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Abstract. In this paper, we aim to introduce new types of α-admissibility
in the framework of b-metric spaces. Some examples to show the inde-
pendently of each type of α-admissibility are given. Using these concepts,
fixed point theorems satisfying generalized weak contractive condition in
the setting of b-metric spaces are established. We furnish an illustrative
example to demonstrate the validity of the hypotheses and the degree
of utility of our results. As an application, we discuss the existence of a
solution for the following nonlinear integral equation:

x(c) = ϕ(c) +

∫ b

a

K(c, r, x(r)) dr,

where a, b ∈ R such that a < b, x ∈ C[a, b] (the set of all continuous
functions from [a, b] into R), ϕ : [a, b] → R and K : [a, b]× [a, b]×R → R
are given mappings.

Mathematics Subject Classification. 47H09, 47H10.
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1. Introduction and preliminaries

In this section, we recollect some essential notations, required definitions and
primary results coherent with the literature. Throughout this paper, we de-
note by N, R+ and R the sets of positive integers, nonnegative real numbers
and real numbers, respectively.

1.1. Altering distance functions

The classical Banach contraction principle and its applications are well known.
In the recent past, many researchers extended this principle by considering
relatively more general contractive mappings on various distance spaces such
as metric spaces, cone metric spaces [17], complex-valued metric spaces [5],
partial metric spaces [21], multiplicative metric spaces [24, 32], etc.
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One of the most interested generalizations is the extension of contractive
condition to the case of weak contractive condition which was first introduced
by Alber and Guerre-Delabriere [4] in the setup of Hilbert spaces. Afterward,
Rhoades [28] considered the class of weak contraction mappings in the setup
of metric spaces and proved that the result of Alber and Guerre-Delabriere [4]
is also valid in complete metric spaces. Fixed point results involving weak
contraction and generalized weak contraction mappings have extensively been
studied in the literature (see, e.g., [2, 10, 12, 15, 16, 20, 33] and references
therein).

On the other hand, Khan, Swaleh and Sessa [19] introduced the con-
cept of an altering distance function, which is a control function that alters
distance between two points in a metric space.

Definition 1.1. A function φ : [0,∞) → [0,∞) is called an altering distance
function if the following properties hold:

(1) φ is continuous and nondecreasing;
(2) φ(t) = 0 if and only if t = 0.

This concept has been used by many mathematicians to prove fixed
point results in a number of subsequent works. Here, we give some examples
of altering distance functions.

Example 1.2. Let φi : [0,∞) → [0,∞), i ∈ {1, 2, . . . , 5}, be defined by

(φ1) φ1(t) = kt, where k > 0,
(φ2) φ2(t) = tk, where k > 0,

(φ3) φ3(t) =

{
t, t ∈ [0, 1],

1 +
√
t− 1, t ∈ (1,∞),

(φ4) φ4(t) = at − 1, where a > 0 and a ̸= 1,
(φ5) φ5(t) = log(kt+ 1), where k > 0.

Then φi is an altering distance function for all i ∈ {1, 2, . . . , 5}.

In 2011, Choudhury et al. [11] generalized the concept of weak contrac-
tion mappings by using the idea of an altering distance function and proved
fixed point results for such mappings.

1.2. b-metric spaces

In 1993, Czerwik [13] introduced the concept of a b-metric space which is a
generalization of the ordinary metric space as follows.

Definition 1.3 (See [13]). Let X be a nonempty set and let s ≥ 1 be a
given real number. Suppose that the mapping d : X ×X → R+ satisfies the
following conditions:

(B1) d(x, y) = 0 if and only if x = y;
(B2) d(x, y) = d(y, x) for all x, y ∈ X;
(B3) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z,∈ X.

Then (X, d) is called a b-metric space with coefficient s ≥ 1.
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It is obvious that the class of b-metric spaces is effectively larger than
that of metric spaces since any metric space is a b-metric space with s = 1.
The following examples show that, in general, a b-metric space need not
necessarily be a metric space.

Example 1.4. Let X = R and let the mapping d : X×X → R+ be defined by

d(x, y) = |x− y|2 for all x, y ∈ X.

Then (X, d) is a b-metric space with coefficient s = 2.

Next, we show the generality of Example 1.4.

Example 1.5. Let (X, d) be a metric space and let the mapping σd : X×X →
R+ be defined by

σd(x, y) = [d(x, y)]p for all x, y ∈ X,

where p > 1 is a fixed real number. Then (X,σd) is a b-metric space with
coefficient s = 2p−1. Indeed, conditions (B1) and (B2) in Definition 1.3 are
satisfied and thus we only need to show that condition (B3) holds for σd.
It should be noted that the convexity of the function R+ ∋ x �→ xp, where
1 < p < ∞, implies (

a+ c

2

)p

≤ 1

2
(ap + cp)

for all a, c ∈ R+. This implies that

(a+ c)p ≤ 2p−1(ap + cp)

for all a, c ∈ R+. Therefore, for each x, y, z ∈ X, we get

σd(x, y) = [d(x, y)]p

≤
[
d(x, z) + d(z, y)

]p

≤ 2p−1
[
(d(x, z))p + (d(z, y))p

]

= 2p−1
[
σd(x, z) + σd(z, y)

]
.

This means that condition (B3) in Definition 1.3 holds.

Example 1.6. The set lp(R) with 0 < p < 1, where

lp(R) :=
{
{xn} ⊆ R |

∞∑
n=1

|xn|p < ∞
}
,

together with the mapping d : lp(R)× lp(R) → R+ defined by

d(x, y) =

( ∞∑
n=1

|xn − yn|p
)1/p

for each x = {xn}, y = {yn} ∈ lp(R),

is a b-metric space with coefficient s = 21/p > 1. The above result also holds
for the general case lp(X) with 0 < p < 1, where X is a Banach space.
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Example 1.7. Let p be a given real number in the interval (0, 1). The space

Lp[0, 1] of all functions x : [0, 1] → R such that
∫ 1

0
|x(t)|pdt < 1, together

with the mapping d : Lp[0, 1]× Lp[0, 1] → R+ defined by

d(x, y) :=

(∫ 1

0

|x(t)− y(t)|p dt
)1/p

for each x, y ∈ Lp[0, 1],

is a b-metric space with coefficient s = 21/p.

Next, we give the concepts of b-convergence, b-Cauchy sequence, b-conti-
nuity and b-completeness in b-metric spaces.

Definition 1.8 (See [7]). Let (X, d) be a b-metric space. Then a sequence {xn}
in X is called

(a) b-convergent if there exists x ∈ X such that d(xn, x) → 0 as n → ∞. In
this case, we write limn→∞ xn = x;

(b) b-Cauchy if d(xn, xm) → 0 as n,m → ∞.

Each b-convergent sequence in a b-metric space has a unique limit and it
is also a b-Cauchy sequence. Moreover, in general, a b-metric is not continuous.
We need the following simple lemma about b-convergent sequences in the
proof of our main results.

Lemma 1.9 (See [1]). Let (X, d) be a b-metric space with coefficient s ≥ 1
and let {xn} and {yn} be b-convergent to points x, y ∈ X, respectively. Then
we have

1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = 0. Moreover, for
each z ∈ X, we have

1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

Definition 1.10 (See [7]). Let (X, dX) and (Y, dY ) be two b-metric spaces.

(1) The space (X, dX) is b-complete if every b-Cauchy sequence in X b-
converges.

(2) A function f : X → Y is b-continuous at a point x ∈ X if it is b-
sequentially continuous at x, that is, whenever {xn} is b-convergent to
x, {fxn} is b-convergent to fx.

There are several papers dealing with fixed point results in b-metric
spaces (see, e.g., [8, 14, 23, 25, 30] and references therein).

1.3. The objectives of this paper

Inspired by the famous concept of α-admissibility in the setup of metric
spaces due to Samet et al. [29], we introduce new types of α-admissibility
in the framework of b-metric spaces. Also, we give some examples to show
the independently of this concept and the α-admissibility of Samet et al. [29].
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Using the new concepts, we prove some fixed point theorems satisfying gener-
alized weak contractive condition by using altering distance functions in the
setting of b-metric spaces. We furnish an illustrative example to demonstrate
the validity of the hypotheses of our results. Our results generalize and im-
prove several fixed point results in metric spaces and b-metric spaces. We also
point out in some remark that many fixed point results in b-metric spaces
endowed with partially ordered (or arbitrary binary relation or graph) and
fixed point results for cyclic mappings can be concluded from our results. As
an application, we apply our results to prove the existence of a solution for
the following nonlinear integral equation:

x(c) = ϕ(c) +

∫ b

a

K(c, r, x(r)) dr, (1.1)

where a, b ∈ R such that a < b, x ∈ C[a, b] (the set of all continuous functions
from [a, b] into R), ϕ : [a, b] → R and K : [a, b] × [a, b] × R → R are given
mappings.

2. Main results

2.1. α-admissibility types

In this subsection, we introduce new types of α-admissibility and give some
examples to show the validity of these concepts.

Definition 2.1. Let X be a nonempty set and let α : X × X → [0,∞) be a
given mapping. A mapping f : X → X is said to be an α-admissible mapping
if the following condition holds:

x, y ∈ X with α(x, y) ≥ 1 =⇒ α(fx, fy) ≥ 1.

In fact, the concept of α-admissibility was first introduced by Samet et
al. [29] in the framework of metric spaces. Now we introduce a new type of
α-admissibility, so called α-admissibility type S as follows.

Definition 2.2. Let X be a nonempty set, let s be a given real number such
that s ≥ 1 and let α : X × X → [0,∞) be a given mapping. A mapping
f : X → X is said to be an α-admissible mapping type S if the following
condition holds:

x, y ∈ X with α(x, y) ≥ s =⇒ α(fx, fy) ≥ s.

Unless otherwise specified, for a nonempty set X, a real number s ≥ 1
and a mapping α : X ×X → [0,∞), we use A(X,α) and As(X,α) to denote
the collection of all α-admissible mappings on X and the collection of all
α-admissible mappings type S on X, that is,

A(X,α) := {f : X → X | f is an α-admissible mapping}

and

As(X,α) := {f : X → X | f is an α-admissible mapping type S}.
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Here we give some examples to show that the class of α-admissible
mappings and the class of α-admissible mappings type S are independent;
that is, A(X,α) ̸= As(X,α) in general case.

Example 2.3. Let X = [0,∞), let s = 2 and let the mappings α : X ×X →
[0,∞) and f : X → X be defined by

α(x, y) =




x+ y + 3

2
, x, y ∈ [0, 1],

|x− y|
1 + |x− y|

, otherwise

and

f(x) =

{
sinx, x ∈ [0, 1],

coshx, x ∈ (1,∞).

Firstly, we show that f ∈ A(X,α). Assume that x, y ∈ X such that
α(x, y) ≥ 1 and so x, y ∈ [0, 1]. Therefore, fx = sinx, fy = sin y ∈ [0, 1]
and then α(fx, fy) ≥ 1. This shows that f ∈ A(X,α). Next, we claim that
f ̸∈ As(X,α). Let x = y = 0.5. We can see that

α(x, y) = α(0.5, 0.5) = 2 ≥ s,

but

α(fx, fy) = α(f(0.5), f(0.5)) = α(sin 0.5, sin 0.5)

= 1.5 + sin 0.5 < 1.5 + sin
π

6
= 2 = s.

This implies that f ̸∈ As(X,α). Therefore, we have A(X,α) ̸⊆ As(X,α).

Example 2.4. Let X = R, let s = 2 and let the mappings α : X×X → [0,∞)
and f : X → X be defined by

α(x, y) =

{
x2 + y2, x, y ∈ [3, 4],

min{1, |x− y|}, otherwise

and

f(x) =



3 + tanh(2x+ 1), x ∈ [3, 4],

x

2
, x ∈ [0, 3) ∪ (4,∞).

Here we claim that f ∈ As(X,α). Let x, y ∈ X such that

α(x, y) ≥ s = 2.

Then x, y ∈ [3, 4] and thus

fx = 3 + tanh(2x+ 1),

fy = 3 + tanh(2y + 1) ∈ [3, 4].

Therefore, α(fx, fy) ≥ s. This implies that f ∈ As(X,α). Now, we show that
f ̸∈ A(X,α). Let x = 1 and y = 2. Then we observer that

α(x, y) = α(1, 2) = 1,
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but
α(fx, fy) = α

(
f(1), f(2)

)
= α(0.5, 1) = 0.5 < 1.

This implies that f ̸∈ A(X,α). Therefore, we have As(X,α) ̸⊆ A(X,α).

Next we give the new concepts of weak α-admissibility (see also [31])
and weak α-admissibility type S.

Definition 2.5. Let X be a nonempty set and let α : X × X → [0,∞) be a
given mapping. A mapping f : X → X is said to be a weak α-admissible
mapping if the following condition holds:

x ∈ X with α(x, fx) ≥ 1 =⇒ α(fx, ffx) ≥ 1.

Definition 2.6. Let X be a nonempty set and let α : X × X → [0,∞) be a
given mapping. A mapping f : X → X is said to be a weak α-admissible
mapping type S if the following condition holds:

x ∈ X with α(x, fx) ≥ s =⇒ α(fx, ffx) ≥ s.

Unless otherwise specified, for a nonempty set X, a real number s ≥ 1
and a mapping α : X ×X → [0,∞), we use the following symbols:

WA(X,α) := {f : X → X | f is a weak α-admissible mapping}
and

WAs(X,α) := {f : X → X | f is a weak α-admissible mapping type S}.

Remark 2.7. It is easy to see that the following assertions hold:

• α-admissibility implies weak α-admissibility, that is,

A(X,α) ⊆ WA(X,α);

• α-admissibility type S implies weak α-admissibility type S, that is,

As(X,α) ⊆ WAs(X,α).

2.2. Fixed point results

In this subsection, we give fixed point results for mappings in classes

WAs(X,α) and As(X,α).

Throughout this paper, unless otherwise stated, Fix(f) denotes the set
of all fixed points of a self-mapping f on a nonempty set X, that is,

Fix(f) := {x ∈ X | fx = x}.
Also, for each elements x and y in a b-metric space (X, d) with coefficient
s ≥ 1, let

Ms(x, y) := max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2s

}
,

where f is a self-mapping on X. We write M(x, y) instead of Ms(x, y) when
s = 1, that is,

M(x, y) := max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2

}
.
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Definition 2.8. Let (X, d) be a b-metric space with coefficient s ≥ 1, let
α : X × X → [0,∞) be a given mapping and let ψ, φ : [0,∞) → [0,∞) be
two altering distance functions. We say that a mapping f : X → X is an
(α, ψ, φ)s-contraction mapping if the following condition holds:

x, y ∈ X with α(x, y) ≥ s =⇒ ψ
(
s3d(fx, fy)

)
≤ ψ

(
Ms(x, y)

)
− φ

(
Ms(x, y)

)
.

(2.1)

We denote by Ωs(X,α, ψ, φ) the collection of all (α, ψ, φ)s-contraction
mappings on a b-metric space (X, d) with coefficient s ≥ 1.

Theorem 2.9. Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1,
let ψ, φ : [0,∞) → [0,∞) be two altering distance functions and let α :
X × X → [0,∞) and f : X → X be given mappings. Suppose that the
following conditions hold:

(S1) f ∈ Ωs(X,α, ψ, φ) ∩WAs(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) α has a transitive property type S, that is, for x, y, z ∈ X,

α(x, y) ≥ s and α(y, z) ≥ s =⇒ α(x, z) ≥ s;

(S4) f is b-continuous.

Then Fix(f) ̸= ∅.

Proof. By the given condition (S2), there exists x0 ∈ X such that

α(x0, fx0) ≥ s.

Now we define the Picard iteration sequence {xn} by

xn+1 := fxn

for all n ∈ N ∪ {0}. If there is ñ ∈ N ∪ {0} so that xñ = xñ+1, then we have
xñ ∈ Fix(f) and hence the conclusion holds. So we assume that xn ̸= xn+1

for all n ∈ N ∪ {0}. It follows that

d(xn, xn+1) > 0

for all n ∈ N ∪ {0}. Here we show that

lim
n→∞

d(xn, xn+1) = 0. (2.2)

It follows from f ∈ WAs(X,α) and α(x0, fx0) ≥ s that

α(x1, x2) = α(fx0, ffx0) ≥ s. (2.3)

By induction, we obtain

α(xn, xn+1) ≥ s (2.4)

for all n ∈ N∪{0}. It follows from f ∈ Ωs(X,α, ψ, φ) that inequality (2.4) im-
plies that

ψ
(
d(fxn, fxn+1)

)
≤ ψ

(
s3d(fxn, fxn+1)

)

≤ ψ
(
Ms(xn, xn+1)

)
− φ

(
Ms(xn, xn+1)

) (2.5)
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for all n ∈ N ∪ {0}. Note that for each n ∈ N ∪ {0}, we have

Ms(xn, xn+1) = max

{
d(xn, xn+1), d(xn, fxn), d(xn+1, fxn+1),

d(xn, fxn+1) + d(xn+1, fxn)

2s

}

= max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2s

}

= max {d(xn, xn+1), d(xn+1, xn+2)} .

If Ms(xn∗ , xn∗+1) = d(xn∗+1, xn∗+2) for some n∗ ∈ N ∪ {0}, then inequal-
ity (2.5) implies that

ψ
(
d(fxn∗ , fxn∗+1)

)
≤ ψ

(
d(xn∗+1, xn∗+2)

)
− φ

(
d(xn∗+1, xn∗+2)

)

< ψ
(
d(xn∗+1, xn∗+2)

)
,

which is a contradiction. Therefore,

Ms(xn, xn+1) = d(xn, xn+1)

for all n ∈ N ∪ {0}. From (2.5), we have

ψ
(
d(xn+1, xn+2)

)
= ψ

(
d(fxn, fxn+1)

)

≤ ψ
(
d(xn, xn+1)

)
− φ

(
d(xn, xn+1)

)

< ψ
(
d(xn, xn+1)

) (2.6)

for all n ∈ N ∪ {0}. Since ψ is a nondecreasing mapping, {d(xn, xn+1)} is a
decreasing sequence in R. Since {d(xn, xn+1)} is bounded below, there exists
r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r.

Letting n → ∞ in (2.6), we get

ψ(r) ≤ ψ(r)− φ(r) ≤ ψ(r).

This implies that φ(r) = 0 and thus r = 0. Hence, we have

lim
n→∞

d(xn, xn+1) = 0. (2.7)

Thus (2.2) holds.
Next, we prove that {xn} is a b-Cauchy sequence in X. Assume to the

contrary that there exists ϵ > 0 for which we can find subsequences {xm(k)}
and {xn(k)} of {xn} such that n(k) > m(k) ≥ k and

d(xm(k), xn(k)) ≥ ϵ (2.8)

and n(k) is the smallest number such that (2.8) holds. From (2.8), we have

d(xm(k), xn(k)−1) < ϵ. (2.9)
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By (B3), (2.8) and (2.9), we get

ϵ ≤ d
(
xm(k), xn(k)

)

≤ s
[
d
(
xm(k), xn(k)−1

)
+ d

(
xn(k)−1, xn(k)

)]

< sϵ+ d
(
xn(k)−1, xn(k)

)
.

(2.10)

Taking the limit supremum as k → ∞ in (2.10), using (2.7) we get

ϵ ≤ lim sup
k→∞

d
(
xm(k), xn(k)

)
≤ sϵ. (2.11)

Again, using (B3), we obtain

d
(
xm(k), xn(k)

)
≤ s

[
d
(
xm(k), xn(k)+1

)
+ d

(
xn(k)+1, xn(k)

)]
(2.12)

and

d
(
xm(k), xn(k)+1

)
≤ s

[
d
(
xm(k), xn(k)

)
+ d

(
xn(k), xn(k)+1

)]
. (2.13)

Taking the limit supremum as k → ∞ in (2.12) and (2.13), from (2.7)
and (2.11), we get

ϵ ≤ s

(
lim sup
k→∞

d
(
xm(k), xn(k)+1

))
(2.14)

and

lim sup
k→∞

d
(
xm(k), xn(k)+1

)
≤ s2ϵ. (2.15)

From (2.14) and (2.15), we have

ϵ

s
≤ lim sup

k→∞
d
(
xm(k), xn(k)+1

)
≤ s2ϵ. (2.16)

Similarly, we can show that

ϵ

s
≤ lim sup

k→∞
d
(
xm(k)+1, xn(k)

)
≤ s2ϵ. (2.17)

Finally, we obtain

d
(
xm(k)+1, xn(k)+1

)

≤ s
[
d
(
xm(k)+1, xm(k)

)
+ d

(
xm(k), xn(k)+1

)]

≤ sd
(
xm(k)+1, xm(k)

)
+ s2

[
d
(
xm(k), xn(k)

)
+ d

(
xn(k), xn(k)+1

)]
.

(2.18)

Taking the limit supremum as k → ∞ in (2.18), we have

lim sup
k→∞

d
(
xm(k)+1, xn(k)+1

)
≤ s3ϵ. (2.19)

Using (B3) again, we have

d
(
xm(k), xn(k)

)

≤ s
[
d
(
xm(k), xm(k)+1

)
+ d

(
xm(k)+1, xn(k)

)]

≤ sd
(
xm(k), xm(k)+1

)
+ s2

[
d
(
xm(k)+1, xn(k)+1

)
+ d

(
xn(k)+1, xn(k)

)]
.

(2.20)
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Taking the limit supremum as k → ∞ in (2.20) and using (2.7) and (2.11),
we have

ϵ

s2
≤ lim sup

k→∞
d
(
xm(k)+1, xn(k)+1

)
. (2.21)

From (2.19) and (2.21), we get

ϵ

s2
≤ lim sup

k→∞
d
(
xm(k)+1, xn(k)+1

)
≤ s3ϵ. (2.22)

Using the transitivity property type S of α, we get

α
(
xm(k), xn(k)

)
≥ s.

Since f ∈ Ωs(X,α, ψ, φ), we have

ψ
(
s3d(xm(k)+1, xn(k)+1)

)

= ψ
(
s3d(fxm(k), fxn(k))

)

≤ ψ
(
Ms(xm(k), xn(k))

)
− φ

(
Ms(xm(k), xn(k))

)
,

(2.23)

where

Ms

(
xm(k), xn(k)

)

= max

{
d
(
xm(k), xn(k)

)
, d
(
xm(k), fxm(k)

)
, d
(
xn(k), fxn(k)

)
,

d
(
xm(k), fxn(k)

)
+ d

(
xn(k), fxm(k)

)
2s

}

= max

{
d
(
xm(k), xn(k)

)
, d
(
xm(k), xm(k)+1

)
, d
(
xn(k), xn(k)+1

)
,

d
(
xm(k), xn(k)+1

)
+ d

(
xn(k), xm(k)+1

)
2s

}
.

Taking the limit supremum as k → ∞ in the above equation and using (2.7),
(2.11), (2.16) and (2.17), we have

ϵ = max

{
ϵ,

ϵ
s + ϵ

s

2s

}
≤ lim sup

k→∞
Ms

(
xm(k), xn(k)

)

≤ max

{
sϵ,

s2ϵ+ s2ϵ

2s

}
= sϵ.

Similarly, we can show that

ϵ = max

{
ϵ,

ϵ
s + ϵ

s

2s

}
≤ lim inf

k→∞
Ms

(
xm(k), xn(k)

)

≤ max

{
sϵ,

s2ϵ+ s2ϵ

2s

}
= sϵ.
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Taking the limit supremum as k → ∞ in (2.23), we have

ψ(sϵ) = ψ

(
s3
(

ϵ

s2

))

≤ ψ
(
s3 lim sup

k→∞
d
(
xm(k)+1, xn(k)+1

))

≤ ψ

(
lim sup
k→∞

Ms

(
xm(k), xn(k)

))
− φ

(
lim inf
k→∞

Ms

(
xm(k), xn(k)

))

≤ ψ(sϵ)− φ(ϵ).

(2.24)

This implies that φ(ϵ) = 0 and then ϵ = 0, which is a contradiction. Therefore,
{xn} is a b-Cauchy sequence. By b-completeness of the b-metric spaceX, there
exists x ∈ X such that

lim
n→∞

d(xn, x) = 0.

By b-continuity of f , we get

lim
n→∞

d(fxn, fx) = 0.

From the triangle inequality, we have

d(x, fx) ≤ s
[
d(x, fxn) + d(fxn, fx)

]
(2.25)

for all n ∈ N ∪ {0}. Taking the limit as n → ∞ in the above inequality, we
obtain

d(x, fx) = 0

and then fx = x. This shows that Fix(f) ̸= ∅. �

Example 2.10. Let X = R and d : X ×X → [0,∞) be defined by

d(x, y) = |x− y|2

for all x, y ∈ X. Then (X, d) is a b-complete b-metric space with coefficient
s = 2. Define mappings f : X → X and α : X ×X → [0,∞) by

fx =



sinh−1 x

4
, x ∈ [0, 16/3],

ln(6x− 29), x ∈ (16/3,∞)

and

α(x, y) =

{
1 + x+ cosh(1 + 2y), x, y ∈ [0, 16/3],

1 + tanh(x− y), otherwise.

Also, we define two altering distance functions ψ, φ : [0,∞) → [0,∞) by

ψ(t) = rt and φ(t) = (r − 1)t

for all t ∈ [0,∞), where r ∈ (1, 2).
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Now we show that f ∈ Ωs(X,α, ψ, φ). Suppose that x, y ∈ X so that
α(x, y) ≥ s = 2 and hence x, y ∈ [0, 16/3]. Using the mean value theorem
simultaneously for the inverse hyperbolic sine function, we obtain

ψ
(
23d(fx, fy)

)
= 8r|fx− fy|2

= 8r
���sinh−1 x

4
− sinh−1 y

4

���
2

≤ 8r
���x
4
− y

4

���
2

=
r

2
|x− y|2

≤ Ms(x, y)

≤ ψ
(
Ms(x, y)

)
− φ

(
Ms(x, y)

)
.

This implies that (2.1) holds and thus f ∈ Ωs(X,ψ, φ).
It is easy to see that f ∈ WAs(X,α). Indeed, if x ∈ X such that

α(x, fx) ≥ s = 2,

then x, fx ∈ [0, 16/3]. This implies that ffx ∈ [0, 16/3] and hence

α(fx, ffx) ≥ s.

Also, we can see that f is continuous and there is x0 = 1 such that

α(x0, fx0) = α(1, f(1)) = α

(
1, sinh−1 1

4

)

= 1 + 1 + cosh

(
1 + 2 sinh−1 1

4

)

≥ 2 = s.

Therefore, all the conditions of Theorem 2.9 are satisfied. Then we can
conclude that Fix(f) ̸= ∅. In this example, it is easy to see that 0 ∈ Fix(f).

Theorem 2.11. Let (X, d) be a b-complete b-metric space with coefficient s≥ 1,
let ψ, φ : [0,∞) → [0,∞) be two altering distance functions and let α :
X × X → [0,∞) and f : X → X be two given mappings. Suppose that the
following conditions hold:

(S1) f ∈ Ωs(X,α, ψ, φ) ∩WAs(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) α has a transitive property type S;

(�S4) X is αs-regular, that is, if {xn} is a sequence in X such that

α(xn, xn+1) ≥ s

for all n ∈ N and xn → x ∈ X as n → ∞, then α(xn, x) ≥ s for all
n ∈ N.

Then Fix(f) ̸= ∅.
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Proof. Following the proof of Theorem 2.9, we obtain that {xn} is a b-Cauchy
sequence in the b-complete b-metric space (X, d). By b-completeness of X,
there exists x ∈ X such that

lim
n→∞

d(xn, x) = 0, (2.26)

that is, xn → x as n → ∞. By αs-regularity of X, we have

α(xn, x) ≥ s

for all n ∈ N. It follows from f ∈ Ωs(X,α, ψ, φ) that

ψ
(
s3d(fxn, fx)

)
≤ ψ

(
Ms(xn, x)

)
− φ

(
Ms(xn, x)

)
, (2.27)

where

Ms(xn, x) = max

{
d(xn, x), d(xn, fxn), d(x, fx),

d(xn, fx) + d(x, fxn)

2s

}
.

Taking the limit supremum as n → ∞ in (2.27) and using Lemma 1.9, we get

ψ
(
d(x, fx)

)
≤ ψ

(
s2d(x, fx)

)

= ψ

(
s3

1

s
d(x, fx)

)

≤ ψ

(
s3 lim sup

n→∞
d(xn+1, fx)

)

≤ ψ

(
lim sup
n→∞

Ms(xn, x)

)
− φ

(
lim inf
n→∞

Ms(xn, x)
)

≤ ψ
(
d(x, fx)

)
− φ

(
d(x, fx)

)
,

which implies that φ(d(x, fx)) = 0. It follows that d(x, fx) = 0, equivalently,
x = fx and thus Fix(f) ≠ ∅. This completes the proof. �

Next, we use Remark 2.7 to establish the following results for the class
As(X,α).

Corollary 2.12. Let (X, d) be a complete b-metric space with coefficient s ≥ 1,
let ψ, φ : [0,∞) → [0,∞) be altering distance functions and let α : X ×X →
[0,∞) and f : X → X be two given mappings. Suppose that the following
conditions hold:

(�S1) f ∈ Ωs(X,α, ψ, φ) ∩ As(X,α);
(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) α has a transitive property type S;
(S4) f is b-continuous.

Then Fix(f) ̸= ∅.

Corollary 2.13. Let (X, d) be a complete b-metric space with coefficient s ≥ 1,
let ψ, φ : [0,∞) → [0,∞) be altering distance functions and let α : X ×X →
[0,∞) and f : X → X be two given mappings. Suppose that the following
conditions hold:

(�S1) f ∈ Ωs(X,α, ψ, φ) ∩ As(X,α);
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(S2) there exists x0 ∈ X such that α(x0, fx0) ≥ s;
(S3) α has a transitive property type S;

(�S4) X is αs-regular.

Then Fix(f) ̸= ∅.

Remark 2.14. Theorems 2.9 and 2.11 and Corollaries 2.12 and 2.13 extend
and improve various fixed point results in b-metric spaces. Also, our results
generalize and complement the following well-known fixed point results in
metric spaces.

• The very famous Banach contraction mapping principle [6], Kannan’s
fixed point result [18] (see also Reich’s work [26, 27]), Chatterjea’s fixed
point result [9] in the ordinary metric spaces.

• Alber et al.’s fixed point result [4] in the framework of Hilbert spaces.
• Rhoades’s fixed point result [28].
• Dutta and Choudhury’s fixed point result [15].

Moreover, it has been pointed out in some studies that the following fixed
point results can be concluded from our result under some suitable (weak)
α-admissible and (weak) α-admissible mappings type S.

• Fixed point results in b-metric spaces endowed with a binary relation
such as strict order (or sharp order), near-order, pseudo-order, quasi-
order (or preorder), partial order, simple order, weak order, total order
(or linear order or chain), tolerance, equivalence, etc. (see [3]).

• Fixed point results in b-metric spaces endowed with graph.
• Fixed point results for cyclic mappings.

3. Applications: Existence of a solution for a nonlinear integral
equation

The theory of differential and integral equations nowadays is a large subject
of mathematics which found in the last three decades numerous applications
in physics, mechanics, engineering, bioengineering, control theory and other
fields connected with real-world problems.

In this section, we prove an existence theorem for a solution of the
following nonlinear integral equation by using our main results in the previous
section:

x(c) = ϕ(c) +

∫ b

a

K(c, r, x(r)) dr, (3.1)

where a, b ∈ R such that a < b, x ∈ C[a, b] (the set of all continuous functions
from [a, b] into R), ϕ : [a, b] → R and K : [a, b] × [a, b] × R → R are given
mappings.

Theorem 3.1. Consider the nonlinear integral equation (3.1). Suppose that
the following conditions hold:

(i) K : [a, b]× [a, b]× R → R is continuous and nondecreasing in the third
order;
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(ii) there exists p > 1 satisfying the following condition: for each r, c ∈ [a, b]
and x, y ∈ X with x(w) ≤ y(w) for all w ∈ [a, b], we have��K(c, r, x(r))−K(c, r, y(r))

�� ≤ ζ(c, r)
(
Υ(|x(r)− y(r)|p)

)
,

where ζ : [a, b]× [a, b] → [0,∞) is a continuous function satisfying

sup
c∈[a,b]

(∫ b

a

ζ(c, r)pdr

)
<

1

23p2−3p(b− a)p−1

and Υ : [0,∞) → [0,∞) is an altering distance function satisfying the
following conditions:

(Υ1)
d
dt [Υ(t)] < 1 for all t > 0,

(Υ2) Υ(t) < t for all t > 0;

(iii) there exists x0 ∈ X such that x0(c) ≤ ϕ(c) +
∫ b

a
K(c, r, x0(r))dr for all

c ∈ [a, b].

Then the nonlinear integral equation (3.1) has a solution.

Proof. Let X = C[a, b] and let f : X → X be defined by

(fx)(c) = ϕ(c) +

∫ b

a

K(c, r, x(r)) dr

for all x ∈ X and c ∈ [a, b]. Clearly, X with the b-metric d : X × X → R+

given by

d(x, y) = sup
c∈[a,b]

��x(c)− y(c)
��p

for all x, y ∈ X, is a b-complete b-metric space with coefficient s = 2p−1.
Define a mapping α : X ×X → [0,∞) by

α(x, y) =

{
2p−1, x(c) ≤ y(c) for all c ∈ [a, b],

τ, otherwise,

where 0 < τ < 2p−1. It is easy to see that α has a transitive property type S.
Since K is nondecreasing in the third order, we get

f ∈ As(X,α) ⊆ WAs(X,α).

From (iii), we get α(x0, fx0) ≥ 2p−1 = s. Also, we get that condition (�S4) in
Theorem 2.11 holds (see [22]).

Next, we define functions ψ,φ : [0,∞) → [0,∞) by

ψ(t) = tp and φ(t) = tp − (Υ(t))p

for all t ∈ [0,∞). It should be noted that ψ is an altering distance func-
tion. Since Υ is an altering distance function and it satisfies conditions (Υ1)
and (Υ2), then φ is also an altering distance function.

Finally, we show that f ∈ ΩS(X,α, ψ, φ). To prove this fact, we first
choose

q :=
p

p− 1
∈ R,
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that is, 1/p+ 1/q = 1. Assume that x, y ∈ X such that

α(x, y) ≥ s = 2p−1,

that is, x(c) ≤ y(c) for all c ∈ [a, b]. From (i), (ii) and the Hölder inequality,
for each c ∈ [a, b] we get(
23p−3

��(fx)(c)− (fy)(c)
��)p

≤ 23p
2−3p

(∫ b

a

��K(c, r, x(r))−K(c, r, y(r))
��dr

)p

≤ 23p
2−3p



(∫ b

a

1q dr

)1/q (∫ b

a

��K(c, r, x(r))−K(c, r, y(r))
��pdr

)1/p


p

≤ 23p
2−3p(b− a)p/q

(∫ b

a

ζ(c, r)p
(
Υ
(
|x(r)− y(r)|p

))p
dr

)

≤ 23p
2−3p(b− a)p/q

(∫ b

a

ζ(c, r)p
(
Υ(d(x, y))

)p
dr

)

≤ 23p
2−3p(b− a)p/q

(∫ b

a

ζ(c, r)p
(
Υ(Ms(x, y))

)p
dr

)

= 23p
2−3p(b− a)p−1

(∫ b

a

ζ(c, r)pdr

)(
Υ(Ms(x, y))

)p

<
(
Υ(Ms(x, y))

)p

= Ms(x, y)
p −

[
Ms(x, y)

p − (Υ(Ms(x, y)))
p
]
.

This implies that

ψ
(
s3d(fx, fy)

)
=

(
s3d(fx, fy)

)p

=

(
23p−3 sup

t∈[a,b]

��(fx)(t)− (fy)(t)
��
)p

≤ Ms(x, y)
p −

[
Ms(x, y)

p − (Υ(Ms(x, y)))
p
]

= ψ
(
Ms(x, y)

)
− φ

(
Ms(x, y)

)

for all x, y ∈ X. It follows that f ∈ ΩS(X,α, ψ, φ). Thus all the conditions of
Theorem 2.11 are satisfied and hence f has a fixed point in X (namely, �x).
It follows that �x is a solution of the nonlinear integral equation (3.1). �

Now we consider some special cases of the function Υ, wherein Theo-
rem 3.1 deduces the following results.

Corollary 3.2. Consider the nonlinear integral equation (3.1). Suppose that
the following conditions hold:

(i) K : [a, b]× [a, b]× R → R is continuous and nondecreasing at the third
order;
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(ii′) there exists p > 1 satisfying the following condition: for each r, c ∈ [a, b]
and x, y ∈ X with x(w) ≤ y(w) for all w ∈ [a, b], we have
��K(c, r, x(r))−K(c, r, y(r))

�� ≤ ζ(c, r)
(
sinh−1

��x(r)− y(r)
��p) ,

where ζ : [a, b]× [a, b] → [0,∞) is a continuous function satisfying

sup
c∈[a,b]

(∫ b

a

ζ(c, r)pdr

)
<

1

23p2−3p(b− a)p−1
;

(iii) there exists x0 ∈ X such that x0(c) ≤ ϕ(c)+
∫ b

a
K(c, r, x0(r))dr for each

c ∈ [a, b].

Then the nonlinear integral equation (3.1) has a solution.

Proof. From Theorem 3.1 by taking Υ(t) = sinh−1 t, we get the result. �

Corollary 3.3. Consider the nonlinear integral equation (3.1). Suppose that
the following conditions hold:

(i) K : [a, b]× [a, b]× R → R is continuous and nondecreasing at the third
order;

(ii′′) there exists p > 1 satisfying the following condition: for each r, c ∈ [a, b]
and x, y ∈ X with x(w) ≤ y(w) for all w ∈ [a, b], we have
��K(c, r, x(r))−K(c, r, y(r))

�� ≤ ζ(c, r)
(
ln
(
1 + |x(r)− y(r)|p

))
,

where ζ : [a, b]× [a, b] → [0,∞) is a continuous function satisfying

sup
c∈[a,b]

(∫ b

a

ζ(c, r)pdr

)
<

1

23p2−3p(b− a)p−1
;

(iii) there exists x0 ∈ X such that x0(c) ≤ ϕ(c)+
∫ b

a
K(c, r, x0(r))dr for each

c ∈ [a, b].

Then the nonlinear integral equation (3.1) has a solution.

Proof. From Theorem 3.1 by taking Υ(t) = ln(1 + t), we get the result. �
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