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Abstract. In this paper, we present yet another new and novel variant
of classical Banach contraction principle on a complete metric space en-
dowed with a binary relation which, under universal relation, reduces to
Banach contraction principle. In process, we observe that various kinds
of binary relations, such as partial order, preorder, transitive relation,
tolerance, strict order, symmetric closure, etc., utilized by earlier authors
in several well-known metrical fixed point theorems can be weakened to
the extent of an arbitrary binary relation.
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1. Introduction

The classical Banach contraction principle [1] continues to be an indispens-
able and effective tool in theory as well as applications within and beyond
Mathematics, which guarantees the existence and uniqueness of fixed points
of contraction self-mappings defined on complete metric spaces besides offer-
ing a constructive procedure to compute the fixed point of the underlying
mapping. In the recent past, many authors extended this theorem employing
relatively more general contractive mappings on various types of spaces.

In this paper, we extend the classical Banach contraction principle to
a complete metric space endowed with a binary relation. In this context,
the contraction condition is relatively weaker than usual contraction as it is
required to hold only on those elements which are related under the under-
lying relation rather than the whole space. Particularly, under the universal
relation, our result reduces to Banach contraction principle.

2. Preliminaries

In this section, to make our exposition self-contained, we present the relevant
background material needed to prove our result. In what follows, N, N0, Q and

J. Fixed Point Theory Appl. 17 (2015) 693–702
DOI 10.1007/s11784-015-0247-y
Published online July 15, 2015
© Springer Basel 2015

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-015-0247-y&domain=pdf


694	 A. Alam and M. Imdad� JFPTA2 A. Alam and M. Imdad

R denote the sets of positive integers, nonnegative integers, rational numbers
and real numbers, respectively (i.e., N0 = N ∪ {0}).

Definition 2.1 (See [8]). Let X be a nonempty set. A subset R of X2 is called
a binary relation on X.

Notice that for each pair x, y ∈ X, one of the following conditions holds:

(i) (x, y) ∈ R; which amounts to saying that “x is R-related to y” or “x
relates to y under R.” Sometimes, we write xRy instead of (x, y) ∈ R;

(ii) (x, y) ̸∈ R; which means that “x is not R-related to y” or “x does not
relate to y under R.”

Trivially, X2 and ∅ being subsets of X2 are binary relations on X, which
are respectively called the universal relation (or full relation) and empty
relation. Another important relation of this kind is the relation

△X = {(x, x) : x ∈ X},
called the identity relation or the diagonal relation on X.

Throughout this paper,R stands for a nonempty binary relation, but for
the sake of simplicity, we write only “binary relation” instead of “nonempty
binary relation.”

Definition 2.2. Let R be a binary relation defined on a nonempty set X and
x, y ∈ X. We say that x and y are R-comparative if either (x, y) ∈ R or
(y, x) ∈ R. We denote it by [x, y] ∈ R.

Proposition 2.3. If (X, d) is a metric space, R is a binary relation on X,
T is a self-mapping on X and α ∈ [0, 1), then the following contractivity
conditions are equivalent:

(I) d(Tx, Ty) ≤ αd(x, y) ∀x, y ∈ X with (x, y) ∈ R,
(II) d(Tx, Ty) ≤ αd(x, y) ∀x, y ∈ X with [x, y] ∈ R.

Proof. The implication (II)⇒(I) is trivial. Conversely, suppose that (I) holds.
Take x, y ∈ X with [x, y] ∈ R. If (x, y) ∈ R, then (II) directly follows from (I).
Otherwise, if (y, x) ∈ R, then using the symmetry of d and (I), we obtain

d(Tx, Ty) = d(Ty, Tx) ≤ αd(y, x) = αd(x, y).

This shows that (I)⇒(II). �

Definition 2.4 (See [8, 9]). A binary relation R defined on a nonempty set X
is called

• reflexive if (x, x) ∈ R ∀x ∈ X,
• irreflexive if (x, x) ̸∈ R ∀x ∈ X,
• symmetric if (x, y) ∈ R implies (y, x) ∈ R,
• antisymmetric if (x, y) ∈ R and (y, x) ∈ R implies x = y,
• transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R,
• complete, connected or dichotomous if [x, y] ∈ R ∀x, y ∈ X,
• weakly complete, weakly connected or trichotomous if [x, y] ∈ R or x = y
∀x, y ∈ X.
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Definition 2.5 (See [8, 9, 4, 14, 15]). A binary relation R defined on a non-
empty set X is called

• strict order or sharp order if R is irreflexive and transitive,
• near-order if R is antisymmetric and transitive,
• pseudo-order if R is reflexive and antisymmetric,
• quasi-order or preorder if R is reflexive and transitive,
• partial order if R is reflexive, antisymmetric and transitive,
• simple order if R is weakly complete strict order,
• weak order if R is complete preorder,
• total order, linear order or chain if R is complete partial order,
• tolerance if R is reflexive and symmetric,
• equivalence if R is reflexive, symmetric and transitive.

Remark 2.6. Clearly, universal relation X2 defined on a nonempty set X
remains a complete equivalence relation.

Definition 2.7 (See[8]). Let X be a nonempty set and R a binary relation
on X.

(1) The inverse, transpose or dual relation of R, denoted by R−1, is defined
by R−1 = {(x, y) ∈ X2 : (y, x) ∈ R}.

(2) The reflexive closure of R, denoted by R#, is defined to be the set
R ∪ △X (i.e., R# := R ∪ △X). Indeed, R# is the smallest reflexive
relation on X containing R.

(3) The symmetric closure of R, denoted by Rs, is defined to be the set
R ∪ R−1 (i.e., Rs := R ∪ R−1). Indeed, Rs is the smallest symmetric
relation on X containing R.

Remark 2.8. If ≼ is a partial order on X, then

(a) the associated strict order (often denoted by ≺) is defined as

x ≺ y ⇐⇒ x ≼ y and x ̸= y,

(b) the associated dual relation (often denoted by ≽) is defined as

x ≽ y ⇐⇒ y ≼ x (i.e., ≽:=≼−1),

(c) the associated tolerance relation (often denoted by ≺≻) is defined as

x ≺≻ y ⇐⇒ x ≼ y or x ≽ y (i.e., ≺≻:=≼s).

Proposition 2.9. For a binary relation R defined on a nonempty set X,

(x, y) ∈ Rs ⇐⇒ [x, y] ∈ R.

Proof. The observation is straightforward as

(x, y) ∈ Rs ⇐⇒ (x, y) ∈ R ∪R−1

⇐⇒ (x, y) ∈ R or (x, y) ∈ R−1

⇐⇒ (x, y) ∈ R or (y, x) ∈ R
⇐⇒ [x, y] ∈ R. �
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Definition 2.10. Let X be a nonempty set and R a binary relation on X. A
sequence {xn} ⊂ X is called R-preserving if

(xn, xn+1) ∈ R ∀n ∈ N0.

In the following lines, we extend a weaker version of the notion of d-
self-closeness of a partial order ≼ (defined by Turinici [16]) to an arbitrary
binary relation.

Definition 2.11. Let (X, d) be a metric space. A binary relation R defined
on X is called d-self-closed if whenever {xn} is an R-preserving sequence and

xn
d−−→ x,

then there exists a subsequence {xnk
} of {xn} with [xnk

, x] ∈ R for all k ∈ N0.

The following definition is a variant of the notion of F -invariant subset
of X6 (for the mapping F : X3 → X) introduced by Charoensawan [3]
and the notion of F -closed subset of X4 (for the mapping F : X2 → X)
introduced by Kutbi et al. [7] to the mapping T : X → X.

Definition 2.12. Let X be a nonempty set and T a self-mapping on X. A
binary relation R defined on X is called T -closed if for any x, y ∈ X,

(x, y) ∈ R =⇒ (Tx, Ty) ∈ R.

Proposition 2.13. Let X, T and R be the same as in Definition 2.12. If R is
T -closed, then Rs is also T -closed.

Definition 2.14 (See [13]). Let X be a nonempty set and R a binary relation
on X. A subset E of X is called R-directed if for each x, y ∈ E, there exists
z ∈ X such that (x, z) ∈ R and (y, z) ∈ R.

Definition 2.15 (See [6]). Let X be a nonempty set and R a binary relation
on X. For x, y ∈ X, a path of length k (where k is a natural number) in R
from x to y is a finite sequence {z0, z1, z2, . . . , zk} ⊂ X satisfying the following
conditions:

(i) z0 = x and zk = y,
(ii) (zi, zi+1) ∈ R for each i (0 ≤ i ≤ k − 1).

Notice that a path of length k involves k + 1 elements of X, although they
are not necessarily distinct.

In this paper, we use the following notations:

(i) F (T ) = the set of all fixed points of T ,
(ii) X(T ;R) := {x ∈ X : (x, Tx) ∈ R},
(iii) Υ(x, y,R) := the class of all paths in R from x to y.
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3. Fixed point theorem

Now, we state and prove our main result, which runs as follows.

Theorem 3.1. Let (X, d) be a complete metric space, R a binary relation on X
and T a self-mapping on X. Suppose that the following conditions hold:

(a) X(T ;R) is nonempty,
(b) R is T -closed,
(c) either T is continuous or R is d-self-closed,
(d) there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y) ∀x, y ∈ X with (x, y) ∈ R.

Then T has a fixed point. Moreover, if

(e) Υ(x, y,Rs) is nonempty, for each x, y ∈ X,

then T has a unique fixed point.

Proof. Let x0 be an arbitrary element of X(T ;R). Define the sequence {xn}
of Picard iterates, i.e., xn = Tn(x0) for all n ∈ N0. As (x0, Tx0) ∈ R, using
assumption (b), we obtain

(
Tx0, T

2x0

)
,
(
T 2x0, T

3x0

)
, . . . ,

(
Tnx0, T

n+1x0

)
, . . . ∈ R

so that

(xn, xn+1) ∈ R ∀n ∈ N0. (3.1)

Thus the sequence {xn} is R-preserving. Applying the contractivity condi-
tion (d) to (3.1), we deduce, for all n ∈ N0, that

d(xn+1, xn+2) ≤ αd(xn, xn+1),

which by induction yields that

d(xn+1, xn+2) ≤ αn+1 d(x0, Tx0) ∀n ∈ N0. (3.2)

Using (3.2) and triangular inequality, for all n ∈ N0, p ∈ N, p ≥ 2, we have

d(xn+1, xn+p) ≤ d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·+ d(xn+p−1, xn+p)

≤
(
αn+1 + αn+2 + · · ·+ αn+p−1

)
d(x0, Tx0)

= αnd
(
x0, Tx0

) p−1∑
j=1

αj → 0 as n → ∞,

which implies that the sequence {xn} is Cauchy in X. As (X, d) is complete,
there exists x ∈ X such that

xn
d−−→ x.

Now, in lieu of (c), assume that T is continuous, we have

xn+1 = T (xn)
d−−→ T (x).

Owing to the uniqueness of limit, we obtain T (x) = x, i.e., x is a fixed point
of T .
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Alternately, let us assume that R is d-self-closed. As {xn} is an R-
preserving sequence and

xn
d−−→ x,

there exists a subsequence {xnk
} of {xn} with

[xnk
, x] ∈ R ∀ k ∈ N0.

Using (d), Proposition 2.3, [xnk
, x] ∈ R and xnk

d−→ x, we obtain

d(xnk+1, Tx) = d(Txnk
, Tx) ≤ αd(xnk

, x) → 0 as k → ∞

so that xnk+1
d−−→ T (x). Again, owing to the uniqueness of limit, we obtain

T (x) = x so that x is a fixed point of T .
To prove uniqueness, take x, y ∈ F (T ), i.e.,

T (x) = x and T (y) = y. (3.3)

By assumption (e), there exists a path (say {z0, z1, z2, . . . , zk}) of some finite
length k in Rs from x to y so that

z0 = x, zk = y, [zi, zi+1] ∈ R for each i (0 ≤ i ≤ k − 1). (3.4)

As R is T -closed, by using Proposition 2.13, we have

[Tnzi, T
nzi+1] ∈ R for each i (0 ≤ i ≤ k − 1) and for each n ∈ N0. (3.5)

Making use of (3.3), (3.4), (3.5), triangular inequality, assumption (d) and
Proposition 2.3, we obtain

d(x, y) = d(Tnz0, T
nzk) ≤

k−1∑
i=0

d(Tnzi, T
nzi+1)

≤ α

k−1∑
i=0

d(Tn−1zi, T
n−1zi+1)

≤ α2
k−1∑
i=0

d(Tn−2zi, T
n−2zi+1)

≤ · · · ≤ αn
k−1∑
i=0

d(zi, zi+1)

→ 0 as n → ∞

so that x = y. Hence T has a unique fixed point. �

If R is complete or X is Rs-directed, then the following consequence is
worth recording.

Corollary 3.2. Theorem 3.1 remains true if we replace condition (e) by one
of the following conditions (besides retaining the rest of the hypotheses):

(e′) R is complete,
(e′′) X is Rs-directed.
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Proof. If (e′) holds, then for each x, y ∈ X, [x, y] ∈ R, which amounts to
saying that {x, y} is a path of length 1 in Rs from x to y so that Υ(x, y,Rs)
is nonempty. Hence Theorem 3.1 gives rise to the conclusion.

Otherwise, if (e′′) holds, then for each x, y ∈ X, there exists z ∈ X such
that [x, z] ∈ R and [y, z] ∈ R so that {x, z, y} is a path of length 2 in Rs

from x to y. Hence Υ(x, y,Rs) is nonempty, for each x, y ∈ X and again by
Theorem 3.1 the conclusion is immediate. �

Now, we consider some special cases, wherein our result deduces several
well-known fixed point theorems of the existing literature.

(1) Under the universal relation (i.e., R = X2), Theorem 3.1 reduces to
the classical Banach contraction principle. Clearly, under the universal
relation, (a), (b), (c) and (e) trivially hold.

(2) On setting R =≼, the partial order in Theorem 3.1, we obtain The-
orems 2.1, 2.2 and 2.3 of Nieto and Rodŕıguez-López [10]. Clearly, as-
sumption (b) (i.e., ≼ is T -closed) is equivalent to the increasing property
of T .

(3) By setting R =≽, the dual relation associated with a partial order ≼ in
Theorem 3.1, we obtain Theorems 2.4 and 2.5 of Nieto and Rodŕıguez-
López [10]. Clearly, assumption (b) (i.e., ≽ is T -closed) is equivalent to
the increasing property of T .

(4) Particularizing R by the preorder � in Theorem 3.1, we obtain Theo-
rem 1 of Turinici [19].

(5) Particularizing R by the transitive relation � in Theorem 3.1, we obtain
the natural versions of Theorems 2.2 and 2.4 of Ben-El-Mechaiekh [2],
which is also indicated in [2, Remark 2.3].

(6) By choosing R =≺≻, the tolerance relation associated with a partial
order ≼ in Theorem 3.1, we obtain Theorem 2.1 of Turinici [17] and
Theorem 2.1 of Turinici [18], which are in fact sharpened versions of
the main result of Ran and Reurings [12] and Nieto and Rodŕıguez-
López [11], respectively. For further details, one can consult Turinici [17,
18].

(7) Putting R =≺, the strict order associated with a partial order ≼ in
Theorem 3.1, we obtain a fixed point theorem for a strict increasing
mapping, which is a unidimensional variant of coupled fixed point the-
orem of Ghods et al. [5].

(8) Taking the symmetric closure Rs of an arbitrary relation R in Theo-
rem 3.1, we obtain Corollary 2.12 of Samet and Turinici [13]. Notice that
assumption (b) (i.e., Rs is T -closed) is equivalent to the comparative
property of T and assumption (c) (i.e., Rs is d-self-closed) is equivalent
to the regular property of (X, d,Rs).

Finally, we furnish two illustrative examples in support of Theorem 3.1,
which do not satisfy the hypotheses of the previous results [10, 19, 2, 17, 18,
12, 11, 5, 13] but have fixed points.
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Example 3.3. Let X = R and d = |x − y|, then (X, d) is a complete metric
space. Define a binary relation R = {(x, y) ∈ R2 : x − y ≥ 0, x ∈ Q} on X.
Consider a mapping T : X → X defined by

T (x) = 4 +
1

3
x.

Clearly, R is T -closed and T is continuous. Now, for x, y ∈ X with (x, y) ∈ R,
we have

d(Tx, Ty) =

����
(
4 +

1

3
x

)
−

(
4 +

1

3
y

)���� =
1

3
|x− y| = 1

3
d(x, y) <

2

5
d(x, y),

i.e., T satisfies assumption (d) of Theorem 3.1 for α = 2/5. Thus all the
conditions (a)–(d) of Theorem 3.1 are satisfied and T has a fixed point in X.
Moreover, here assumption (e) of Theorem 3.1 also holds and therefore, T
has a unique fixed point (namely, x = 6).

Notice that the underlying binary relation R is a near-order. Indeed, R
is nonreflexive, nonirreflexive as well as nonsymmetric and hence it is not a
preorder, partial order, strict order or tolerance and also never turns out to
be a symmetric closure of any binary relation.

Example 3.4. Consider X = [0, 2] equipped with usual metric d = |x− y| so
that (X, d) is a complete metric space. Define a binary relation

R = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)}
on X and the mapping T : X → X defined by

T (x) =

{
0 if 0 ≤ x ≤ 1,

1 if 1 < x ≤ 2.

Clearly,R is T -closed but T is not continuous. Take anR-preserving sequence
{xn} such that

xn
d−−→ x

so that (xn, xn+1) ∈ R for all n ∈ N0. Here one may notice that

(xn, xn+1) ̸∈ {(0, 2)}
so that

(xn, xn+1) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} ∀n ∈ N0,

which gives rise to {xn} ⊂ {0, 1}. As {0, 1} is closed, we have [xn, x] ∈ R.
Therefore, R is d-self-closed. By a routine calculation, one can verify as-
sumption (d) of Theorem 3.1 with α = 1/2. Thus all the conditions (a)–(d)
of Theorem 3.1 are satisfied and T has a fixed point in X (namely, x = 0).

Notice that in Example 3.4, the binary relation R is not one of the ear-
lier known standard binary relations such as reflexive, irreflexive, symmetric,
antisymmetric, transitive, complete and weakly complete.

Here, it is fascinating to point out that corresponding theorems con-
tained in [10, 19, 2, 17, 18, 12, 11, 5, 13] cannot be used in the context of
the foregoing examples (i.e., Examples 3.3 and 3.4), which substantiate the
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utility of Theorem 3.1 over corresponding several noted results. Thus, in all,
we have extended all the classical results to an arbitrary binary relation.
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