + g(u) = x0, ut(0) + h(u) = y0, (1.2)

where 0 < α ≤ β ≤ 1, Dα
0 is the Caputo fractional derivative of order α with

the lower limit 0, A : D(A) ⊂ X → X is a closed linear operator, and A gen-
erates a strongly continuous family {Sα,β(t)} of bounded and linear operators
on X, x0 ∈ X, y0 ∈ X.

Fractional differential equations also have been proved to be useful tools
in modeling of phenomena in various fields of science and engineering. There
has been significant development in fractional differential equations in recent
years; see the monographs [16, 17, 27], the papers [4, 9, 18, 19, 20, 21, 25] and
the references therein. Initial value problems for nonlinear fractional differ-
ential and integrodifferential equations are discussed in [2, 10, 15, 22, 26, 28],
and Dirichlet or Neumann-type of problems for nonlinear fractional differen-
tial equations are studied in [12, 13]. In these papers, techniques of functional
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analysis such as fixed point theory, the Banach contraction principle, Leray–
Schauder theory, etc. are applied for solving such kind of problems.

Equation (1.1) with classical initial conditions comes from recent inves-
tigations where a related class appears in connection with partial differential
equations and Cauchy-time processes, a type of iterated stochastic processes
(see [5]). In the case 0 < α < 1, β = 1, µ = 0, equation (1.1) is model of a
fractional diffusion-wave equation (see [25, 26]). Recently, in [15] Keyantuo,
Lizama and Warma have studied equation (1.1) with classical initial condi-
tions and the right-hand side F = Dα

0 f , in which f is a Lipschitzian function
for the second variable.

Motivated by [15], we deal with the two-term time fractional differential
equations with nonlocal conditions in Banach spaces. The concept of nonlo-
cal conditions was first used by Byszewski [7]. This notion is more appropri-
ate than the classical one to describe natural phenomena because it allows
us to consider additional information, see Deng [11], Byszewski and Laksh-
mikantham [8]. The purpose of this paper is to use a fixed point principle
for condensing maps for measures of noncompactness [14] and the theory of
(α, β)-regularized families [15] to prove the existence of decay mild solutions.

The rest of the paper is organized as follows. Section 2 introduces some
useful preliminaries. In addition, we construct a regular measure of noncom-
pactness (MNC) on BC(R+;X) and give a fixed point principle. In Section 3,
we prove the existence of mild solutions on [0, T ], T > 0, for problem (1.1)–
(1.2). Section 4 is devoted to show the decay mild solutions. In the last
section, we give an example to illustrate the abstract results obtained in the
paper.

2. Preliminaries

In this section, we introduce preliminary facts which are used throughout the
paper.

Definition 2.1. For a function f ∈ CN (R+;X), the Caputo derivative of
order α with the lower limit 0 is defined by

Dα
0 f(t) =




1

Γ(N − α)

∫ t

0

(t− s)N−α−1f (N)(s) ds if α ∈ (N − 1, N),

f (N)(t) if α = N.

Definition 2.2. Let µ ≥ 0 and 0 ≤ α, β ≤ 1 be given. Let A be a closed
and linear operator with domain D(A) on a Banach space X. We say that A
is the generator of an (α, β)µ-regularized family if there exist ω ∈ R and a
strongly continuous function Sα,β : R+ → L (X) such that{

λα+1 + µλβ : Re(λ) > ω
}
⊂ ρ(A)

and

λα
(
λα+1 + µλβ −A

)−1
x =

∫ ∞

0

e−λtSα,β(t)x dt, Re(λ) > ω, x ∈ X.
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It is known that in the case µ = 0, α = 0, this is a C0-semigroup; while if
µ = 0, α = 1, we have a cosine family. The existence and characterization of
generators of (α, β)µ-regularized families were discussed in [19]. Specifically,
let A be a closed and densely defined operator. An operator A is said to
be ω-sectorial of angle θ if there exist θ ∈ [0, π/2) and ω ∈ R such that its
resolvent is in the sector

ω + Sθ :=

{
ω + λ : λ ∈ C, | arg(λ) | < π

2
+ θ

}
\ {ω}, (2.1)

and ��(λ−A)−1
�� ≤ M

|λ− ω|
, λ ∈ ω + Sθ. (2.2)

The following results are established in [15].

Lemma 2.3. Let 0 < α ≤ β ≤ 1, µ > 0 and let A be an ω-sectorial operator of
angle βπ/2. Then A generates an exponentially bounded (α, β)µ-regularized
family Sαβ(t).

Lemma 2.4. Let 0 < α ≤ β ≤ 1, µ > 0 and ω < 0. Assume that A is an
ω-sectorial operator of angle βπ/2. Then A generates an (α, β)µ-regularized
family Sαβ(t) satisfying the estimate

∥Sαβ(t)∥ ≤ C

1 + |ω|(tα+1 + µtβ)
, t ≥ 0, (2.3)

for some constant C > 0 depending only on α, β.

We now look for suitable concept of mild solutions to problem (1.1)–
(1.2). Denoting by L the Laplace transform for X-valued functions acting
on R+, putting v(t) = F (t, u(t)) and applying the Laplace transform to (1.1)–
(1.2), we have

(
λα+1 + µλβ −A

)
L [u](λ)

= λαu(0) + λα−1ut(0) + µλβ−1u(0) +L [v](λ), Re(λ) > ω.

So

L [u](λ) = λα
(
λα+1 + µλβ −A

)−1
u(0) + λα−1

(
λα+1 + µλβ −A

)−1
ut(0)

+ µλβ−1
(
λα+1 + µλβ −A

)−1
u(0) +

(
λα+1 + µλβ −A

)−1
L [v](λ)

for all λ such that Re(λ) > ω, λα+1+µλβ ∈ ρ(A). Let Sα,β(t) be an (α, β)µ-
regularized family generated by A, then

L [u](λ) = L [Sα,β ](λ)[x0 − g(u)] +L [φ1]L [Sα,β ](λ)[y0 − h(u)]

+ µL [φ1+α−β ]L [Sα,β ](λ)[x0 − g(u)]

+L [Sα,β ](λ)L [φα](λ)L [v](λ), Re(λ) > ω,

where

φβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0.
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Inversion of the Laplace transform shows that

u(t) = Sα,β(t)[x0 − g(u)] + (φ1 ∗ Sα,β)(t)[y0 − h(u)]

+ µ(φ1+α−β ∗ Sα,β)(t)[x0 − g(u)] + (Sα,β ∗ φα ∗ v)(t).
(2.4)

In this paper, we assume that f(t, u(t)) = φα ∗F (t, u(t)). Motivated by (2.4),
we give the following definition of mild solutions.

Definition 2.5. Let 0 < α ≤ β ≤ 1 and µ ≥ 0. A function u ∈ C(R+, X) is
said to be a mild solution of problem (1.1)–(1.2) if it satisfies

u(t) = Sα,β(t)[x0 − g(u)] + (φ1 ∗ Sα,β)(t)[y0 − h(u)]

+ µ(φ1+α−β ∗ Sα,β)(t)[x0 − g(u)]

+

∫ t

0

Sα,β(t− τ)f
(
τ, u(τ)

)
dτ

(2.5)

for each t ∈ R+ and (x0, y0) ∈ X ×X.

In the following part, we recall the knowledge of the measures of non-
compactness in Banach spaces. Among them, Hausdorff measure of noncom-
pactness is important. Next, we mention the condensing maps and fixed point
principles for condensing maps. We denote the collection of all nonempty
bounded subsets in X by BX , and the norm of space C([0, T ];X) by ∥ · ∥C ,
with ∥u∥C = supt∈[0,T ] ∥u(t)∥X .

Definition 2.6. A function Φ : BX → [0,+∞) is called a measure of non-
compactness (MNC) in X if

Φ(coΩ) = Φ(Ω) ∀Ω ∈ BX ,

where coΩ is the closure of the convex hull of Ω. An MNC Φ in X is called

(i) monotone if for all Ω1,Ω2 ∈ BX , Ω1 ⊂ Ω2 implies Φ(Ω1) ≤ Φ(Ω2);
(ii) nonsingular if Φ({x} ∪ Ω) = Φ(Ω) for all x ∈ X and all Ω ∈ BX ;
(iii) invariant with respect to union with a compact set if Φ(K ∪Ω) = Φ(Ω)

for every relatively compact K ⊂ X and Ω ∈ BX ;
(iv) algebraically semi-additive if Φ(Ω1 + Ω2) ≤ Φ(Ω1) + Φ(Ω2) for any

Ω1,Ω2 ∈ BX ;
(v) regular if Φ(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of measures of noncompactness is the Hausdorff
MNC χ(·) which is defined as follows:

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net} (2.6)

for all Ω ∈ BX .

For T > 0, it is known that the Hausdorff MNC on C([0, T ],Rn) is given
by (see [1])

χT (Ω) =
1

2
lim
δ→0

sup
u∈Ω

max
t,s∈[0,T ],|t−s|<δ

∥u(t)− u(s)∥Rn . (2.7)
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The last measure can be seen as the modulus of equicontinuity of a subset in
C([0, T ];Rn). In C([0, T ];X) with X being of infinite dimension, there is no
such formulation as (2.7). However, if Ω ⊂ C([0, T ];X) is an equicontinuous
set, then

χT (Ω) = sup
t∈[0,T ]

χ
(
Ω(t)

)
, (2.8)

here χ is the Hausdorff MNC in X.

Consider the space BC(R+;X) of bounded continuous functions on R+

taking values on X. Denote by πT the restriction operator on this space; i.e.,
πT (u) is the restriction of u on [0, T ]. Then

χ∞(D) = sup
T>0

χT

(
πT (D)

)
, D ⊂ BC(R+;X), (2.9)

is an MNC. We give some measures of noncompactness as follows:

dT (D) = sup
u∈D

sup
t≥T

∥u(t)∥X , (2.10)

d∞(D) = lim
T→∞

dT (D), (2.11)

χ∗(D) = χ∞(D) + d∞(D). (2.12)

The regularity of MNC χ∗ is proved in [2, Lemma 2.6]. Then the following
property is evident.

Proposition 2.7. Let χ be the Hausdorff MNC on a Banach space X, Ω ∈ BX .
Then there exists a sequence {xn}∞n=1 ⊂ Ω such that

χ(Ω) ≤ 2χ
(
{xn}∞n=1

)
+ ε ∀ ε > 0. (2.13)

We have the following estimate whose proof can be found in [14].

Proposition 2.8 (See [14]). Let χ be the Hausdorff MNC on a Banach space X
and let {un}∞n=1 ⊂ L1(0, T ;X) such that ∥un(t)∥X ≤ v(t), for every n ∈ N∗

and a.e. t ∈ [0, T ], for some v ∈ L1(0, T ). Then we have

χ

({∫ t

0

un(s) dx

})
≤ 2

∫ t

0

χ
(
{un(t)}

)
ds (2.14)

for t ∈ [0, T ].

To end this section, we recall a fixed point principle for condensing maps
that will be used in the next sections.

Definition 2.9 (See [3]). Let X be a Banach space, χ an MNC on X and
∅ ̸= D ⊂ X. A continuous map Φ : D → X is said to be condensing with
respect to χ (χ-condensing) if for all Ω ∈ BD, the relation

χ(Ω) ≤ χ
(
Φ(Ω)

)

implies the relative compactness of Ω.
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Theorem 2.10 (See [14]). Let X be a Banach space, χ an MNC on X, D a
bounded convex closed subset of X, and let Φ : D → D be a χ-condensing
map. Then the fixed set of Φ,

Fix(Φ) = {x ∈ D : x = Φ(x)}

is a nonempty compact set.

3. Existence result

In formulation of problem (1.1)–(1.2), we assume the following.

(G) The function g : C([0, T ];X) → X obeys the following conditions:
(i) g is continuous on X, and

∥g(u)∥X ≤ θg(∥u∥C) (3.1)

for all u ∈ C([0, T ];X), where θg : R+ → R+ is nondecreasing;
(ii) there exists a nonnegative constant ηg such that

χ
(
g(Ω)

)
≤ ηgχT (Ω) (3.2)

for all bounded sets Ω ⊂ C([0, T ];X).
(H) The function h : C([0, T ];X) → X satisfies the following conditions:

(i) for all u ∈ C([0, T ];X),

∥h(u)∥X ≤ θh(∥u∥C), (3.3)

where θh : R+ → R+ is a continuous and nondecreasing function;
(ii) there exists a nonnegative constant ηh such that

χ
(
h(Ω)

)
≤ ηhχT (Ω) (3.4)

for all bounded sets Ω ⊂ C([0, T ];X).
(F) The nonlinear function f : R+ × X → X satisfies the following condi-

tions:
(i) f(·, u(·)) is measurable for each u(·) ∈ X, f(t, ·) is continuous for

a.e. t ∈ [0, T ], and

∥f
(
t, v

)
∥X ≤ m(t)θf (∥v∥X) (3.5)

for all v ∈ X, where m ∈ L1(0, T ), θf : R+ → R+ is a continuous
and nondecreasing function;

(ii) there exists ηf : R+ → R+ such that ηf ∈ L1(0, T ) and

χ
(
f(t,Ω)

)
≤ ηf (t)χ(Ω) (3.6)

for all bounded sets Ω ⊂ X.

Remark 3.1. Let us give some comments on assumptions (G)(ii), (H)(ii) and
(F)(ii).

(1) If g, h are Lipschitzian, then (3.2) and (3.4) are satisfied. These condi-
tions is also satisfied with θg = θh = 0 if g, h are completely continuous.
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(2) If f(t, ·) satisfies the Lipschitzian condition for the second variable, i.e,

��f(t, u1(t)
)
− f

(
t, u2(t)

)��
X

≤ kf (t)∥u1 − u2∥C

for some kf ∈ L1(0, T ), then (3.6) is satisfied. Furthermore, if f(t, ·) is
completely continuous (for each fixed t), then (3.6) is obviously fulfilled
with ηf = 0.

We denote

M := {u ∈ C([0, T ];X) : ∥u∥C ≤ R},

where R > 0 is given. We conclude that M is a bounded convex closed
subset of C([0, T ];X). For each u ∈ M, we define the solution operator
Φ : M → C([0, T ];X) as follows:

Φ(u)(t) = Sα,β(t)[x0 − g(u)] + (φ1 ∗ Sα,β)(t)[y0 − h(u)]

+ µ(φ1+α−β ∗ Sα,β)(t)[x0 − g(u)]

+

∫ t

0

Sα,β(t− τ)f
(
τ, u(τ)

)
dτ.

(3.7)

Then u is a mild solution of problem (1.1)–(1.2) if it is a fixed point of the
solution operator Φ.

Thanks to the assumptions imposed on g, h, f , then Φ is continuous
on M. We denote

M := sup
t∈[0,T ]

∥Sα,β(t)∥L (X),

ΛT := sup
t∈[0,T ]

∥φ1 ∗ Sα,β(t)∥L (X),

ΘT := sup
t∈[0,T ]

∥φ1+α−β ∗ Sα,β(t)∥L (X).

Lemma 3.2. Let 0 < α ≤ β ≤ 1, µ > 0, and let A be an ω-sectorial operator
of angle βπ/2. If hypotheses (G), (H), (F) are satisfied and

lim
n→∞

1

n

[
(M + µΘT )θg(n) + ΛT θh(n)

+ θf (n) sup
t∈[0,T ]

∫ t

0

∥Sα,β(t− τ)∥m(τ) dτ

]
< 1,

(3.8)

then there exists R > 0 such that F (M) ⊂ M.

Proof. Assume to the contrary that for each n ∈ N, there exists a sequence
{un}∞n=1 ⊂ M with ∥un∥C ≤ n but ∥Φ(un)∥C > n. From the formulation
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of Φ, we have

∥Φ(un)(t)∥X ≤ ∥Sα,β(t)∥
(
∥x0∥+ ∥g(un)∥

)

+ ∥φ1 ∗ Sα,β(t)∥
(
∥y0∥+ ∥h(un)∥

)

+ µ∥φ1+α−β ∗ Sα,β(t)∥
(
∥x0∥+ ∥g(un)∥

)

+

∫ t

0

∥Sα,β(t− τ)∥ ∥f(τ, un(τ))∥ dτ

≤ M
(
∥x0∥+ θg(n)

)
+ ΛT

(
∥y0∥+ θh(n)

)
+ µΘT

(
∥x0∥+ θg(n)

)

+ θf (n)

∫ t

0

��Sα,β(t− τ)
��m(τ) dτ.

From the inequality above, it follows that

∥Φ(un)∥C ≤
(
M + µΘT

)(
∥x0∥+ θg(n)

)
+ ΛT

(
∥y0∥+ θh(n)

)

+ θf (n) sup
t∈[0,T ]

∫ t

0

��Sα,β(t− τ)
��m(τ) dτ.

Therefore,

1 <
1

n

[(
M + µΘT

)(
∥x0∥+ θg(n)

)
+ ΛT

(
∥y0∥+ θh(n)

)

+ θf (n) sup
t∈[0,T ]

∫ t

0

��Sα,β(t− τ)
��m(τ) dτ

]
.

Passing to the limit in the last inequality, one gets a contradiction. The proof
is just completed. �

In order to deploy the fixed point theory for condensing maps, we will
establish the so-called MNC estimate for the solution operator Φ.

Lemma 3.3. Let 0 < α ≤ β ≤ 1, µ > 0, and let A be an ω-sectorial operator
of angle βπ/2. If hypotheses (G), (H), (F) are satisfied, then

χT

(
Φ(D)

)
≤

[
(M + µΘT )ηg + ΛT ηh

+ 2 sup
t∈[0,T ]

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ

]
χT (D)

(3.9)

for all bounded sets D ⊂ M.

Proof. Setting

Φ1(u)(t) = Sα,β(t)
[
x0 − g(u)

]
+ µ

(
φ1+α−β ∗ Sα,β

)
(t)

[
x0 − g(u)

]
,

Φ2(u)(t) =
(
φ1 ∗ Sα,β

)
(t)

[
y0 − h(u)

]
,

Φ3(u)(t) =

∫ t

0

Sα,β(t− τ)f
(
τ, u(τ)

)
dτ,
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we have

χT

(
Φ(D)

)
≤ χT

(
Φ1(D)

)
+ χT

(
Φ2(D)

)
+ χT

(
Φ3(D)

)
. (3.10)

(1) For every z1, z2 ∈ Φ1(D), there exist u1, u2 ∈ D such that for
t ∈ [0, T ],

zi(t) = Φ1(ui)(t), i = 1, 2.

We have

∥z1(t)− z2(t)∥ = ∥Sα,β(t)∥ ∥g(u1)− g(u2)∥
+ µ

��(φ1+α−β ∗ Sα,β

)
(t)

�� ��g(u1)− g(u2)
��.

It implies that

∥z1 − z2∥C ≤ (M + µΘT )
��g(u2)− g(u1)

��.
Hence,

χT

(
Φ1(D)

)
≤ (M + µΘT )χ

(
g(D)

)
≤ (M + µΘT )ηgχT (D). (3.11)

(2) By similar arguments as above, we get

χT

(
Φ2(D)

)
≤ ΛT ηhχT (D). (3.12)

(3) Apply Proposition 2.7 again, there exists {un}∞n=1 ⊂ D such that for
every ε > 0, we obtain

χT

(
Φ3(D)

)
≤ 2χT

(
{Φ3(un)}∞n=1

)
+ ε. (3.13)

We also have {Φ3(un)(t)} which is an equicontinuous set of functions. We
invoke Proposition 2.8 to deduce that

χ
(
{Φ3(un)(t)}

)
≤ 2

∫ t

0

χ
(
Sα,β(t− τ)f

(
τ, un(τ)

))
dτ

≤ 2

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ χT (un).

It is inferred that

χT

(
{Φ3(un)}

)
≤ 2 sup

t∈[0,T ]

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ χT (un). (3.14)

From (3.13) and (3.14), we obtain

χT

(
Φ3(D)

)
≤ 2 sup

t∈[0,T ]

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ χT (D). (3.15)

Combining (3.10), (3.11), (3.12) and (3.15) yields

χT

(
Φ(D)

)
≤

[
(M + µΘT )ηg + ΛT ηh

+ 2 sup
t∈[0,T ]

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ

]
χT (D).

(3.16)

The proof is completed. �
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Theorem 3.4. Let 0 < α ≤ β ≤ 1, µ > 0, and let A be an ω-sectorial operator
of angle βπ/2. If hypotheses (G), (H), (F) are satisfied. Then problem (1.1)–
(1.2) has at least one mild solution on [0, T ] provided that

lim
n→∞

1

n

[
(M + µΘT )θg(n) + ΛT θh(n)

+ θf (n) sup
t∈[0,T ]

∫ t

0

��Sα,β(t− τ)
��m(τ) dτ

]
< 1,

(3.17)

l := (M + µΘT )ηg + ΛT ηh + 2 sup
t∈[0,T ]

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ < 1. (3.18)

Proof. By inequality (3.18), the solution operator Φ is a χT -condensing. In-
deed, if D ⊂ M is a bounded set such that χT (D) ≤ χT (Φ(D)), applying
Lemma 3.3, we obtain

χT (D) ≤ χT

(
Φ(D)

)
≤ lχT (D).

Therefore χT (D) = 0 and D is a relative compactness.

By assumption (3.17), applying Lemma 3.2, we have F (M) ⊂ M. Ap-
plying Theorem 2.10, the χT -condensing map Φ defined by (3.7) has a fixed
set Fix(Φ) ⊂ M which is compact, and is not an empty set. It implies that
problem (1.1)–(1.2) has a mild solution u(t), t ∈ [0, T ], described by (2.5). �

4. Existence of decay mild solutions

In this section, we consider the solution operator Φ on the following space:

M∞ = {u ∈ BC(R+;X) : u(t) → 0 as t → ∞}.

We are going to prove that Φ(M∞) ⊂ M∞ and, using the MNC χ∗

defined by (2.12), to prove that Φ is a χ∗-condensing map on M∞. In hy-
potheses (G), (H), (F), we consider the conditions of g, h, f for any T > 0.
The norm ∥ · ∥C is replaced by the norm ∥ · ∥∞, ∥u∥∞ = supt∈R+ ∥u(t)∥X
for every u ∈ BC(R+;X). The condition m, ηf ∈ L1(0, T ) is replaced by the
condition m, ηf ∈ L∞(R+). Furthermore, we assume that

(A) A is an ω-sectorial operator of angle βπ/2 with ω < 0, 0 < α ≤ β ≤ 1,
µ > 0.

Lemma 4.1. If hypothesis (A) is satisfied, then

Sα,β(t), (φ1 ∗ Sα,β)(t), (φ1+α−β ∗ Sα,β)(t) → 0 as t → ∞.

The lemma is proved by using Lemma 2.4 (see the proof of [15, Theo-
rem 4.3] for more details).

Lemma 4.2. Let hypotheses (G), (H), (F), (A) hold. Then we always have
Φ(M∞) ⊂ M∞.
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Proof. Let u ∈ M∞ with ∥u∥∞ = R > 0. For every ε > 0, there exists T > 0
such that for any t > T , we get

∥Sα,β(t)∥ < ε, ∥(φ1 ∗ Sα,β)(t)∥ < ε, ∥(φ1+α−β ∗ Sα,β)(t)∥ < ε.

We find that for every t ∈ R+,

∥Φ(u)(t)∥X ≤
��Sα,β(t)[x0 − g(u)] + µ(φ1+α−β ∗ Sα,β)(t)[x0 − g(u)]

��
X

+
��(φ1 ∗ Sα,β)(t)[y0 − h(u)]

��
X

+

����
∫ t

0

Sα,β(t− τ)f
(
τ, u(τ)

)
dτ

����
X

=: P +Q+K.

(4.1)

Then for any t > T , we have

P ≤ ε(1 + µ)
(
∥x0∥+ θg(R)

)
, Q ≤ ε

(
∥y0∥+ θh(R)

)
(4.2)

and

K ≤ ∥(φ1 ∗ Sα,β)(t)∥ ∥m∥L∞(R+) θf (R) ≤ ε∥m∥L∞(R+) θf (R). (4.3)

From (4.1), (4.2) and (4.3), we obtain ∥Φ(u)(t)∥X → 0 as t → ∞ for all
u ∈ M∞. The proof is completed. �

Lemma 4.3. Let hypotheses (G), (H), (F), (A) hold. Then we have

χ∗(Φ(D)
)
≤

[
(C + µΘ∞)ηg +Λ∞ηh + sup

t≥0

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ

]
χ∗(D)

(4.4)
for all bounded sets D ⊂ M∞.

Proof. Let D ⊂ M∞ be a bounded set. We have

χ∗(Φ(D)
)
= χ∞

(
Φ(D)

)
+ d∞

(
Φ(D)

)
. (4.5)

Thanks to Lemma 3.3 and hypothesis (A), we obtain the following es-
timates:

χ∞
(
Φ(D)

)
≤ χ∞

(
Φ1(D)

)
+ χ∞

(
Φ2(D)

)
+ χ∞

(
Φ3(D)

)
, (4.6)

χ∞
(
Φ1(D)

)
≤ (C + µΘ∞)ηgχ∞(D), (4.7)

χ∞
(
Φ2(D)

)
≤ Λ∞ηhχ∞(D), (4.8)

χ∞
(
Φ3(D)

)
≤ sup

t≥0

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ χ∞(D). (4.9)



428 V. T. Luong JFPTA12 V. T. Luong

From (4.6)–(4.9), we have

χ∞
(
Φ(D)

)
≤

[
(C+µΘ∞)ηg+Λ∞ηh+sup

t≥0

∫ t

0

��Sα,β(t−τ)
��ηf (τ) dτ

]
χ∞(D).

(4.10)

Next, we find that

d∞
(
Φ(D)

)
= lim

T→∞
dT

(
Φ(D)

)
, dT

(
Φ(D)

)
= sup

u∈D
sup
t≥T

∥Φ(u)(t)∥X .

Applying Lemma 4.2, we obtain

d∞
(
Φ(D)

)
= 0. (4.11)

From (4.5), (4.10) and (4.11), we obtain (4.4). The proof is completed. �

Theorem 4.4. Let hypotheses (G), (H), (F), (A) hold. Then problem (1.1)–
(1.2) has at least one mild solution u ∈ M∞ provided that

l∞ :=

[
(C + µΘ∞)ηg +Λ∞ηh + sup

t≥0

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ

]
< 1, (4.12)

and (3.8) holds for all T > 0.

Proof. By inequality (4.12), the solution operator Φ is χ∗-condensing. Indeed,
if D ⊂ M∞ is bounded such that χ∗(D) ≤ χ∗(Φ(D)). Applying Lemma 4.3,
we obtain

χ∗(D) ≤ χ∗(Φ(D)
)
≤ l∞χ∗(D).

Therefore χ∗(D) = 0, and so D is relative compactness.

Thanks to Lemma 4.2, we have

Φ(M∞) ⊂ M∞.

Applying Theorem 2.10, the χ∗-condensing operator Φ defined by (3.7) has
a fixed set Fix(Φ) ⊂ M∞ which is compact, and is not an empty set. This
confirms that problem (1.1)–(1.2) has a mild solution u(t), t ∈ R+, described
by (2.5) which satisfies limt→∞ ∥u(t)∥ = 0. �

5. An example

Let Ω be a bounded domain in Rn with the boundary ∂Ω smooth enough.
Let the operator

L :=

n∑
i,j=1

aij(x)
∂2

∂xi∂xj

have the property

n∑
i,j=1

aij(x)ξiξj ≥ c |ξ|2 ∀ξ ∈ Rn, x ∈ Ω
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with c > 0. With 0 < α ≤ β ≤ 1, µ > 0, a0 > 0, we consider the following
problem:

Dα+1
0 u(t, x) + µDβ

0u(t, x)− Lu(t, x) + a0u(t, x) = F
(
t, x, u(t, x)

)
, (5.1)

u(0, x) +

∫

Ω

k(x, y)u(0, y) dy = u0(x),

ut(0, x) +
n∑

i=1

Ciu(ti, x) = u1(x),

(5.2)

u|∂Ω = 0, (5.3)

where 0 ≤ t1 < t2 < · · · < tn < +∞, C1, . . . , Cn are positive constants and
the function k : Ω× Ω → L2(Ω) satisfies

∫

Ω

∫

Ω

|k(x, y)|2 dx dy = C < +∞. (5.4)

Let X = L2(Ω), A = L − a0 with D(A) = H2(Ω) ∩ H1
0 (Ω). Then problem

(5.1)–(5.3) is in the form of the abstract model (1.1)–(1.2) with

F
(
t, u(t)

)
(x) = F

(
t, x, u(t, x)

)
,

g(u)(x) =

∫

Ω

k(x, y)u(0, y) dy,

h(u)(x) =

n∑
i=1

Ciu(ti, x).

(A) It is known that (see [23, Theorem 3.6]) L = A+a0 is a sectorial operator
of angle π/2 (and hence of angle βπ/2). Therefore, we have that A is
an ω-sectorial operator of angle βπ/2 with ω = −a0 < 0.

Now we give a description for the functions g, h and f .

(G) g : BC(R+, X) → X is continuous.
(i) ∥g(u)∥X ≤ C∥u(0)∥X ≤ C∥u∥∞.
(ii) By [24, Theorem 8.83], g is a compact operator, so χ(g(D)) = 0

for all bounded sets D ⊂ BC(R+;X). Therefore, we can choose
ηg = 0.

(H) h : BC(R+, X) → X is continuous.
(i) For all u ∈ C(R+;X), we have

∥h(u)∥X =

�����
n∑

i=1

Ciu(ti, x)

�����
X

≤
n∑

i=1

Ci∥u(ti, x)∥X ≤
n∑

i=1

Ci∥u∥∞. (5.5)
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(ii) Next, for every u1, u2 ∈ BC(R+, X), we get

∥h(u1)− h(u2)∥X =

�����
n∑

i=1

Ci

[
u1(ti, x)− u2(ti, x)

]
�����
X

≤
n∑

i=1

Ci∥u1(ti, x)− u2(ti, x)∥X

≤
n∑

i=1

Ci∥u1 − u2∥∞.

Therefore,

χ
(
h(D)

)
≤

n∑
i=1

Ciχ∞(D) (5.6)

for every bounded set D ⊂ BC(R+;X).
(F) Suppose that f(t, u(t)) = φα ∗ F (t, u(t)). The nonlinear function f :

R+ ×X → X satisfies the following conditions:
(i) f(·, u(·)) is measurable for each u(·) ∈ X, f(t, ·) is continuous for

a.e. t ∈ R+, and

∥f
(
t, v

)
∥X ≤ m(t)θf (∥v∥X) (5.7)

for all v ∈ X, where m ∈ L∞(R+), θf : R+ → R+ is a continuous
and nondecreasing function.

(ii) There exists ηf : R+ → R+ such that ηf ∈ L∞(R+) and

χ
(
f(t,Ω)

)
≤ ηf (t)χ(Ω) (5.8)

for all bounded sets Ω ⊂ X.

Under the above settings, applying Theorem 4.4, one can state that
problem (5.1)–(5.3) has at least one mild solution in M∞, provided that

Λ∞

n∑
i=1

Ci + sup
t≥0

∫ t

0

��Sα,β(t− τ)
��ηf (τ) dτ < 1.

6. Conclusion

In this paper, we discussed the existence of decay mild solutions for two-
term time fractional differential equations with nonlocal conditions in Banach
spaces. The result of the existence has been established under general settings
via measures of noncompactness, which is more extensive than that in [15].
Furthermore, we obtained the existence of decay mild solutions u with u(t) →
0 as t → ∞. The results are illustrated with a well-analyzed example in
Section 5.
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