
Journal of Fixed Point Theory
and Applications

Sufficient conditions for the existence of
solutions for a thermoelectrochemical
problem

Luisa Consiglieri

Abstract. A mathematical model is introduced for thermoelectrochem-
ical phenomena in an electrolysis cell, and its qualitative analysis is
focused on existence of solutions. The model consists of a system of
nonlinear parabolic PDEs in conservation form expressing conservation
of energy, mass and charge. On the other hand, an integral form of New-
ton’s law is used to describe heat exchange at the electrolyte/electrode
interface, a nonlinear radiation condition is enforced on the heat flux
at the wall and a nonlinear boundary condition is considered for the
electrochemical flux in order to account for Butler–Volmer kinetics. The
main objective is the nonconstant character of each parameter, that is,
the coefficients are assumed to be dependent on the spatial variable and
the temperature. Making recourse of known estimates of solutions for
some auxiliary elliptic and parabolic problems, which are explicitly de-
termined by the Gehring–Giaquinta–Modica theory, we find sufficient
smallness conditions on the data to guarantee the existence of the orig-
inal solutions via the Schauder fixed point argument. These conditions
may provide useful information for numerical as well as real applications.
We conclude with an example of application, namely the electrolysis of
molten sodium chloride.
Mathematics Subject Classification. 35Q79, 35Q60, 80A30.
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1. Introduction

The conservative laws are universal in the description of the physicochemical
phenomena. Their particular applications depend on the transport coeffi-
cients behavior. The introduction of the thermal effects into physicochemical
devices are being addressed by applied mathematicians [27]. Quantitative de-
scription of the heat rate data is discussed in [4, 16]. The model parameters
(such as the electrical mobilities ui and the thermal conductivity k, among
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others) are assumed to be constant positive quantities whose values are spec-
ified to numerical simulations. Our first shortcoming is that these coefficients
are commonly discontinuous.

In view of the above discussion, we develop a thermoelectrochemical
model for an electrolyte domain. Our second shortcoming is that the physic-
ochemical phenomena truly pass on the boundary of the domain. We mention
[33] for a mathematical modeling of the interaction of electric, thermal, and
diffusion processes in infinitely diluted solutions of electrolytes. The produc-
tion of nuclear grade heavy water, including water electrolysis, distillation,
and chemical exchange processes, provide a process matched to the feed sup-
ply [23, 31]. We refer the reader to [21] for a mathematical model of Li-ion
batteries based exclusively on universally accepted principles of nonequilib-
rium thermodynamics and the assumption of the one-step intercalation re-
action at the interface of electrolyte and active particles; and to [24, 32] for
other attractive thermoelectrochemical approaches.

In thermoelectrochemical modeling, the force-flux relations are (see, at
the steady-state, [8] and the references therein)

q = −K∇θ −Rθ2
I∑

i=1

D′
i∇ci −Πσ∇φ;

Ji = −ciSi∇θ −Di∇ci − uici∇φ (i = 1, . . . , I);

j = −ασ∇θ − F
I∑

i=1

ziDi∇ci − σ∇φ.

(1.1)

Here, q, Ji and j are, respectively, the measurable heat flux (in W ·m−2), the
ionic flux of component i (in mol ·m−2 · s−1), and the electric current density
(in C ·m−2 · s−1). The unknown functions are the temperature θ, the molar
concentration vector c = (c1, . . . , cI), and the electric potential φ. Hereafter
the subscript i stands for the correspondence to the ionic component i in-
tervener in the reaction process. As the problem involves several symbols,
we summarize their notation in the Appendix. In particular, K denotes the
thermal conductivity tensor, reflecting anisotropic properties of the medium.
Also the Peltier coefficient Π can be a tensor [3]. For this reason, we keep
both α and Π as known functions, although the first Kelvin relation corre-
lates Π with the Seebeck coefficient α. All transport coefficients can be either
experimentally measured or calculated as dependent on temperature and spa-
tial variable, while the Soret effect and the related Dufour effect include the
concentration of the corresponding ionic component [17, 22].

Dealing with these issues, our main concerns are:

• from the physical point of view, to introduce thermal radiation on one
part of the boundary, and to approach the Butler–Volmer equation on
the other part of the boundary;

• from the mathematical point of view, to find sufficient explicit condi-
tions for the existence of solutions, under minimal assumptions on the
transport coefficients, as a consequence of the fixed point theory.
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The key of an integrability exponent larger than n for the solution (say in n
space dimensions) is the need of making severe restrictions on the correspond-
ing leading coefficient function—as is carried out in the literature [10].

2. Statement of the problem and main theorem

Let T > 0 be an arbitrary (but preassigned) time, and let Ω represent an
electrolysis cell, which consists (as in general) of two electrodes and an elec-
trolyte. We abbreviate QT = Ω× ]0, T [.

From the conservation of energy, the mass balance equations, and the
conservation of electric charge, we derive, respectively, in QT

ρcp
∂θ

∂t
+∇ · q = 0; (2.1)

∂ci
∂t

+∇ · Ji = 0; (2.2)

∇ · j = 0, (2.3)

where the density ρ and the specific heat capacity cp (at constant volume) are
assumed to be (positive) constants. The absence of external forces, assumed
in (2.1)–(2.3), is due to their occurrence at the surface of the electrodes.

The boundary ∂Ω is decomposed into four pairwise disjoint open subsets
Γl, l = a, c,w, o, representing, respectively, the anode, the cathode, the wall,
and the (remaining) outer surfaces such that (cf. Figure 1)

∂Ω = Γa ∪ Γc ∪ Γw ∪ Γo.

For the sake of simplicity, we denote the electrode/electrolyte interface

Γe = Γa ∪ Γc

by simply Γ, and we set ΣT = Γw× ]0, T [ . Hence further, for each l = a, c,w,
θl represents a given temperature at Γl, and n is the outward unit normal to
the boundary ∂Ω.

The parabolic-elliptic system (2.1)–(2.3) is accomplished by the follow-
ing boundary conditions. For a.e. in ]0, T [ , we consider the heat balance
described by the global Newton law of cooling∫

Γa

q · n ds +

∫
Γc

q · n ds =

∫
Γe

hC(θ − θe) ds, (2.4)

where

θe =

{
θa on Γa,

θc on Γc,

and hC denotes the conductive heat transfer coefficient. By the constitutive
law (1.1) of q, the left-hand side of (2.4) says that the heat generated is
divided into the irreversible reaction heat due to efficiency losses of the elec-
trode reaction, and the reversible reaction heat mainly due to the entropy
change of the electrode reaction which is called Peltier heat and changes sign
with changing current direction (cf. [15]).
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Figure 1. Schematic sagittal representation of an elec-
trolytic cell (with corners being smoothed by circumfer-
ences).

A gas bubble behavior at a hydrogen-evolution electrode was reported
by some researchers [5, 19, 30]. This hydrogen gas generated at the cathode
causes turbulence of water or wastewater flow (see [6]). At each electrode/
electrolyte interface (l = a, c), we consider

−FziJi · nl = gi,l (·, θ, φ).
Here, gi,l may represent the generalized Butler–Volmer kinetics that is com-
posed by the involved charge and mass balances in the charge-transfer reac-
tion under illumination [28], and the Butler–Volmer expression itself

Jl

(
exp

[
βislFη

Rθ

]
− exp

[
− (1− βi)slFη

Rθ

])
, (2.5)

where Jl represents the transfer (exchange) current density due to the elec-
trode reaction, sl is the stoichiometric coefficient of electrons in the anode/
cathode (l = a, c), βi is the transfer coefficient (i = 1, . . . , I), and η = φ−φeq

denotes the surface overpotential.
Although the electroneutrality assumption says that

j =
I∑

i=1

ziFJi,

we consider

−j · n = g on Γ× ]0, T [ , (2.6)
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with g being a prescribed surface electric current assumed to be tangent
to the surface for all t > 0. We refer as an open problem for the nonlocal
Dirichlet boundary condition for the electric potential, φ = j(I) [12], on the
part of the boundary (Γe) where the device is connected to the circuit, with j
being a nonlinear function and

I =

∫
Γe

σ(θ)
∂φ

∂n

denoting the total current, when the voltage drop across the electrical circuits
is not prescribed but is coupled to the remainder circuit.

Let temperature fulfill the radiative condition over Γw× ]0, T [

q · n = hR |θ|�−2 θ − γ. (2.7)

This general exponent � ≥ 2 (see [7]) accounts for the radiation behavior of
the heavy water electrolysis [11, 20], namely the Stefan–Boltzmann radiation
law if � = 5 with hR denoting the radiative heat transfer coefficient; i.e.,

hR = σSB ε and γ = σSBαθ
4
w.

The parameters, the emissivity ε and the absorptivity α, both depend on the
spatial variable and the temperature function θ.

The following outflows are considered:

q · n = 0 on Γo× ]0, T [ ; (2.8)

Ji · n = j · n = 0, i = 1, . . . , I, on (Γw ∪ Γo)× ]0, T [ . (2.9)

Finally, the following initial conditions for all x in Ω are assumed:

θ(x, 0) = θ0(x), ci(x, 0) = c0i (x), i = 1, . . . , I. (2.10)

In the framework of Sobolev and Lebesgue functional spaces, we use the
following spaces of test functions:

Vp,�(QT ) =
{
v ∈ Lp

(
0, T ;W 1,p(Ω)

)
: v|ΣT ∈ L�(ΣT )

}
;

Vp(Ω) =

{
v ∈ W 1,p(Ω) :

∫
∂Ω

v ds = 0

}
,

with their usual norms, p, � > 1.

In order to derive our variational problem, we note that every ionic mo-
bility ui = ziDiF/(Rθ) satisfies the Nernst–Einstein relation σi = Fziuici,
with σi = tiσ representing ionic conductivity, and ti is the transference num-
ber (or transport number) of species i.

Then our variational problem under study is as follows.

(P) Find the triple temperature-concentration-potential (θ, c, φ) that verifies
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the variational problem

ρcp

∫ T

0

〈∂tθ, v〉 dt +
∫
QT

(
K(·, θ)∇θ

)
· ∇v dx dt

+

∫
ΣT

hR(·, θ) |θ|�−2 θv ds dt +

∫ T

0

∫
Γ

hC(·, θ)θv ds dt

=

∫ T

0

∫
Γ

hC(·, θ)θev ds dt +
∫
ΣT

γ(·, θ)v ds dt

−
∫
QT

(
Rθ2

I∑
i=1

D′
i(·, ci, θ)∇ci +Π(·, θ)σ(·, θ)∇φ

)
· ∇v dx dt

∀v ∈ Vp′,�(QT );

(2.11)

∫ T

0

〈
∂tci, v

〉
dt +

∫
QT

Di(·, θ)∇ci · ∇v dx dt

=

∫ T

0

∫
Γ

gi(·, θ, φ)v ds dt

−
∫
QT

(
ciSi(·, ci, θ)∇θ +

ti
Fzi

σ(·, θ)∇φ

)
· ∇v dx dt

∀v ∈ Lp′(
0, T ;W 1,p′

(Ω)
)
, i = 1, . . . , I;

(2.12)

∫
Ω

σ(·, θ)∇φ · ∇v dx

= −
∫
Ω

(
α(·, θ)σ(·, θ)∇θ + F

I∑
i=1

ziDi(·, θ)∇ci

)
· ∇v dx

+

∫
Γ

gv ds ∀v ∈ Vp′(Ω), a.e. in [0, T [ ,

(2.13)

where p′ accounts for the conjugate exponent of p: p′ = p/(p− 1).
We assume the following.

(H1) The electrical conductivity, Peltier, Seebeck, Soret, Dufour, and dif-
fusion coefficients σ,Π, α, Si, D

′
i, Di (i = 1, . . . , I) are Carathéodory

functions, i.e., measurable with respect to x ∈ Ω and continuous with
respect to other variables, such that

∃σ#, σ
# > 0 : σ# ≤ σ(x, e) ≤ σ#; (2.14)

∃Π# > 0 : |Π(x, e)a| ≤ Π#|a|; (2.15)

∃α# > 0 : |α(x, e)| ≤ α#; (2.16)

∃S#
i > 0 : |dSi(x, d, e)| ≤ S#

i ; (2.17)

∃(D′
i)

# > 0 : Re2|D′
i(x, d, e)| ≤ (D′

i)
#; (2.18)

∃D#
i > 0 : F |zi|Di(x, e) ≤ D#

i ; (2.19)

∃(Di)# > 0 : Di(x, e) ≥ (Di)#, (2.20)

for a.e. x ∈ Ω, for all a ∈ R
n, and for all d, e ∈ R.
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(H2) The thermal conductivity K : Ω × R → Mn×n is a Carathéodory
tensor, where Mn×n denotes the set of n× n matrices, such that

∃k# > 0 : Kjl(x, e)ξjξl ≥ k#|ξ|2 for a.e. x ∈ Ω, ∀e ∈ R, (2.21)

for all ξ ∈ R
n, under the summation convention over repeated indices:

Aa · b = Ajlajbl = b�Aa; and

∃k# > 0 : |Kjl(x, e)| ≤ k# for a.e. x ∈ Ω, ∀e ∈ R, (2.22)

for all j, l ∈ {1, . . . , n}.
(H3) The boundary operator hR is a Carathéodory function from Γw × R

into R such that

∃b#, b# > 0 : b# ≤ hR(x, e) ≤ b# for a.e. x ∈ Γw, ∀e ∈ R. (2.23)

(H4) The transference coefficient ti ∈ L∞(Ω) is such that

∃t#i > 0 : 0 ≤ ti(x) ≤ F |zi|t#i for a.e. x ∈ Ω. (2.24)

(H5) For some δ > 0, g ∈ L2+δ(Γ) such that
∫
Γ
g ds = 0.

(H6) For some δ > 0, θe ∈ L2+δ(Γ× ]0, T [ ), and the boundary opera-
tors γ and hC are Carathéodory functions from Γw× ]0, T [×R and
Γ× ]0, T [×R, respectively, into R, i.e., measurable with respect to
(x, t) and continuous with respect to the real variable. Moreover, they
satisfy

∃γw ∈ L2+δ(ΣT ) : |γ(x, t, e)| ≤ γw(x, t) for a.e. x ∈ Γw; (2.25)

∃h#
C > 0 : 0 ≤ hC(x, t, e) ≤ h#

C for a.e. x ∈ Γ (2.26)

for a.e. t ∈ ]0, T [ , and for all e ∈ R.
(H7) For some δ > 0, and for each i = 1, . . . , I, the boundary operator

gi = gi,aχΓa + gi,cχΓc

is a Carathéodory function from Γ× ]0, T [×R × R into R and there
exists γi ∈ L2+δ(Γ× ]0, T [ ) such that

∃g#i ≥ 0 : |gi(x, t, e, d)| ≤ γi(x, t) + g#i (|d|+ |e|) (2.27)

for a.e. (x, t) ∈ Γ×]0, T [ , and for all e, d ∈ R.
(H8) For some δ > 0, θ0, c

0
i ∈ L2+δ(Ω), i = 1, . . . , I.

For the sake of simplicity, we assume in (H5)–(H8) the same designation
δ > 0. Note that (2.27) is verified for a truncated version of the Butler–Volmer
expression (2.5).

The main interest of the mathematical model under study (governing
equations and boundary conditions) is strictly related to real-world appli-
cations (thermoelectrochemical phenomena in an electrolysis cell Ω). In this
respect, the consideration of a number n of space dimensions greater than 3
is not really relevant. From the mathematical point of view, the broader di-
mensional range, if available, is more meaningful in fact. Therefore, we state
our main result in the unified way.
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Theorem 2.1. Under hypotheses (H1)–(H8), there exists a solution

(θ, c, φ) ∈ Vp,�(QT )× [Lp(0, T ;W 1,p(Ω))]I × Vp(Ω),

for some p > 2, to (2.11)–(2.13) with the initial condition (2.10) if provided
by the smallness conditions (5.11) and (5.12)–(5.13).

Remark 2.2. The existence of p is restricted to [2, 2+δ], where δ > 0 is chosen
smaller than min{2/[n(υ−1)], 1/(κ−1)} with υ,κ > 1 being well-determined
constants by the Gehring–Giaquinta–Modica theory [1, 2, 14].

3. Strategy of the proof of Theorem 2.1

In this section we discuss the key of the proof, and we recall a known result
for the solvability. The proof of Theorem 2.1 is based on the Schauder fixed
point theorem [35]. We keep the concentration-temperature pair (c, θ) in the
closed convex set

K =
{
(v, v) ∈ [Lp(0, T ;W 1,p(Ω))]I × Vp,�(QT ) : ‖∇v‖p,QT + ‖v‖�,ΣT ≤ R,

‖∇vi‖p,QT + ‖vi‖p,QT ≤ Ri, i = 1, . . . , I
}
,

where p, � ≥ 2, and we built the well-defined functional T such that

(c, θ) ∈ K 
→ φ ∈ Vp(Ω) 
→ (Ψ,Θ), (3.1)

where φ,Ψ, and Θ are the unique functions given in Propositions 4.1, 4.2, and
4.3, respectively. Their proofs rely on existence results due to a weak reverse
Hölder inequality for local solutions [1, 2, 14]. For the reader’s convenience,
we recall the parabolic existence result [2, 14].

Theorem 3.1. Let Ω be a C1 domain, T > 0, and let assumptions (2.21)–
(2.23) be fulfilled. There exists υ > 1 such that for any 0 < δ < 2/[n(υ − 1)]
and p ∈ [2, 2 + δ] if f ∈ L2+δ(QT ), f ∈ L2+δ(Γ× ]0, T [ ), H ∈ L2+δ(ΣT ), and
u0 ∈ L2+δ(Ω), then the variational problem∫ T

0

〈∂tu, v〉 dt +
∫
QT

(K∇u) · ∇v dx dt +

∫
ΣT

hR(u)|u|�−2uv ds dt

=

∫
QT

f · ∇v dx dt +

∫ T

0

∫
Γ

fv ds dt +

∫
ΣT

Hv ds dt ∀v ∈ Vp′,�(QT )

(3.2)

has a solution u in Lp,∞(QT ) ∩ Vp,�+p−2(QT ) such that ∂tu ∈ [Vp′,�(QT )]
′,

and it verifies

ess sup
t∈[0,T ]

‖u‖pp,Ω(t) ≤ H(k#, b#, p) exp [(p− 1)T ] ; (3.3)

‖u‖�+p−2
�+p−2,ΣT

≤ (b#)
−1H(k#, b#, p) (1 + (p− 1)T exp [(p− 1)T ]) ;

(3.4)
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‖∇u‖p,QT ≤ C(k#)−1

×
[√

k#H(k#, b#, 2) (1 + T exp [T ])

+
√

1 + k#

(
‖f‖p,QT

+K2n/(n+1)

×
[
‖f‖p,Γ×]0,T [ + ‖H‖p,ΣT

] )]
,

(3.5)

with

H(k#, b#, p) = ‖u0‖pp,Ω +

(
p− 1

k#

)p/2

‖f‖pp,QT

+
p(�− 1)

(�+ p− 2)b
(p−1)/(�−1)
#

∫
ΣT

|H|
�+p−2
�−1 ds dt

+ (p− 1)

((
p2

2k#(p− 1)

)1/(p−1)

+ 1

)

×K
2/(p−1)
2n/(n+1) |Ω|

[(p−1)n]−1‖f‖p
′

p′,Γ× ]0,T [.

Here, K2n/(n+1) stands for the continuity constant of the trace embedding

W 1,2n/(n+1)(Ω) ↪→ L2(Γ),

and C is a positive constant depending only on υ, p, n, and Ω. In particular, if
b# = 0 and f = 0, then (3.3) and (3.5) remain true by replacing H(k#, b#, p)
by

H(k#, p) = ‖u0‖pp,Ω +

(
p− 1

k#

)p/2

‖f‖pp,QT

+ (p− 1)

((
p2

2k#(p− 1)

)1/(p−1)

+ 1

)

×K
2/(p−1)
2n/(n+1) |Ω|

[(p−1)n]−1‖H‖p
′

p′,ΣT
.

(3.6)

Remark 3.2. By the Aubin–Lions theorem [25], we have that u ∈ Lp(QT ),
and the initial condition u(0) = u0 makes sense at least in Lp(Ω).

4. Existence of auxiliary solutions

Let us establish the existence of solutions according to Section 3. Fix

δ ∈ ]0, 2/[n(υ − 1)][ ,

with υ > 1 being given from Theorem 3.1.
First, let us recall the existence of the required auxiliary potential solv-

ing a second order elliptic equation of divergence form with a discontinuous
leading coefficient.
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Proposition 4.1 (Auxiliary potential). Let δ > 0, t ∈ ]0, T [ ,

θ(t), ci(t) ∈ W 1,2+δ(Ω) for every i = 1, . . . , I,

let g ∈ L2+δ(∂Ω) verify that ∫
∂Ω

g ds = 0,

and let (2.14), (2.16), and (2.19) hold. Then there exists κ > 1 such that the
Neumann problem (2.13) is uniquely (up to constants) solvable in W 1,p(Ω)
for any p ∈ [2, 2 + δ] ∩ [2, 2 + 1/(κ − 1)[ . Moreover, for each ]0, T [ we have

σ#‖∇φ‖2,Ω ≤ K‖g‖2,Γ + σ#α#‖∇θ‖2,Ω +

I∑
j=1

D#
j ‖∇cj‖2,Ω; (4.1)

‖∇φ‖p,Ω ≤ M1‖∇φ‖2,Ω +M2(σ#)
−1
√
2(1 + σ#) ‖F(θ, c)‖p,Ω

+M3(σ#)
−1
√

2 + 2−1/nσ# ‖g‖p,Γ,
(4.2)

where K stands for a positive constant depending on n and Ω,

F(θ, c) = σ#α# |∇θ|+
I∑

j=1

D#
j |∇cj |,

and M1, M2, and M3 are positive constants depending on n, p, κ, and Ω.

Proof. The existence of a weak unique solution satisfying (4.1) is classical (for
details see, for instance, [9]). A similar proof of the regularity estimate (4.2)
can be found in [1, 2]. �

The existence of the auxiliary concentration-temperature pair (Ψ,Θ) is
a consequence of Theorem 3.1 as follows.

Proposition 4.2 (Auxiliary concentration vector). Let θ ∈ Lp(0, T ;W 1,p(Ω))
and φ ∈ Vp(Ω) be in accordance with Proposition 4.1, with

p ∈ [2, 2 + δ] ∩ [2, 2 + 1/(κ − 1)[ .

Under assumptions (2.14), (2.17), (2.19), (2.20), (2.24), and (2.27), there
exists a function Ψ ∈ [Lp(0, T ;W 1,p(Ω))]I which is the unique solution to the
variational problem∫ T

0

〈∂tΨi, v〉 dt +
∫
QT

Di(θ)∇Ψi · ∇v dx dt

=

∫ T

0

∫
Γ

gi(θ, φ)v ds dt−
∫
QT

(
ciSi(ci, θ)∇θ +

ti
Fzi

σ(θ)∇φ

)
· ∇v dx dt

(4.3)

for each i = 1, . . . , I and for all v ∈ Lp′
(0, T ;W 1,p′

(Ω)). In particular,

∂tΨ ∈ [Lp(0, T ; [W 1,p′
(Ω)]′)]I and Ψ ∈ [C([0, T ];L2(Ω))]I .
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Moreover, for every i = 1, . . . , I, we have

‖Ψi‖pp,QT
≤ T‖Ψi‖p∞,p,QT

≤ T exp
[
(p− 1)T

]
×
[
‖c0,i‖pp,Ω +

(
p− 1

(Di)#

)p/2

×
(
S#
i ‖∇θ‖p,QT

+ t#i σ
#‖∇φ‖p,QT

)p

+

((
p2(p− 1)p−2

2(Di)#

)1/(p−1)

+ p− 1

)
K

2p′/p
2n

n+1

|Ω|p′(pn)−1

×
(
‖γi‖p′,Γ× ]0,T [ + g#i K pn

n+p−1
|Ω|1−1/p

×
(
‖∇θ‖p,QT + ‖θ‖p,QT + Pp‖∇φ‖p,QT

))p′]
;

(4.4)

‖∇Ψi‖p,QT
≤ C(Di)

−1
#

[√
(Di)#(1 + T exp[T ]) ‖c0,i‖2,Ω + G#

i

+Xi ‖∇φ‖2,QT
+ Yi ‖∇φ‖p,QT

+
(
S#
i Z
(
|QT |1/2−1/p, (Di)#, 1

)
+Qi

)
×
(
‖∇θ‖p,QT

+ ‖θ‖p,QT

)]
,

(4.5)

with

G#
i = K2n/(n+1)

(√
(1 + T exp[T ])(2 + (Di)#) |Ω|1/n ‖γi‖2,Γ× ]0,T [

+
√

1 + (Di)# ‖γi‖p,Γ× ]0,T [

)
;

(4.6)

Xi =
√

1 + T exp[T ]

(
t#i σ

# + g#i

√
2 + (Di)#|Ω|

1+1/n
2 K2

2n
n+1

P2

)
; (4.7)

Yi =
√

1 + (Di)#

(
t#i σ

# + g#i K 2n
n+1

K pn
n+p−1

|Ω|1−1/pPp

)
; (4.8)

Qi = K2n/(n+1)g
#
i

(√
1 + (Di)# Kpn/(n+p−1)|Ω|1−1/p

+
√
(1 + T exp[T ])(2 + (Di)#)|Ω|1/n

×K2n/(n+1)|Ω|1−1/pT 1/2−1/p

)
;

(4.9)

Z(a, d, e) = a
√

1 + T exp[T ] + e
√
1 + d, a, d, e > 0, (4.10)
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and Pp stands for the Poincaré constant corresponding to the space expo-
nent p.

Proof. The existence of the required auxiliary concentration vector is a con-
sequence of Theorem 3.1 and Remark 3.2. In particular, we have

‖∇Ψi‖p,QT
≤ C(Di)

−1
#

[√
(Di)#(1 + T exp[T ]) ‖c0,i‖2,Ω +Hi(θ, φ)

+ t#i σ
#

(√
1 + T exp[T ] ‖∇φ‖2,QT

+
√
1 + (Di)# ‖∇φ‖p,QT

)

+S#
i

(√
1 + T exp[T ] ‖∇θ‖2,QT +

√
1 + (Di)# ‖∇θ‖p,QT

)]
,

with

Hi(θ, φ) = G#
i +K2n/(n+1)g

#
i

(√
1 + (Di)#

(
‖θ‖p,Γ×]0,T [ + ‖φ‖p,Γ×]0,T [

)
+
√

(1 + T exp[T ])(2 + (Di)#)|Ω|1/n

×
(
‖θ‖2,Γ× ]0,T [ + ‖φ‖2,Γ× ]0,T [

))
.

Then, (4.5) holds by taking the following inequalities into account:

‖v‖p,Γ ≤ Kpn/(n+p−1) |Ω|1−1/p
(
‖∇v‖p,Ω + ‖v‖p,Ω

)
;

‖w‖p,Γ ≤ Kpn/(n+p−1) |Ω|1−1/pPp‖∇w‖p,Ω
for all v ∈ W 1,p(Ω) and w ∈ Vp(Ω).

With analogous argument, we find (4.4). �

Proposition 4.3 (Auxiliary temperature). Let

θ, ci ∈ Lp(0, T ;W 1,p(Ω)), i = 1, . . . , I,

and φ ∈ Vp(Ω) be in accordance with Proposition 4.1, where

p ∈ [2, 2 + δ] ∩ [2, 2 + 1/(κ − 1)[ ,

and let assumptions (2.14), (2.15), (2.18), (2.21)–(2.23), (2.25), and (2.26) be
fulfilled. Then, the variational problem

ρcp

∫ T

0

〈∂tΘ, v〉 dt +
∫
QT

(K(θ)∇Θ) · ∇v dx dt

+

∫
ΣT

hR(θ)|Θ|�−2Θv ds dt +

∫ T

0

∫
Γ

hC(θ)Θ v ds dt

=

∫ T

0

∫
Γ

hC(θ)θev ds dt +

∫
ΣT

γ(θ)v ds dt

−
∫
QT

⎛
⎝Rθ2

I∑
j=1

D′
j(cj , θ)∇cj + σ(θ)Π(θ)∇φ

⎞
⎠ · ∇v dx dt,

(4.11)
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for all v ∈ Vp′,�(QT ), is uniquely solvable in Vp,�(QT ). In particular,

∂tΘ ∈ Lp(0, T ; [W 1,p′
(Ω)]′) and Θ ∈ C([0, T ];L2(Ω)).

Moreover, the following estimates hold:

‖Θ‖∞,p,QT
≤ H1/p

0

(
‖∇φ‖p,QT

, ‖∇c‖p,QT

)
exp[(p− 1)T/p]; (4.12)

‖Θ‖�+p−2
�+p−2,ΣT

≤ 1 + (p− 1)T exp[(p− 1)T ]

(ρcp)−1b#
H0

(
‖∇φ‖p,QT

, ‖∇c‖p,QT

)
;

(4.13)

‖∇Θ‖p,Ω ≤ C(k#)−1

×
[√

ρcpk#(1 + T exp[T ]) ‖θ0‖2,Ω +H#

+ σ# Π# Z
(
‖∇φ‖2,QT

, (ρcp)
−1k#, ‖∇φ‖p,QT

)
+ Z

(
|QT |1/2−1/p, (ρcp)

−1k#,
I∑

j=1

(D′
j)

# ‖∇cj‖p,QT

)]
,

(4.14)

with γe := h#
C |θe|, Z is given as in (4.10), and

H0(a,b) = ‖θ0‖pp,Ω + (ρcp)
−p/2

(
p− 1

k#

)p/2(
σ# Π# a+

I∑
j=1

(D′
j)

# bj

)p

+ (ρcp)
−1 p(�− 1)

(�+ p− 2)b
(p−1)/(�−1)
#

∫
ΣT

|γw|
�+p−2
�−1 ds dt

+ (ρcp)
−p′
((

p2(p− 1)p−2

2k#(ρcp)−1

) 1
p−1

+ p− 1

)

×K
2/(p−1)
2n

n+1

|Ω|
1

(p−1)n ‖γe‖p
′

p′,Γ× ]0,T [;

H# =
√
1 + (ρcp)−1k# K2n/(n+1)

(
‖γw‖p,ΣT + ‖γe‖p,Γ× ]0,T [

)
+
√

k#(1 + T exp[T ])

×
(√

2(�− 1)

�(b#)1/(�−1)
‖γw‖�

′/2
� ′,ΣT

+
√
2 + k# K2n/(n+1) |Ω|1/(2n) ‖γe‖2,Γ× ]0,T [

)
.

Proof. The existence of the required auxiliary temperature is a consequence
of Theorem 3.1 and Remark 3.2, by dividing (4.11) by ρcp > 0. �

The continuous dependence is stated in the following proposition.
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Proposition 4.4. The mapping T is continuous and compact from K into

[Lp(0, T ;W 1,p(Ω))]I × Vp,�(QT )

for the strong topology.

Proof. Let {(cm, θm)}m∈N ⊂ K be a sequence such that (cm, θm) → (c, θ) in

[Lp(0, T ;W 1,p(Ω))]I × Vp,�(QT ).

It is clear that (c, θ) ∈ K. We select a weakly converging subsequence with
respect to the norms from estimates (4.1), (4.2), (4.5), and (4.14). That is, the
corresponding solutions (φm,Ψm,Θm) in accordance with Propositions 4.1,
4.2, and 4.3 verify

φm ⇀ φ in W 1,p(Ω)/R,

(Ψm,Θm) ⇀ (Ψ,Θ) in [Lp(0, T ;W 1,p(Ω))]I+1.

Moreover, φm ⇀ φ in Vp(Ω). Under the compact embeddings

W 1,p(Ω) ↪→↪→ Lp(Ω) and W 1,p(Ω) ↪→↪→ Lp(∂Ω)

the compactness Aubin–Lions theorem states that we may extract a sequence
in the set of approximate concentration-temperature solutions, (Ψm,Θm),
which converges strongly in Lp(QT ) and Lp(ΣT ). Thanks to (4.13), Θm → Θ
in L�(ΣT ).

The above limits ensure that the weak limit (Φ,Ψ,Θ) verifies

(Φ,Ψ,Θ) = T (c, θ).

Next we prove the strong convergence of φm to φ. Since the weak limit φ
verifies (2.13), we write∫

Ω

σ(θm)∇(φm − φ) · ∇v dx

=

∫
Ω

(σ(θ)− σ(θm))∇φ · ∇v dx

+

∫
Ω

(
α(θ)σ(θ)∇θ − α(θm)σ(θm)∇θm

)
· ∇v dx

+ F
I∑

i=1

zi

∫
Ω

(
Di(θ)∇ci −Di(θm)∇(ci)m

)
· ∇v dx.

Thus, we may estimate ∇(φm − φ) in Lp(Ω) such that

‖∇(φm − φ)‖p,Ω → 0 as m → ∞.
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Finally, the strong convergence for the concentration-temperature pair is ob-
tained via the identities∫ T

0

〈
∂t ((Ψi)m −Ψi) , v

〉
dt +

∫
QT

Di(θm)∇ ((Ψi)m −Ψi) · ∇v dx dt

=

∫
QT

(Di(θ)−Di(θm))∇Ψi · ∇v dx dt

+

∫
QT

(
ciSi(ci, θ)∇θ − (ci)mSi((ci)m, θm)∇θm

)
· ∇v dx dt

+

∫
QT

ti
Fzi

(
σ(θ)∇φ− σ(θm)∇φm

)
· ∇v dx dt

+

∫ T

0

∫
Γ

(
gi(θm, φm)− gi(θ, φ)

)
v ds dt ∀v ∈ Lp′

(0, T ;W 1,p′
(Ω));

ρcp

∫ T

0

〈
∂t (Θm −Θ) , v

〉
dt +

∫
QT

(K(θm)∇(Θm −Θ)) · ∇v dx dt

=

∫
QT

((K(θ)− K(θm))∇Θ) · ∇v dx dt

+

∫
ΣT

(
hR(θ)|Θ|�−2Θ− hR(θm)|Θm|�−2Θm + γ(θm)− γ(θ)

)
v ds dt

+

∫ T

0

∫
Γ

(
hC(θ)Θ− hC(θm)Θm + (hC(θm)− hC(θ)) θe

)
v ds dt

+R

∫
QT

I∑
j=1

(
θ2D′

j(cj , θ)∇cj − θ2mD′
j((cj)m, θm)∇(cj)m

)
· ∇v dx dt

+

∫
QT

(
σ(θ)Π(θ)∇φ− σ(θm)Π(θm)∇φm

)
· ∇v dx dt ∀v ∈ Vp′,�(QT ).

Indeed, the estimates (4.5) and (4.14) applied to the differences

(Ψi)m −Ψi and Θm −Θ,

respectively, yield their convergence to zero by the Lebesgue dominated con-
vergence theorem. �

5. Proof of Theorem 2.1

The functional T (cf. (3.1)) is well defined from K into

[Lp(0, T ;W 1,p(Ω))]I × Vp,�(QT )

by Propositions 4.1, 4.2, and 4.3. Its continuity is ensured by Proposition 4.4.
In order to apply the Schauder fixed point theorem, it remains to prove that T
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maps K into itself. To this aim, let (c, θ) ∈ K be arbitrary in order to show
that T (c, θ) ∈ K. First, we rewrite (4.1)–(4.2) as

‖∇φ‖p,QT
≤ B# +A#

(
σ#α#R+

I∑
j=1

D#
j Rj

)
, (5.1)

with

A# = (σ#)
−1

(
M1|Ω|1/2−1/p +M2

√
2(1 + σ#)

)
; (5.2)

B# = (σ#)
−1T 1/p

(
M1K‖g‖2,Γ +M3

√
2 + 2−1/nσ# ‖g‖p,Γ

)
. (5.3)

Secondly, we assume that

K
2/p
2n/(n+1)|Ω|

(pn)−1

[
‖γi‖p′,ΣT

+ g#i Kpn/(n+p−1)|Ω|1−1/p

×
(
B# +

(
1 + PpA

#σ#α#
)
R+ PpA

#
I∑

j=1

D#
j Rj

)]
>1,

otherwise an easier argument can be applied. Thus, we insert (5.1) into (4.4)–
(4.5) resulting in

‖Ψi‖p,QT + ‖∇Ψi‖p,QT

≤ A0
iR+Ai

I∑
j=1

(D′
j)

#Rj + (T exp [(p− 1)T ])
1/p

×
[
‖c0,i‖p,Ω +Q#

i ‖γi‖p′,ΣT

+

(√
p− 1

(Di)#
t#i σ

# + g#i Kpn/(n+p−1)|Ω|1−1/pPp

)
B#

]

+ C(Di)
−1
#

[√
(Di)#(1 + T exp[T ]) ‖c0,i‖2,Ω + G#

i + YiB
#

+Xi(σ#)
−1T 1/2K‖g‖2,Γ

]
,

(5.4)

with

A0
i = (T exp [(p− 1)T ])

1/p

×
[√

p− 1

(Di)#

(
S#
i +A#t#i (σ

#)2α#
)

+ g#i Q#
i Kpn/(n+p−1)|Ω|1−1/p

(
1 + PpA

#σ#α#
)]
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+ C(Di)
−1
#

[
S#
i Z
(
|QT |1/2−1/p, (Di)#, 1

)
+Qi

+
(
Xi(σ#)

−1 |QT |1/2−1/p + YiA
#
)
σ#α#

]
; (5.5)

Ai = C(Di)
−1
#

(
Xi(σ#)

−1|QT |1/2−1/p + YiA
#
)

+A# (T exp [(p− 1)T ])
1/p

×
(√

p− 1

(Di)#
t#i σ

# + g#i Q#
i K pn

n+p−1
|Ω|1−1/pPp

)
;

(5.6)

Q#
i =

((
p2(p− 1)p−2

2(Di)#

)1/(p−1)

+ p− 1

)1/p

K
2/p
2n/(n+1)|Ω|

(pn)−1

, (5.7)

where G#
i , Xi, Yi, Qi, Z and A#, B# are given at (4.6)–(4.10), and (5.2)–

(5.3), respectively.

Next, on the one hand, we insert (4.1) into (4.13) resulting in

‖Θ‖��,ΣT
≤ 1 + T exp [T ]

b#

×
(
ρcp‖θ0‖22,Ω +

2(�− 1)

�(b#)1/(�−1)
‖γw‖�

′
� ′,ΣT

+

(
2

k#
+

1

ρcp

)
K2

2n/(n+1) |Ω|n
−1‖γe‖22,Γ× ]0,T [ +

1

k#

×
[
Π#σ#

σ#

√
T K‖g‖2,Γ + |QT |1/2−1/p

×
(
Π#α#(σ#)2

σ#
R+

(
1 +

Π#σ#

σ#

) I∑
j=1

(D′
j)

#Rj

)]2)
.

Since � ≥ 2, we assume that

Π#σ#

σ#

(√
TK‖g‖2,Γ + |QT |1/2−1/pα#σ#R

)

+ |QT |1/2−1/p

(
1 +

Π#σ#

σ#

) I∑
j=1

(D′
j)

#Rj > 1,

otherwise this term is upper bounded by one, and an easier argument can be
applied. Thus, using the above inequalities, and inserting (5.1) into (4.14),
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we find

‖Θ‖�,ΣT + ‖∇Θ‖p,Ω

≤ B0R+ B
I∑

j=1

(D′
j)

#Rj +

(
1 + T exp [T ]

b#

)1/�

×
[(

ρcp‖θ0‖22,Ω +
2(�− 1)

�(b#)1/(�−1)
‖γw‖�

′
� ′,ΣT

+

(
2

k#
+

1

ρcp

)
K2

2n/(n+1)|Ω|n
−1‖γe‖22,Γ× ]0,T [

)1/�

+
Π#σ#

(k#)1/�σ#
T 1−1/pK‖g‖2,Γ

]
+ C(k#)−1

×
[√

ρcpk#(1 + T exp[T ]) ‖θ0‖2,Ω +H#

+Π#σ#Z
(
T 1/2K‖g‖2,Γ(σ#)

−1, (ρcp)
−1k#, B

#
)]
,

(5.8)

where

B0 =
Π#α#(σ#)2

σ#

×
(
C
√
1 + (ρcp)−1k#

k#
σ#A

#

+

[
C
√
1 + T exp [T ]

k#
+

(
1 + T exp [T ]

b#k#

)1/�
]
|QT |1/2−1/p

)
;

(5.9)

B =
C
√

1 + (ρcp)−1k#
k#

(
1 + Π#σ#A#

)

+

[
C
√
1 + T exp [T ]

k#
+

(
1 + T exp [T ]

b#k#

)1/�
]

×
(
1 +

Π#σ#

σ#

)
|QT |1/2−1/p.

(5.10)

We seek (R,R1, . . . , RI) such that (Ψ,Θ) ∈ K. According to (5.8), we
define the continuous function

P(r) = (1− B0) r − P(0),

where

P(0) = C + B
I∑

j=1

(D′
j)

#Rj > 0,

with the constant C > 0 being independent of R,R1, . . . , RI .
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For our purposes in finding the explicit smallness conditions on the
data, we choose R = P(0)/(1− B0) as its positive root, considering the first
smallness condition

B0 < 1. (5.11)

With this choice, we may define in a recurrence manner the following linear
functions, in accordance with (5.4),

P1(r) = −P1(0) +
(
1− B1(D

′
1)

#
)
r;

P2(r) = −P2(0) +

(
1− B2(D

′
2)

#

(
1− B1

1− B1(D′
1)

#

))
r;

P3(r) = −P3(0) +
(
1− B3(D

′
3)

#

×

⎛
⎝1− B1

1− B1(D′
1)

#
− B2

1− B2(D′
2)

#
(
1− B1

1−B1(D′
1)

#

)
⎞
⎠
⎞
⎠ r,

where

Bi :=
A0

iB
1− B0

+Ai,

and where B0, B, A0
i , and Ai are given by (5.9), (5.10), (5.5), and (5.6),

respectively. All functions admit positive roots (we call them R1, . . . , RI)
since Pi(0) > 0 for i = 1, . . . , I, and the smallness conditions P ′

i(r) > 0, i.e.,

B1(D
′
1)

# < 1; (5.12)

Bi(D
′
i)

#

(
1−

i−1∑
j=1

Bj

P ′
j(r)

)
< 1, i = 2, . . . , I, (5.13)

hold. For the reader’s convenience, we rewrite the above smallness conditions
to the first two ionic components:

B1 : =
A0

1B
1− B0

+A1 <
(
(D′

1)
#
)−1

;

B2 :=
A0

2B
1− B0

+A2 <
(
(D′

2)
#
)−1 1− B1(D

′
1)

#

1− B1

(
1 + (D′

1)
#
) .

6. Electrolysis of molten sodium chloride (NaCl)

Many metals can be extracted in pure forms by electrolytic method: the alkali
metals, and aluminum, as well as nonmetals: oxygen, hydrogen, and chlorine
gas. We exemplify the electrolytic cell (cf. Figure 1) for NaCl, with

ρ = 1500 kg ·m−3 and cp = 1197.8 J · kg−1 ·K−1.

As in the industrial extraction of the sodium metal by Downs process, we
consider a cylindrical container (with dimensions of 13 cm in diameter, and
of 13 cm in height) with stainless steel walls (� = 5, the emissivity 0.2 ≤ ε ≤
0.5, and the absorptivity is assumed to obey the Kirchhoff law), and with
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copper/nickel electrodes (550 < hC ≤ 1820W ·m−2 ·K−1, see [34]). Thus, we
suppose |Ω| = 1.5× 10−3m3, which corresponds to

c0i = 2.5667× 104 mol ·m−3 (i = Na+,Cl−).

The sodium chloride conducts electricity when it is melted (high melting
point 1073.15K). At temperature range 1080–1250K (805–980◦C), we have
the following available data:

k# = 0.6 W ·m−1 ·K−1, k# = 0.5 W ·m−1 ·K−1 (see [13]),

σ# = 359.7 S ·m−1, σ# = 398.0 S ·m−1,

(DNa+)# = 7.7× 10−9 m2 · s−1,

(DCl−)# = 6.3× 10−9 m2 · s−1,

D#
Na+ = 12× 10−9F |zNa+ | m2 · s−1 · C ·mol−1,

D#
Cl− = 9.5× 10−9F |zCl− | m2 · s−1 · C ·mol−1 (see [18, pp. 49–63]).

The Seebeck coefficient has values in the range 10−5−10−4 V ·K−1 (see [26]).
The parameters, Π# and (D′

i)
# (i = Na+, Cl−), are according to the first

Kelvin relation and the Onsager reciprocal relationship, respectively.

Under constant initial conditions, the upper bound in (2.24) can be
given by

t#i = F |zi|D#
i c0i /(Rθ0σ#).

The Soret coefficient (S/D) is of order 10−3–10−2 K−1 in liquids and elec-
trolytes [29], which implies that

S#
Na+ = 1.2× 10−12c0Na+ and S#

Cl− = 9.5× 10−11c0Cl− .

The electrolysis separates the molten ionic compound into its elements.
The chemical half-reactions (and the standard state potentials) are

• in the cathode (−): 2Na+ + 2 e− −→ 2Na (E0
redution = −2.71V);

• in the anode (+): 2Cl− −→ Cl2(g) + 2 e− (E0
oxidation = −1.36V).

Thus, the balanced chemical equation for the nonspontaneous overall reaction
is

2NaCl −→ 2Na + Cl2(g) (E0
cell = −4.07V).

The stoichiometric coefficients of electrons in the anode and cathode are, re-
spectively, sa = sc = 2. Assuming symmetric electron transfer, the transfer
coefficients are βi = 0.5 (i = Na+, Cl−). Then, the Butler–Volmer equation is

gi,l = 2Jl sinh [Fη/(Rθ)] .

The production of metallic sodium at the cathode and chloride gas at
the anode may operate at 104 A · m−2, and at potential of 7V, with the
cathodic current being balanced by the anodic current.
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Therefore, for some T > 0 the smallness conditions (5.11)–(5.13) hold
under the above data, and

B0 = 0.0027
(
2C
(
M1 + 26.8589M2 +

√
1 + T exp[T ]

)
+ 44.643 (1 + T exp [T ])

1/5
)
;

B = 48.9(1 + T exp[T ])1/5 + C
[
2
√
1 + T exp[T ] + 2

]
;

A0
Na+ = (T exp[(p− 1)T ])1/p [0.0351 + 0.0032M1 + 0.0868M2]

+ C
[
400
√
1 + T exp[T ] + 436.8 + 36.8M1 + 989.4M2

]
;

ANa+ = C(1322.2 + 1322.2M1 + 35513M2)

+ (0.1160M1 + 3.1163M2)(T exp[(p− 1)T ])1/p;(
(D′

Na+)#
)−1

= 6.9281× 105.

Since the values of parameters for Cl− are of the same order of those for Na+,
then A0

Cl− and ACl− have similar expressions. Further optimization work
should be done to precise the above universal constants. Their quantitative
form is being a matter of study of ongoing work.

Appendix

Table 1. Universal constants

F Faraday constant 9.6485× 104 C ·mol−1

R Gas constant 8.314 J ·mol−1 ·K−1

σSB
Stefan–Boltzmann constant

5.67× 10−8 W ·m−2 ·K−4

(for blackbodies)

Nomenclature list

c molar concentration mol ·m−3

cp specific heat capacity J · kg−1 ·K−1

D diffusion coefficient m2 · s−1

D′ Dufour coefficient m2 · s−1 ·K−1

h heat transfer coefficient W ·m−2 ·K−1

k thermal conductivity W ·m−1 ·K−1

S Soret coefficient (thermal diffusion) m2 · s−1 ·K−1

t transference number (dimensionless)

u mobility m2 ·V−1 · s−1
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z valence (dimensionless)

α Seebeck coefficient V ·K−1

φ electric potential V

Π Peltier coefficient V

ρ density kg ·m−3

σ electrical conductivity S ·m−1

θ absolute temperature K
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