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Abstract. Based on a primal regularity criterion we provide lower bounds
for the regularity modulus of a nonlinear single-valued mapping F from
a Banach space X into another Banach space Y . We focus on the case
when F is defined on a proper (closed convex) subset of X only rather
than on the whole of X. Three possible ways of approximating F around
the reference point are considered. First, we use a tangential approxi-
mation by set-valued mappings associated with the Bouligand’s tan-
gent cone to the graph of F . Then we move on to approximations by
positively homogeneous set-valued mappings whose graphs contain the
graph of F , for example, by the strict prederivative. Finally, we use an
approximation by bunches of continuous linear operators. In the first
two cases finding approximating objects is relatively easy while in the
third case the approximating object is very convenient to work with.
On examples, we illustrate that these approaches are different and nei-
ther of them implies the other, unless the spaces in question are finite
dimensional.
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1. Introduction

The three equivalent regularity properties (metric regularity, linear openness
and pseudo-Lipschitz property of the inverse) play fundamental role in mod-
ern variational analysis concerned basically with set-valued mappings. Neces-
sity to appeal to one of them constantly appears here and there, both in the
theory and applications, especially in problems associated with optimization
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and nonsmooth analysis (see, e.g., [12, 21], see also [24] for a discussion of
interrelations of metric regularity and metric fixed point theory).

As far as the regularity theory is concerned, the main question is how to
calculate or estimate regularity rates (or moduli) near a certain point of the
graph of the mapping. The most universal and often easy to use is the general
regularity criterion (see Theorem 2.3 below and the subsequent bibliographic
comment) that gives a precise recipe for calculation of the rate of surjec-
tion/metric regularity for set-valued mappings between metric spaces. For
mappings between Banach spaces (and more generally from a metric space
to, say, a length metric space, that is a space in which the distance between
any two points coincides with the lower bound of the lengths of curves joining
the points) exact expressions for rates of regularity can be obtained in terms
of slopes (maximal instantaneous rate of decrease of a function) introduced
by De Giorgi, Marino and Tosques in [7]; see [4, 21]. Better known, however,
are so-called coderivative estimates based on use of one or another subdiffer-
ential constructions (see [19, 20, 21] for the general case and [25] for mappings
between Asplund spaces). Popularity of such criteria (although they are often
less precise) is based on the fact that they give a direct connection to classical
results for smooth maps which the slope-based criterion does not. This makes
coderivative criteria convenient in many theoretical arguments. In particu-
lar, this is the language that is normally used to state necessary optimality
conditions in nonsmooth optimization theory. The problem is that finding
coderivatives of concrete mappings often is an unpleasant task associated
with heavy calculations and requiring a lot of work.

Here we consider three possible ways of primal estimating rates or reg-
ularity. In two of the three cases single-valued (on the domain) mappings are
natural objects, so we do not go beyond this class of maps. The common
basic idea in all three cases is exactly the same as in the classical calculus:
we approximate the mapping by some other object, easier to deal with in one
or another sense.

In this paper we consider three types of approximations: (a) tangential
approximation by set-valued mappings associated with the tangent cone to
the graph of our mapping (with tangency understood in the most general
Bouligand sense), (b) approximations by positively homogeneous set-valued
mappings whose graphs contain the graph of our mapping and (c) by bunches
of linear operators. The advantage of these primal approaches is that in the
first two cases finding approximating objects is relatively easy, while in the
third case the approximating object is very convenient to work with.

We do not compare here the dual and primal approaches (e.g., which
provide better quality of estimates)—this is an interesting and not well-
studied question. But it has to be observed that the developments of both
started approximately at the same time, in the late 70s and early 80s. Pre-
decessors of all three main results we prove here appeared about that time.
But the technical machinery we use, the mentioned general regularity crite-
rion first of all, came into being much later. We shall postpone giving more
detailed bibliographic comments till after proofs of the theorems in Section 3.
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The plan of the paper is the following. In Section 2 we state several prin-
cipal facts of the regularity theory of variational analysis we need. All main
results are stated and proved in Section 3 along with some consequences
and bibliographic comments. In the short final section, Section 4, we discuss
the connection between the three main results relating to the three types of
approximation we consider: Theorem 3.2 for tangential approximation, Theo-
rem 3.4 for homogeneous approximation and Theorem 3.9 for approximation
by sets of linear operators.

Notation and terminology

As a rule, we shall use the same symbol ∥ · ∥ to denote norms in different
Banach spaces hoping this will cause no confusion and adding whenever nec-
essary a subscript to emphasize which space we are talking about, e.g. ∥ · ∥X .
The same stipulation applies to the notation for distance functions, balls etc.:
BX and SX are, respectively, the closed unit ball and the unit sphere in a
Banach space X; B(x, r) is the closed ball centered at x ∈ X with a radius

r > 0 and
◦
B(x, r) is the corresponding open ball.

The symbol F : X ⇒ Y means that F is a set-valued mapping that may
assume the empty value as well. The set domF = {x : F (x) ̸= ∅} is the
domain of F . In this paper we deal with F which are actually single valued
on domF . In this case we say that F is single valued (or to avoid confusion,
single-valued on its domain) and write F : X → Y .

The graph of a mapping F is the set

gphF = {(x, y) ∈ X × Y : y ∈ F (x)}

and the inverse of F is the mapping

Y ∋ y �−→ {x ∈ X : y ∈ F (x)} =: F−1(y) ⊂ X.

If both X and Y are Banach spaces, then

H : X ⇒ Y

is called (positively) homogeneous if H(λx) = λH(x) for λ > 0. The (upper)
norm of a homogeneous mapping is

∥H∥ = sup
∥x∥≤1

sup{∥y∥ : y ∈ H(x)}.

(The usual convention is that we set

sup ∅ = −∞ and inf ∅ = ∞.

But when we deal with nonnegative quantities, it is more convenient to agree
that sup ∅ = 0.) We say that H is bounded if ∥H∥ < ∞.

2. Regularity

Given two metric spaces X and Y , a set-valued mapping F : X ⇒ Y is called
open with a linear rate near (x̄, ȳ) ∈ gphF if there are c > 0 and ε > 0 such
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that1

B(y, ct) ∩B(y, ε) ⊂ F (B(x, t)) if (x, y) ∈ B((x̄, ȳ), ε) ∩ gphF, 0 < t < ε.
(2.1)

The upper bound of c > 0 such that (2.1) holds for some ε > 0 is called
rate of openness (or rate (or modulus) of surjection) of F near (x̄, ȳ) and is
denoted by surF (x, y). If F is single valued on its domain, we write surF (x̄)
instead of surF (x̄, F (x̄)).

Remark 2.1. As we have mentioned there are two other equivalent character-
izations of linear openness known as metric regularity and pseudo-Lipschitz
or Aubin property. For instance, F : X ⇒ Y with (x̄, ȳ) ∈ gphF is said to
be metrically regular near (x̄, ȳ) if there are κ > 0 and neighborhoods U of x̄
and V of ȳ such that

d
(
x, F−1(y)

)
≤ κd(y, F (x)) for all (x, y) ∈ U × V. (2.2)

The lower bound of all κ > 0 such that (2.2) holds for some neighborhoods U
and V is called the rate or modulus of metric regularity of F near (x̄, ȳ) and is
denoted by regF (x, y). Equivalence of linear openness and metric regularity
was first mentioned probably in the 1980 paper by Dmitruk, Milyutin and
Osmolowski [10] and formally proved (along with the equivalence with the
pseudo-Lipschitz property) by Borwein and Zhuang [5] and Penot [29] in late
80s. It turns out also that the equality

regF (x̄, ȳ) · surF (x̄, ȳ) = 1

always holds (if we set 0 ·∞ = 1); see [21]. We shall not use metric regularity
and the Aubin property in this paper and we simply call F regular near (x̄, ȳ)
if it is open with a linear rate near this point.

Theorem 2.2 (Milyutin’s perturbation theorem [10]). Let X and Y be met-
ric spaces, let F : X ⇒ Y be a set-valued mapping with closed graph, let
x ∈ domF , y ∈ F (x), and let G : X → Y be defined and Lipschitz in a
neighborhood of x. Then

sur(F +G)(x, y +G(x)) ≥ surF (x, y)− lipG(x).

Here lipG(x) is the Lipschitz constant of G at x, that is, the lower bound
of Lipschitz constants of G on neighborhoods of x.

The following regularity criterion plays a central role in our proofs.

Theorem 2.3 (General criterion for single-valued maps). Let X be a complete
metric space, let Y be a metric space, and let F : X → Y be a mapping
with closed graph which is continuous on its domain. Let finally x ∈ domF .
Then F is open near x with surF (x) ≥ c if and only if for any c′ < c there
is a neighborhood U of x such that for any x ∈ U ∩ domF and any y ̸= F (x)
there is an x′ ∈ domF such that

d(F (x′), y) < d(F (x), y)− c′d(x′, x). (2.3)

1There are several equivalent definitions of openness near a point in the literature; see,
e.g., [22].
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This is a special case of a more general criterion applied to arbitrary
set-valued mappings. Both Theorem 2.3 and its set-valued extension first
appeared in [15] (Corollary 1 and Remark 2c) as by-products of the main
result but did not attract much attention at that time. The results were
rediscovered in [21] and recognized as an extremely powerful instrument in
the regularity theory of variational analysis. We can refer the reader to [22] for
various versions of the criterion, local and nonlocal, and demonstrations of its
work and efficiency. We shall need the following consequence of the theorem
(that goes back to [10, 31, 32] and, in fact, to the proof of the Banach open
mapping theorem).

Theorem 2.4 (Density theorem [10, 22]). Let X and Y be complete metric
spaces, and let F be a closed-graph single-valued mapping from X into Y
which is continuous on its domain. Let x ∈ domF and y = F (x). Suppose
that there are c > 0 and ε > 0 such that F (B(x, t)) is dense in

B(F (x), ct) ∩B(y, ε)

for all x ∈ domF close to x and all t ∈ (0, ε). Then surF (x) ≥ c.

For Banach spaces (and more generally for metric spaces with Y , the
range space, being the length space) it is possible to prove an infinitesimal
version of the general criterion which we shall also formulate here for single-
valued mappings (see [4, 21]).

Given a function f on a metric space X which is finite at x ∈ X. The
quantity

|∇f |(x) = lim sup
x̸=u→x

(f(x)− f(u))+

d(x, u)

is called the slope of f at x. Here as usual, α+ = max{α, 0}.
Let a mapping F : X → Y be given. Throughout the paper we shall use

the notation

φy(x) =

{
∥y − F (x)∥ if x ∈ domF ;

∞ otherwise.
(2.4)

We also fix some x ∈ domF and set y = F (x).

Theorem 2.5. Let X and Y be Banach spaces, let F : X → Y be a mapping
with closed graph which is continuous on its domain. Let finally x ∈ domF
and let the function φy be defined by (2.4). Then F is open near x with
surF (x) ≥ c if and only if for any c′ < c there is a neighborhood U of x such
that for any x ∈ U ∩ domF and any y ̸= F (x),

|∇φy|(x) ≥ c′.

3. Main results

Here and below we adopt the following basic hypothesis:X and Y are Banach
spaces and F is a single-valued mapping from X into Y which is continuous
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on its domain and such that for any w ∈ cl(domF )\domF ,

domF ∋ x → w =⇒ ∥F (x)∥ → ∞. (3.1)

Under this assumption the function φy in (2.4) is lower semicontinuous.

3.1. Tangential approximations

Given a set S ⊂ X and an x ∈ S. The contingent tangent cone T (S, x) is the
collection of h ∈ X with the following property: there are sequences of tk ↓ 0
and hk → h such that x+ tkhk ∈ S for all k.

Let now f be a function on X finite at x. The function

X ∋ h �−→ f−(x;h) := lim inf
(t,h′)→(0+,h)

t−1
(
f(x+ th′)− f(x)

)

is called the Dini–Hadamard lower directional derivative of f at x. This func-
tion is either lower semicontinuous and equal to zero at the origin or iden-
tically equal to −∞. The latter of course cannot happen if f is Lipschitz
near x.

The connection between the two concepts is very simple: h ∈ T (S, x) if
and only if d−(·, S)(x;h) = 0, and α = f−(x;h) if and only if (h, α) is in the
tangent cone to gph f at (x, f(x)).

The following simple proposition establishes connection between the
slope of f and its lower directional derivative.

Proposition 3.1. For any function f and any x at which f is finite,

|∇f |(x) ≥ − inf
∥h∥=1

f−(x;h).

Proof. Take an h with ∥h∥ = 1. We have

|∇f |(x) = lim
t↓0

sup
∥u∥=1

(f(x)− f(x+ tu))+

t

≥ lim sup
(t,u)→(0+,h)

f(x)− f(x+ tu)

t

= −f−(x;h)

as claimed. �

If F : X → Y , then the contingent derivative of F at x ∈ domF is the
set-valued mapping

X ∋ h �−→ DF (x;h) :=
{
v ∈ Y : (h, v) ∈ T (gphF, (x, F (x)))

}
.

We are ready to state the main result of this subsection.

Theorem 3.2. Under the basic hypothesis,

surF (x) ≥ α (3.2)

if for any α′ < α there are neighborhoods U ⊂ X of x and V ⊂ Y of y such
that for any x ∈ U ∩ domF and any V ∋ y ̸= F (x) there is an h ∈ SX such
that φ−

y (x;h) ≤ −α′, where the function φy is defined by (2.4).



Vol. 17 (2015)                  Primal regularity estimates 193Primal regularity estimates 7

In particular, suppose that there exist c > 0 and λ ∈ [0, 1) such that for
any c′ > c and λ′ > λ there is a neighborhood U of x such that for any
x ∈ U ∩ domF and any z ∈ SY there is an h ∈ X with ∥h∥ ≤ c′ and
d(z,DF (x;h)) < λ′. Then

surF (x) ≥ 1− λ

c
. (3.3)

Proof. The first statement is immediate from Proposition 3.1 and Theo-
rem 2.5.

To prove the second, take c′ > c and λ′ ∈ (λ, 1) and find a corresponding
neighborhood U of x. Take an x ∈ U ∩ domF and y ̸= F (x) and set

z := ∥y − F (x)∥−1(y − F (x)).

By the assumption, there is an h ∈ X with ∥h∥ ≤ c′ such that ∥z − v∥ < λ′

for some v ∈ DF (x;h). The latter means that there are tk ↓ 0 and hk → h,
k = 1, 2, . . . , such that vk = t−1

k (F (x+ tkhk)− F (x)) → v. We have

∥y − F (x+ tkhk)∥ ≤ ∥y − F (x)− tkz∥+ tk∥z − vk∥
= ∥y − F (x)∥ − tk + tk∥z − vk∥.

Therefore,

φ−
y (x;h) ≤ lim inf

k→∞
t−1
k

(
∥y − F (x+ tkhk)∥ − ∥y − F (x)∥

)
≤ −(1− λ′).

If h = 0, it follows that φ−
y (x; 0) = −∞. If h ̸= 0, we get

φ−
y

(
x;

h

∥h∥

)
≤ − (1− λ′)

c′

and it remains to apply the first statement taking into account that c′ and λ′

can be arbitrarily close to c and λ. �

The theorem can easily be extended to set-valued mappings with prac-
tically the same proof (based on the set-valued version of Theorem 2.5). The
(set-valued version of the) second statement of the theorem is a long known
result. Its “qualitative” part, namely linear openness of the mapping near the
nominal point (with a somewhat less precise estimate) was proved by Aubin
in [2] in 1981 (see also [3]). The estimate (3.3) was obtained six years later
in [20]. Closely connected with Aubin’s theorem is the result of Dontchev,
Quincampoix and Zlateva [11]. As to the first part of the theorem, it seems
to appear for the first time.

It has to be observed that the criterion provided by the first statement
is strictly stronger (unless both spaces are finite dimensional). Informally,
this is easy to understand: the quality of approximation provided by the
contingent derivative for a map into an infinite-dimensional space may be
much lower than for a real-valued function. The following example illustrates
the phenomenon.
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Example 3.3. Let X = Y be a separable Hilbert space, and let (e1, e2, . . . )
be an orthonormal basis in X. Consider the following mapping from [0, 1]
into X:

η(t) =

{
0 if t ∈ {0, 1},
2−(n+2)en if t = 2−n, n = 1, 2, . . . ,

and η(·) is linear on every segment [2−(n+1), 2−n], n = 0, 1, . . . . Then

2

����η
(
1

2

)
− η(1)

���� ≤ 1

4

and, for any n ∈ N, we have��η(2−(n+1)
)
− η

(
2−n

)��
|2−(n+1) − 2−n|

= 2n+1
��2−(n+3)en+1 − 2−(n+2)en

��

=

√
5

4
<

3

4
.

(3.4)

Define a mapping from the unit ball of ℓ2 into ℓ2 by

F (x) = x− η(∥x∥).

Using (3.4) we get that x �→ η(∥x∥) is (3/4)-Lipschitz, hence by Mi-
lyutin’s perturbation theorem F is open near the origin with the rate of
surjection at least 1/4.

Let us look what we get applying both statements of Theorem 3.2 for
the mapping. If ∥h∥ = 1 and t ∈ [2−(n+1), 2−n], then

F (th) = th−
(
2n+1t− 1

)
2−(n+2)en −

(
2− 2n+1t

)
2−(n+3)en+1;

that is,

t−1F (th) = h− 2−1en + 2−2en+1 + 2−(n+2)t−1(en − en+1).

Thus t−1F (th) does not converge when t goes to zero. Hence the contingent
cone to the graph of F at zero consists of a single point (0, 0) and the second
statement in Theorem 3.2 gives surF (0) ≥ 0—a trivial conclusion.

Now take an x with ∥x∥ < 1 and a y ̸= F (x). For any t > 0 and h ∈ X
such that ∥x+ th∥ ≤ 1, we have

∥F (x+ th)− y∥ =
��x+ th− η

(
∥x+ th∥

)
− y

��
≤

��x+ th− η(∥x∥)− y
��+

��η(∥x+ th∥
)
− η(∥x∥)

��
≤ ∥F (x) + th− y∥+ 3

4
t∥h∥.

Taking h = (y − F (x))/∥y − F (x)∥, we get

φ−
y (x;h) ≤ lim

t↓0
t−1

((
1− t

∥F (x)− y∥

)
∥F (x)− y∥ − ∥F (x)− y∥

)
+

3

4

= −1

4

which gives surF (x) ≥ 1/4 for all x with ∥x∥ < 1.
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3.2. Homogeneous approximation

In this subsection we deduce the openness of a mapping F around the refer-
ence point from the properties of a certain positively homogeneous set-valued
mapping. Given a subset S of X, the cone generated by S is denoted by
coneS; that is, coneS := [0,∞)S.

Theorem 3.4. Let (X, ∥ · ∥) and (Y, ∥ · ∥) be Banach spaces, and let F : X →
Y be continuous on its domain which is assumed to be closed and convex.
Assume that for a given x̄ ∈ domF there are positive constants ρ, β and r
along with a positively homogeneous set-valued mapping H : X ⇒ Y such that

F (x′)− F (x) ∈ H(x′ − x) + β∥x′ − x∥BY ∀x, x′ ∈ domF ∩B(x̄, r), (3.5)

and for all x ∈ domF sufficiently close to x and all y∗ ∈ SY ∗ we have

sup
h∈cone(domF−x)∩SX

inf
w∈H(h)

⟨y∗, w⟩ ≥ β + ρ. (3.6)

Assume finally that one of the following two conditions holds:

(a) the norm in Y is Gâteaux smooth and H has relatively norm compact
values;

(b) the norm in Y is Fréchet smooth and H has bounded values.

Then surF (x) ≥ ρ.

Proof. So assume that (a) holds. Take an ε ∈ (0, ρ/2). Find γ ∈ (0, r/2) so
that (3.6) holds for x ∈ B(x, γ) ∩ domF . Take such an x and any y ∈ Y ,
different from F (x). Let y∗ denote the derivative of ∥ · ∥ at y − F (x). Then

lim
0̸=t→0

t−1
(
∥y−F (x)+tw∥−∥y−F (x)∥

)
−⟨y∗, w⟩ = 0 for every w ∈ Y. (3.7)

By (3.6), there is an h ∈ cone(domF − x) ∩ SX such that

⟨y∗, w⟩ > β + ρ− ε ∀w ∈ H(h). (3.8)

Fix δ > 0 such that h ∈ δ(domF −x). Since the set −H(h) is relatively com-
pact and the limit in (3.7) is uniform with respect to w from any fixed compact
set, we get that there is t ∈ (0,min{1/δ, γ}) such that

∥y − F (x)− tw∥ − ∥y − F (x)∥+ ⟨y∗, tw⟩ < tε ∀w ∈ H(h).

This and (3.8) imply that

∥y − F (x)− tw∥ < ∥y − F (x)∥ − ⟨y∗, tw⟩+ εt

≤ ∥y − F (x)∥ − t(β + ρ− 2ε) ∀w ∈ H(h).
(3.9)

Let x′ := x+ th. Noting that t ∈ (0, 1/δ), we have x′ ∈ x+ tδ(domF − x) ⊂
domF by convexity of domF . As 2t < 2γ < r, we have ∥x′ − x∥ = ∥th∥ =
t < r/2. Thus x′ ∈ domF ∩ B(x̄, r). Since H is positively homogeneous, we
have H(x′ − x) = H(th) = tH(h). Thus by (3.5) there is a w ∈ H(h) such
that

∥F (x′)− F (x)− tw∥ ≤ βt. (3.10)
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Now, we are ready for the following chain of estimates:

∥y − F (x′)∥ ≤
��F (x)− F (x′) + tw

��+
��y − F (x)− tw

��
< βt+ ∥y − F (x)∥ − (β + ρ− 2ε)t (by (3.10) and (3.9))

= ∥y − F (x)∥ − (ρ− 2ε)t

= ∥y − F (x)∥ − (ρ− 2ε)∥x′ − x∥.

It remains to apply the criterion of Theorem 2.3.
If (b) holds, the proof is the same. We only have to take into account

that under (b) the limit in (3.7) is uniform for w’s from any bounded subset
of Y . �

There is a canonical way of constructing a positively homogeneous map-
ping H associated with given mapping and a point in its domain. It is associ-
ated with the concept of “strict prederivative” introduced in [19]: a positively
homogeneous set-valued mapping H : X ⇒ Y is a strict prederivative of F
at x ∈ domF if

F (x+ h)− F (x) ∈ H(h) + r(x, h)BY ,

where ∥h∥−1r(x, h) → 0 as x → x, h → 0 (and of course both x and x + h
belong to domF ).

To construct a strict prederivative that ensures a reasonable “outer”
approximation for F , take an ε > 0 and set

Hε(h) :=
{
λ−1(F (x+ λh)− F (x)) :

x, x+ λh ∈ domF ∩B(x̄, ε), λ > 0
}
, h ∈ X.

Then 0 ∈ Hε(0) and for t > 0 we have

Hε(th) = t
{
(tλ)−1(F (x+ tλh)− F (x)) :

x, x+ tλh ∈ domF ∩B(x̄, ε), λ > 0
}
,

that is, Hε(th) = tHε(h). Thus Hε is positively homogeneous and it is an
easy matter to see that (3.5) holds with β = 0.

We get an immediate corollary of the theorem above.

Corollary 3.5. Assume that Y is a Gâteaux smooth Banach space. Let F :
X → Y satisfy the basic hypothesis and have a closed convex domain. If H is
a strict prederivative of F at x with relatively compact values and (3.6) holds
(with β := 0), then surF (x) ≥ ρ.

Part (a) of Theorem 3.4 can be equivalently reformulated in somewhat
more general terms. Given a set S in a Banach space, the measure of non-
compactness of S is the lower bound of r > 0 such that S can be covered by
finitely many open balls of radius r; see [1]. We denote the measure of non-
compactness of S by χ(S).

Theorem 3.6. Let F : X → Y be as in Theorem 3.4. Assume that Y has
Gâteaux smooth norm and H : X ⇒ Y verifies (3.5) and (3.6) for some



Vol. 17 (2015)                  Primal regularity estimates 197Primal regularity estimates 11

positive constants ρ, β and r. If there is a γ ≥ 0 such that χ(H(x)) ≤ γ for
all x ∈ SX ∩ domH, then surF (x) ≥ (ρ− γ)+.

Proof. If ρ ≤ γ, the statement is trivial, so we assume that ρ > γ. Take a
δ ∈ (γ, ρ). For any x ∈ SX ∩ domH choose a finite set H0(x) ⊂ H(x) such
that H(x) ⊂ H0(x) + δBY . Set further for any x ∈ domH,

H1(x) =

{
0 if x = 0;

∥x∥H0(x/∥x∥) otherwise.

Then H1 is positively homogeneous. Both (3.5) and (3.6) hold with H re-
placed by H1, β by β + δ and ρ by ρ − δ. Apply Theorem 3.4 to get that
surF (x) ≥ ρ− δ. Letting δ ↓ γ we conclude the proof. �

Corollary 3.5 and, all the more, Theorems 3.4 and 3.6 substantially im-
prove the earlier results in the same vein proved in [19]. We note in this
connection that condition (3.6) is equivalent to

lim inf
domF∋x→x̄

C
(
H, cone(domF − x)

)
≥ β + ρ,

where, for a given positively homogeneous H : X ⇒ Y and a nonempty cone
K ⊂ X,

C(H,K) := − sup
y∗∈SY ∗

inf
h∈K∩BX

sup
w∈H(h)

⟨y∗, w⟩,

where C(H,K) is the Banach constant of H on K introduced in a somewhat
different form in [19]. Páles [27] was the first to use measures of noncom-
pactness in a similar context but in connection with prederivatives defined
by bunches of linear operators that will be considered in the next subsection.

3.3. Approximations by sets of linear operators

If T is a collection of linear operators from X to Y , then the set-valued
mapping X ∋ x �→ H(x) := {Tx : T ∈ T } is of course positively homoge-
neous. We shall consider positively homogeneous mappings defined by sets
of bounded linear operators, that is, elements of the space L(X,Y ) endowed
with the norm ∥T∥ = sup{∥Tx∥ : ∥x∥ ≤ 1}. It is an easy matter to see that in
this case H inherits some properties of T : if T is (relatively) norm compact
in L(X,Y ), then so are the values of H, if T is bounded, then the values of
H are also bounded.

This observation offers an easy way to specify Theorems 3.4 and 3.6 for
H defined by a set of linear operators. We, however, shall be interested in a
somewhat different question, namely which properties of individual operators
of T allow to get conclusions similar to those of the theorems.

To this end we prove the following result.

Proposition 3.7. Let (X, ∥ · ∥) and (Y, ∥ · ∥) be Banach spaces, let 0 ∈ K ⊂ X
be a convex closed set, let y∗ ∈ SY ∗ , let α > 0 and let T ⊂ L(X,Y ) be a
convex set such that

T (BX ∩K) ⊃ αBY for every T ∈ T . (3.11)
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(a) Suppose that the set C := {T ∗y∗ : T ∈ T } is weak∗ closed and T is
bounded in L(X,Y ). Then, given an α′ ∈ (0, α), there exists a nonzero h ∈ K
such that

⟨y∗, Th⟩ ≥ α′∥h∥ for every T ∈ T .

(b) If X is reflexive, then there exists a nonzero h ∈ K such that

⟨y∗, Th⟩ ≥ α∥h∥ for every T ∈ T .

Proof. (a) Set

D :=
{
x∗ ∈ X∗ : sup

x∈BX∩K
⟨x∗, x⟩ ≤ α′

}
.

This is a weak∗ closed convex set, disjoint from C. Indeed, if T ∗y∗ were in D
for some T ∈ T , we would have from (3.11) that

α′ ≥ sup
x∈BX∩K

⟨T ∗y∗, x⟩ = sup
x∈BX∩K

⟨y∗, Tx⟩ > sup
y∈α′BY

⟨y∗, y⟩ = α′∥y∗∥ = α′,

a contradiction.
Since T is bounded, C is weak∗ bounded, and so weak∗ compact. Thus,

we can separate C andD by an element ofX (see, e.g., [13, Theorem V.2.10]);
that is, there is an h ∈ X strongly separating C and D. Multiplying h by a
constant (if there is a need), we can guarantee that

0 ≤ sup
x∗∈D

⟨x∗, h⟩ ≤ α′ < inf
x∗∈C

⟨x∗, h⟩. (3.12)

We claim that h ∈ BX ∩K. If not, then [13, Corollary V.2.12] yields an
x∗ ∈ X∗ such that ⟨x∗, h⟩ > supx∈BX∩K⟨x∗, x⟩. Multiplying x∗ by a positive
constant, if necessary, we may assume that

⟨x∗, h⟩ > α′ ≥ sup
x∈BX∩K

⟨x∗, x⟩.

Then x∗ ∈ D and (3.12) implies that ⟨x∗, h⟩ ≤ α′; a contradiction. Therefore,
h ∈ BX ∩K.

Finally, as D ⊃ α′BX∗ , (3.12) implies that

inf
x∗∈C

⟨x∗, h⟩ ≥ sup
x∗∈D

⟨x∗, h⟩ ≥ sup
x∗∈α′BX∗

⟨x∗, h⟩ = α′∥h∥.

(b) If X is reflexive, we set

D :=
{
x∗ ∈ X∗ : sup

x∈BX∩K
⟨x∗, x⟩ < α

}

and apply [13, Theorem V.2.8] to justify the existence of an h separating C
and D. The subsequent arguments are essentially the same as above. �

If (Y, ∥·∥) is reflexive, then Y ∗ has an equivalent locally uniformly rotund
norm, say | · |, see [8, Theorem VII.1.14]; then given an ε > 0, the new norm
Y ∗ ∋ y∗ �→ (∥y∗∥2+ε|y∗|2)1/2 is still equivalent and locally uniformly rotund;
finally Shmulyan’s test guarantees that the corresponding predual norm on Y
will be Fréchet smooth, and not far from the original norm. Therefore, com-
bining Proposition 3.7 with the second statement of Theorem 3.4 we get the
following result.
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Theorem 3.8. Assume that X is a reflexive space and the mapping F : X → Y
has closed convex domain and is continuous on its domain. Let x ∈ domF ,
and let T ⊂ L(X,Y ) be a bounded convex set of linear operators such that
for some ρ > 0 and β > 0:

(a) for any x, x′ ∈ domF in a neighborhood of x there is a T ∈ T such that

∥F (x)− F (x′)− T (x− x′)∥ ≤ β∥x− x′∥; (3.13)

(b) there is an ε > 0 such that for any T ∈ T
ε(ρ+ β)BY ⊂ T ((εBX) ∩ (domF − x)). (3.14)

Then surF (x) ≥ ρ.

Proof. Without any loss of generality, assume that x = 0 and F (x) = 0. Since
X is reflexive, assumption (b) implies that so is Y . Indeed, fix any T ∈ T . As
T is surjective, [14, Corollary 2.26(iii)] says that Y is isomorphic toX/T−1(0).
The continuity of T implies that T−1(0) is the closed subspace of X. Thus
X/T−1(0) is reflexive by [14, Exercise 3.114]. Then Y is reflexive by [14,
Exercise 3.112]. By the reasoning before the theorem, we can also suppose
that the norm on Y is Fréchet smooth.

Let ρ′ ∈ (0, ρ) be arbitrary. Pick γ ∈ (0, 1) such that

β + ρ′ < (1− γ)(β + ρ).

As T is bounded, there is a constant r > 0 such that for each x ∈ rBX and
each T ∈ T we have

(1− γ)BX − ε−1x ⊂ BX and ∥Tx∥ ≤ ε
(
(1− γ)(β + ρ)− β − ρ′

)
.

Shrink r, if necessary, so that for each x, x′ ∈ (rBX) ∩ domF there is an
operator T ∈ T such that (3.13) holds; that is, (3.5) holds for

H(x) := {Tx : T ∈ T }, x ∈ X.

Fix any x ∈ (rBX) ∩ domF and any y∗ ∈ SY ∗ . For a given T ∈ T , the
convexity of domF and (3.14) imply that

T
(
(εBX) ∩ (domF − x)

)
⊃ T

(
(ε(1− γ)BX) ∩ domF − x

)

⊃ T
(
(1− γ)

[
(εBX) ∩ domF

])
− Tx

⊃ (1− γ)ε(β + ρ)BY − Tx ⊃ ε(β + ρ′)BY .

Proposition 3.7(b) implies that there is a nonzero h ∈ ε−1(domF − x) such
that

inf
T∈T

⟨y∗, Th⟩ ≥ (β + ρ′)∥h∥;

that is, (3.6) holds for H with ρ replaced by ρ′.
Apply Theorem 3.4(b) to get that surF (0) ≥ ρ′. Taking ρ′ ↑ ρ we finish

the proof. �

In the same way we could prove an operator version of the first part of
Theorem 3.4. But with a compact set of linear operators a stronger result is
available. The following theorem is the main result of this subsection.
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Theorem 3.9. Let X and Y be Banach spaces, and let F : X → Y be a
continuous mapping with closed convex domain. Assume that for a given
x ∈ domF there is a convex subset T of L(X,Y ) which is relatively compact
in L(X,Y ) and that conditions (a) and (b) in Theorem 3.8 hold for some
ρ > 0 and β > 0. Then surF (x) ≥ ρ.

We need the following two lemmas to furnish the proof. The first lemma
is a sort of a weak lifting result for the linear openness/metric regularity prop-
erty (see [23]). Let L ∈ S(X) and M ∈ S(Y ), and let F : X ⇒ Y . We denote
by FL×M the set-valued mapping from L into M whose graph coincides with
gphF ∩(L×M) and by S(X) and S(Y ) the collections of separable subspaces
of X and Y , respectively.

Lemma 3.10. Let F : X ⇒ Y be a mapping with (x, y) ∈ gphF . Suppose
that there is a family E of pairs (L,M), where L ∈ S(X) and M ∈ S(Y )
are closed subspaces containing, respectively, x and y. We assume that E is
cofinal 2 in S(X) × S(Y ) and that the set-valued mapping FL×M is linearly
open near (x̄, ȳ) with surFL×M (x̄, ȳ) ≥ r for any pair (L,M) ∈ E. Then
surF (x̄, ȳ) ≥ r.

Proof. We have to show that surF (x̄, ȳ) ≥ r− ε for any ε > 0. Assuming the
contrary, we can find an ε ∈ (0, r) and sequences (xn) in domF , (vn) in Y
and (yn) in Y converging, respectively, to x and y and such that vn ∈ F (xn)
and yn ̸∈ F (B(xn, tn)), where tn = d(vn, yn)/(r − ε) for every n ∈ N.

Now let L0 ∈ S(X) and M0 ∈ S(Y ) be such that xn ∈ L0 and vn, yn ∈
M0 for every n ∈ N. Then we have to conclude that yn ̸∈ FL×M (BL(xn, tn))
for any subspaces L ⊂ X and M ⊂ Y containing, respectively, L0 and M0,
and therefore surFL×M (x̄, ȳ) ≤ r − ε contrary to the assumption. �

The second lemma presents a folkloric renorming result.

Lemma 3.11. Given a separable Banach space (Y, ∥ · ∥) and an ε > 0, there is
an equivalent Gâteaux smooth norm | · | on Y such that |y| ≤ ∥y∥ ≤ (1+ ε)|y|
for every y ∈ Y .

Proof. Let {y1, y2, . . .} be a countable dense subset of the unit ball BY . Put

|y∗| :=
(
∥y∗∥2 + ε

∞∑
n=1

2−n⟨y∗, yn⟩2
)1/2

, y∗ ∈ Y ∗.

A folkloric (but not completely trivial) argument guarantees that | · | thus
defined is an equivalent dual norm on Y and that we have

∥y∗∥ ≤ |y∗| ≤ (1 + ε)∥y∗∥ for every y∗ ∈ Y ∗.

Hence, denoting by the same symbol | · | the corresponding predual norm
on Y , we have

|y| ≤ ∥y∥ ≤ (1 + ε)|y| for every y ∈ Y .

2That is, for any L ∈ S(X) and M ∈ S(Y ) there is a pair (L′,M ′) ∈ E such that L ⊂ L′

and M ⊂ M ′.
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Assume that | · | is not Gâteaux differentiable at some 0 ̸= y ∈ Y . Then there
are distinct y∗1 , y

∗
2 ∈ Y ∗, of norm 1, such that ⟨y∗1 , y⟩ = ⟨y∗2 , y⟩ = |y|; then

|y∗1 + y∗2 | = 2. It follows that

2|y∗1 |2 + 2|y∗2 |2 − |y∗1 + y∗2 |2 = 0,

and a convexity argument yields that ⟨y∗1 − y∗2 , yn⟩2 = 0 for all n ∈ N. Thus
y∗1 = y∗2 , a contradiction. �

Proof of Theorem 3.9. If both X and Y are separable spaces, then the result
follows from the first parts of Theorem 3.4, Proposition 3.7, and Lemma 3.11.

Thus we only need to show that the family of all pairs

(L,M) ∈ S(X)× S(Y )

(containing (x, F (x))), such that F (L) ⊂ M and that the mapping

F�L: L → M

satisfies conditions (a) and (b) in Theorem 3.8 ifX, Y ,K := domF−x and F
are replaced by L, M , K∩L and F�L, respectively, is cofinal in S(X)×S(Y ).
Indeed, as L and M are separable, there are Gâteaux smooth norms in L and
M arbitrarily close to the given norms. Therefore, by Theorem 3.4 for any
ε > 0 we have surF �L (x) ≥ ρ − ε, hence surF �L (x) ≥ ρ. Applying Lem-
ma 3.10, we get the result.

In proving the cofinality of the family described in the previous para-
graph, we can harmlessly assume that x = 0. Given some L0 ∈ S(X) and
M0 ∈ S(Y ) (no loss of generality occurs if we assume that they contain,
respectively, x and F (x)), we shall construct a sequence of pairs

(Li,Mi) ∈ S(X)× S(Y )

such that

(i) L0 ⊂ L1 ⊂ L2 ⊂ · · · and M0 ⊂ M1 ⊂ M2 ⊂ · · · ;
(ii) Mn ⊂ T (Ln) ⊂ Mn+1 and rBMn ⊂ cl

(
T (BLn ∩K)

)
for all T ∈ T ;

(iii) F (Ln) = F (Ln ∩K) ⊂ Mn+1.

If such sequences are found, we define L and M as the closures of
∪

Ln

and
∪
Mn, respectively. Clearly, both subspaces are separable. From (ii) we

conclude that for any T ∈ T the closure of T (L) coincides with M and,
moreover, rBM ⊂ cl(T (BL ∩K)). Applying now the density theorem (Theo-

rem 2.4) we conclude that r
◦
BM ⊂ T (BL ∩K). Finally, (iii) shows that F�L

is a mapping from L ∩K into M . This concludes verification of (a) and (b)
for L, M , K ∩ L and F�L.

The construction of the sequences (Mn) and (Ln) is not very compli-
cated. Suppose we have already Ln and Mn. We first define Mn+1 as the
subspace spanned by the union of Mn, F (Ln) and all T (Ln), T ∈ T (profit-
ing from the separability of T ). Then, once Mn+1 and T are separable, we
can easily find a separable subspace Ln ⊂ Ln+1 ⊂ X such that

rBMn+1 ⊂ cl
(
T (BLn+1 ∩K)

)
. �
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Based on the theorem, we can prove a far reaching extension of Clarke’s
inverse function theorem.

Theorem 3.12. We posit the assumption of Theorem 3.9 and assume in ad-
dition that every T ∈ T is an invertible operator. Then F−1 has a graphical
localization around F (x) which is both single valued and Lipschitz continuous
with constant 1/ρ. In other words, there are neighborhoods U of x and V of
y = F (x) and a (1/ρ)-Lipschitz mapping G : V → X such that G(y) = x and
F−1(y) ∩ U = {G(y)} for all y ∈ V .

Proof. As surF (x) ≥ ρ, there are δ > 0 and r > 0 such that

B(F (x), δ) ⊂ F (B(x, r) ∩ domF ).

Take some y, y′ ∈ B(F (x), δ), and choose x and x′ in B(x̄, r) ∩ domF such
that y = F (x) and y′ = F (x′). By (3.13) there is a T ∈ T such that

∥F (x′)− F (x)− T (x′ − x)∥ ≤ β∥x′ − x∥.

Then (3.14), along with invertibility of T , implies that (β+ρ)T−1(BY ) ⊂ BX

which means that ∥T−1∥ ≤ (ρ+ β)−1. Therefore,

∥x′ − x∥ ≤ ∥T−1∥ ∥T (x′ − x)∥

≤ 1

ρ+ β

(
∥y′ − y − T (x′ − x)∥+ ∥y′ − y∥

)

≤ β

β + ρ
∥x′ − x∥+ 1

β + ρ
∥y′ − y∥.

Multiplying the latter inequality by (β + ρ)/ρ and then rearranging it a bit
we get that ∥x′ − x∥ ≤ ρ−1∥y′ − y∥. Taking y′ = y here, we get that the
mapping

B
(
F (x), δ

)
∋ y �−→ F−1(y) ∩B(x, r)

is a single-valued graphical localization of F−1 around F (x) for x. Using the
last estimate for distinct y and y′, we get that this graphical localization is
Lipschitz continuous with the constant 1/ρ. �

As in the preceding subsection we can replace the compactness assump-
tion by a suitable estimate for the measure of noncompactness of T , that is,
the following theorem is true.

Theorem 3.13. We posit the assumption of Theorem 3.9 except that instead of
assuming that T is relatively compact in L(X,Y ), we suppose that χ(T ) < ∞.
Then surF (x) ≥ (ρ− χ(T ))+.

The results presented in this subsection also have a long history start-
ing with the famous theorem of Graves [18] which exactly corresponds to
Theorem 3.9 with T being a singleton and x ∈ int(domF ). Together with
the famous 1934 Lyusternik theorem, the result of Graves was the starting
point for the development of the regularity theory of variational analysis.
Theorem 3.8 was proved in [15] under a de facto assumption that x is in the
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interior of domF . An earlier version of the theorem under somewhat stronger
assumptions was proved in [9].

Theorem 3.13 (with β = 0 and also x in the interior of domF ) was
proved by Páles in [27]. Finally, the main result of the subsection, Theo-
rem 3.9, is a slightly more precise version of a recent result of the first two
authors [6]. (We assume that (3.13) is satisfied only for x, x′ ∈ domF suffi-
ciently close to x, not for all elements of domF . This allows to exclude the
influence of the size of domF on surF .) In both [27] and [6], the proofs use a
topological machinery including Michael’s selection theorem and Schauder’s
fixed point theorem. Our proof, on the contrary, is purely analytic and is es-
sentially based on the techniques of regularity theory of variational analysis
and a renorming. We emphasize the role of separable reduction that allows
to prove the meaningful part of the statement only for separable spaces.

Note, however, that the proofs given in [27] and [6] can be substan-
tially simplified and shortened if the regularity criterion of Theorem 2.3 is
incorporated into the argument.

Alternative proof of Theorem 3.9. With no loss of generality, we assume that
x = 0 and F (x) = 0. We can also safely assume that T is a compact set:
(3.14) is still valid for all elements of the closure of T .

To begin with, take a small δ > 0 that will be fixed throughout most of
the proof. The obvious inclusion (1− δ)BX −x ⊂ BX if ∥x∥ < δ implies that
for any λ ∈ (0, 1) and x ∈ δλBX ,

(λBX) ∩ (domF − x) ⊃
[
((1− δ)λBX) ∩ domF

]
− x. (3.15)

Set τ = sup{∥T∥ : T ∈ T } and N = ρ+ β + τ . If λ ≤ ε, then for any T ∈ T
and x ∈ δλBX we get by (3.15) and (3.14)

T
(
(λBX) ∩ (domF − x)

)
⊃ (1− δ)T

(
(λBX) ∩ domF

)
− Tx

⊃ λ
[
ρ+ β −Nδ

]
BY .

(3.16)

We assume in what follows that λ < ε is such that (3.13) holds for all x, x′ ∈
(δλBX) ∩ domF . For a time being, fix an x ∈ δλBX .

Fix for a longer while a nonzero v ∈ ε(ρ + β − Nδ)BY . As follows
from (3.16), for any T ∈ T , there is an h ∈ (εBX) ∩ (domF − x) such that
Th = v and ∥h∥ ≤ (ρ + β − Nδ)−1∥v∥. For any T ∈ T , let us fix such an
h =: h(T ) and further put

U(T ) :=
{
T ′ ∈ T : ∥T ′h(T )− v∥ < δ∥v∥

}
.

This set is nonempty as T ∈ U(T ), it is obviously open and the union of such
sets when T ranges through T covers T . As T is compact, we can choose a
finite subcovering

{U(T1), . . . , U(Tk)}
of it. Set hi := h(Ti), and let {α1(·), . . . , αk(·)} be a continuous partition
of unity subordinated to this subcovering; that is, αi(·) ≥ 0, αi(T ) = 0 if
T ∈ T \ U(Ti), and α1(·) + · · ·+ αi(·) = 1. (For instance, we can take βi(T )
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equal to the distance from T to the complement of U(Ti) in T if T ∈ U(Ti)
(and zero otherwise) and set αi(T ) = βi(T )/(

∑
i βi(T )).)

Next we define a mapping h̃ : T → X by

h̃(T ) =
k∑

i=1

αi(T )hi, T ∈ T .

Clearly, h̃ is a continuous mapping, range h̃ ⊂ domF (as domF is convex).
Furthermore, for each T ∈ T we have

∥h̃(T )∥ ≤ (ρ+ β −Nδ)−1∥v∥ and ∥T h̃(T )− v∥ < δ∥v∥. (3.17)

The first inequality is immediate from the definition of h̃(T ). To verify the
second, we observe that αi(T ) > 0 only if ∥T (h(Ti))−v∥ < δ∥v∥ and therefore

∥T (h̃(T ))− v∥ =
���
∑

αi(T )
(
Thi − v

)��� ≤
∑

αi(T )∥Thi − v∥ < δ∥v∥,

and the second inequality in (3.17) follows. Note finally that the mapping h̃(·)
depends on the choice of v, so it would be natural to denote it by hv(·).

Next for any h ∈ X let Tx(h) be the collection of all T ∈ T such
that (3.13) holds with x′ := x + h. Then the set Tx(h) is nonempty and
convex if x+ h ∈ (δλBX) ∩ domF and the graph of the set-valued mapping
h �→ Tx(h) is closed, the latter being true because domF is a closed set by
the assumption and F is continuous (even Lipschitz) on domF by (3.13).

Finally, take any x ∈ domF with ∥x∥ < δλ and any y ̸= F (x). Put

v := −ξ(y − F (x)),

where ξ is small enough to guarantee that

∥v∥ ≤ λ(ρ+ β −Nδ) and ∥x+ hv(T )∥ < δλ for all T .

Then hv(T ) belongs to the domain of Tx for all T ∈ T , that is,

(Tx ◦ hv)(T ) = Tx(hv(T )) ̸= ∅

and as hv(·) is continuous, the graph of Tx ◦ hv is closed. This is a convex-
valued mapping from T into itself and, as T is compact and convex, we
can apply Gliksberg’s extension of the Kakutani fixed point theorem [16, 17]

(based on Brouwer’s fixed point theorem) and conclude that there is a �T ∈ T
such that

Tx

(
hv

( �T ))
∋ �T .

Set ĥ := hv( �T ). By (3.17), we have
��y − F

(
x+ ĥ

)�� ≤ ∥y − F (x)− v∥+
��F (

x+ ĥ
)
− F (x)− �T ĥ��+

�� �T ĥ− v
��

≤ ∥y − F (x)∥ − ∥v∥+ β
��ĥ��+ δ∥v∥

≤ ∥y − F (x)∥ −
(
1−

(
β

ρ+ β −Nδ
+ δ

))
∥v∥

≤ ∥y − F (x)∥ −
(
ρ−Nδ − (ρ+ β −Nδ)δ

)��ĥ��.
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In other words, for any ρ′ < ρ we can find (by choosing a suitable δ) a neigh-
borhood of x such that for any x ∈ domF in this neighborhood and any
y ̸= F (x) there is an h ̸= 0 such that ∥y − F (x+ h)∥ ≤ ∥y − F (x)∥ − ρ′∥h∥.
The proof is now completed by a reference to the regularity criterion of The-
orem 2.3. �

4. Concluding remarks and comparison of the results

Theorems 3.2, 3.4 and 3.9 seem to represent the trio of the most advanced (for
the moment) results with primal estimates for regularity rates. The important
point is that the three theorems are different and neither of them implies
the other, unless the spaces are finite dimensional. In this latter case, the
estimates for the rate of surjection provided by both parts of Theorem 3.2
are never worse than the estimates of the other two theorems. The following
example demonstrates the phenomenon.

Example 4.1. Let X = R2, with ℓ∞-norm, Y = R and f(x) = |x1| − |x2|.
Clearly sur f(x) = 1 for any x. This function is directionally differentiable at
every x and its contingent derivative (as a mapping from R2 into R) coincides
with its standard directional derivative

f ′(x;h) = lim
t↓0

t−1
(
f(x+ th)− f(x)

)
.

We have

Df(x;h) = f ′(x;h) =




(signx1)h1 − (signx2)h2 if x1 ̸= 0, x2 ̸= 0;

(signx1)h1 ± h2 if x1 ̸= 0, x2 = 0;

±h1 − (signx2)h2 if x1 = 0, x2 ̸= 0;

±h1 ± h2 if x1 = x2 = 0.

Clearly, for any x we can find an h, either equal to (±1, 0) or to (0,±1)
such that f ′(x;h) is equal to 1 or −1. In other words, the condition of The-
orem 3.2 is satisfied with λ = 0 and c = 1 and the theorem gives the precise
value of the rate of surjection.

On the other hand, the generalized gradient of f at zero is the ℓ∞ unit
ball in R2: {y : max{|y1|, |y2|} ≤ 1}, so any collection T corresponding to
β < 1 would contain zero. This means that Theorem 3.9 provides only the
trivial estimate sur f(0) ≥ 0. Similar arguments lead to the same estimate in
Theorem 3.4.

The point is that in a finite-dimensional situation Theorem 3.2 is a
source result for an exact estimate of the rate of surjection (see [11]). On the
other hand, the advantage of Theorem 3.4 and especially Theorem 3.9 in this
case is due to greater simplicity of their application if the mapping is Lipschitz
on its domain. Indeed, the simplest and the most natural set of operators in
this case is the generalized Jacobian. To compute it, we only need to know
derivatives of the mappings on some set of full measure. On the other hand,
Theorem 3.2 requires calculation of DF (x), or the tangent cone to the graph,
or the Dini–Hadamard lower directional derivative at every point which may
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require much more effort. So if we only wish to know whether the mapping
is open, Theorems 3.4 and 3.9 may be more convenient.

Things change in the infinite-dimensional case when the quality of ap-
proximation provided by the contingent cone may be very poor. For instance,
it is an easy matter to verify that (unlike the second part of Theorem 3.2)
both Theorems 3.4 and 3.9 work well in Example 3.3 with T = {I} (I being
the identity mapping) and H(x) = {x} respectively, ρ = 1/4 and β = 3/4.
Performance of Theorem 3.2 can be improved under additional assumptions
that improve the behavior of the contingent cones (e.g., sleekness [3]).

Now about the relations between Theorems 3.4 and 3.9. On the one
hand, the assumptions of the first theorem are noticeably weaker. The posi-
tively homogeneous mapping generated by a compact set of linear operators is
necessarily bounded (its upper norm ∥H∥ = sup{∥y∥ : y ∈ H(x), ∥x∥ ≤ 1} is
necessarily finite) and moreover, it is Lipschitz with respect to the Hausdorff
metric. None of these properties is required for H in Theorem 3.4. The most
restrictive is the convexity assumption. It is essential (look for f(x) = |x| and
T = {−1, 1}). But say, in Example 4.1 with x = 0 every convex set of linear
functions satisfying property (a) of Theorem 3.8 contains zero.

On the other hand, the obvious advantage of the last theorem is that it
is valid in all Banach spaces while the first is not. The cause is the absence of
a separable reduction for the property (3.6). Whether or not such a reduction
is possible is still unclear.

In addition, working with sets of linear operators can be much more
convenient. The problem is that there is no way known to find suitable sets
of linear operators unless dimY < ∞ (see [28]). Existence theorems for linear
selections of positively homogeneous set-valued mappings may offer a possible
way to bypass this difficulty. A general condition that guarantees that a
positively homogeneous mapping is generated by its linear selections is given
in [26], but it does not seem easily verifiable in practical situations. Some more
specialized conditions for concrete types of prederivatives can be found in [19].
Still it is not clear how to translate properties of the set-valued mapping into
properties of its individual linear selections, unless both spaces are reflexive
(see [15]).
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Basel, 1992.

[2] J.-P. Aubin, Contingent derivatives of set-valued maps and existence of so-
lutions to nonlinear inclusions and differential inclusions. In: Mathematical



Vol. 17 (2015)                  Primal regularity estimates 207Primal regularity estimates 21

Analysis and Applications, Part A, Adv. in Math. Suppl. Stud. 7, Academic
Press, New York, 1981, 159–229.

[3] J. P. Aubin and H. Frankowska, Set-Valued Analysis. Systems & Control: Foun-
dations & Applications 2, Birkhäuser Boston, Boston, MA, 1990.
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