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Abstract. There have been numerous attempts recently to extend many
of the metric standard fixed point theorems to a more general semimet-
ric context. In many instances a weakened form of the triangle inequality
is involved and the space is assumed to be complete. Thus Cauchy se-
quences play a central role. One of the standard tests to determine when
a sequence is Cauchy in a metric space (X, d) is the summation criterion:
If {pn} ⊂ X and

∑∞
i=1 d(pi, pi+1) < ∞, then {pn} is Cauchy. In this

note we examine instances in which this criterion plays a critical role.
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1. Introduction

It is well known that the question of assigning a “distance” between two points
of an abstract set is fundamental in geometry. According to Blumenthal [3,
p. 31], this concept has its origins in the late nineteenth century in axiomatic
studies of de Tilly [26]. In his 1928 treatise [22], Menger used the term halb-
metrischer Raume, or semimetric space, to describe the same concept. We
begin by summarizing the results of Wilson’s seminal paper [29] on semimetric
spaces.

Definition 1.1. Let X be a set and let d : X × X → R+ be a mapping
satisfying, for each a, b ∈ X, the following axioms:

(I) d(a, b) = 0 if and only if a = b;
(II) d(a, b) = d(b, a).

Then, d is a semimetric on X and the pair (X, d) is called a semimetric space.

In such a space, convergence of sequences is defined in the usual way:
A sequence {xn} ⊆ X is said to converge to x ∈ X if limn→∞ d(xn, x) = 0.
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Also a sequence is said to be Cauchy (or d-Cauchy) if for each ε > 0 there
exists N ∈ N such that m,n ≥ N ⇒ d(xm, xn) < ε. The space (X, d) is said
to be complete if every Cauchy sequence has a limit.

With such a broad definition of distance, three problems are immedi-
ately obvious:

(i) there is nothing to assure that limits are unique (thus the space need
not be Hausdorff);

(ii) a convergent sequence need not be a Cauchy sequence;
(iii) the mapping d(a, ·) : X → R need not even be continuous.

Therefore, it is unlikely there could be an effective topological theory in such a
setting. These three problems are immediately resolved with the introduction
of the triangle inequality:

(III) Triangle inequality: With X and d as in Definition 1.1 assume also that
for each a, b, c ∈ X,

d(a, b) ≤ d(a, c) + d(c, b).

Definition 1.2. A pair (X, d) satisfying axioms (I), (II), and (III) is called a
metric space.1

The focus of this note is on classes of spaces which lie strictly between
the semimetric and metric spaces.

2. Relaxing the triangle inequality

The object of this note is to discuss fixed point properties in spaces which lie
strictly between the semimetric spaces and metric spaces. These are spaces
that satisfy relaxed forms of the triangle inequality. The following concept
is one example of such a class of spaces. This concept has long history; see
Heinonen [14] and in particular the Notes at the end of Chapter 14 of that
book. In this connection Heinonen refers to [5, Chapters 5–10].

Definition 2.1. A semimetric space (X, d) is said to be a quasi-metric space
(or b-metric space) if there exists s ≥ 1 such that for each x, y, z ∈ X,

d (x, y) ≤ s [d (x, z) + d (z, y)] . (2.1)

The term b-metric space for this concept is due to Czerwik [9, 10]. This
relaxation of the triangle inequality is also discussed by Fagin and Stock-
meyer [12] who called this new distance measure nonlinear elastic matching
(NEM). The authors of that paper remarked that this measure has been
used, for example, in [8] for trademark shapes and in [21] to measure ice
floes. These distance spaces are called relaxedt metric spaces in [11]. Xia [30]
has also used this semimetric distance to study the optimal transport path
between probability measures. Peppo [23] used the term quasi-distance for
this concept.

1The term “metric space” for spaces satisfying axioms (I), (II), and (III), is apparently due
to Hausdorff [13].
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Remark 2.2. Another definition of a quasi-metric is given recently by Alsu-
lami et al. [1]. In the terminology of [1], a quasi-metric is a metric without
the assumption of symmetry of the distance. Thus a quasi-metric on a set X
in the sense of [1] is a function q : X × X → R+ which satisfies, for all
x, y, z ∈ X, the following conditions:

(1) q(x, y) = 0 if and only if x = y;
(2) q(x, y) ≤ q(x, z) + q(z, y).

In 2004, Turinici [28] introduced the following notions: Let X be a set
and let e : X ×X → R+ be a mapping. Then, e is said to be

(i) pseudometric, provided it is reflexive: e(x, x) = 0 for all x ∈ X;
(ii) triangular, provided e(x, z) ≤ e(x, y) + e(y, z) for all x, y, z ∈ X;
(iii) sufficient, provided e(x, y) = 0 implies x = y.

In this case, the quasi-metric appearing in [1] is a sufficient triangular pseu-
dometric defined earlier in [28].

A semimetric space (X, d) is said to have the metric boundedness prop-
erty (see [11]) if there exist a metric ρ on X and positive constants c1 and c2
such that for each x, y ∈ X,

c1ρ (x, y) ≤ d (x, y) ≤ c2ρ (x, y) .

It is almost immediate that the metric boundedness property implies that
the semimetric is a quasi-metric space since in this case for each x, y, z ∈ X,

d (x, y) ≤ c2ρ (x, y)

≤ c2 [ρ (x, z) + ρ (z, y)]

≤ c2
[
c−1
1 d (x, z) + c−1

1 d (z, y)
]

= c2c
−1
1 [d (x, z) + d (z, y)] .

It is also noted in [11] that while the converse is not true, rather surprisingly
the converse is true if one replaces the relaxed triangle inequality (2.1) with
the relaxed polygonal inequality, which asserts that there is a constant s ≥ 1
such that for all n ∈ N and x, y, x1, . . . , xn−1 ∈ X,

d (x, y) ≤ s [d (x, x1) + d (x1, x2) + · · ·+ d (xn−1, y)] .

Following [11], we call a space which satisfies the relaxed polygonal inequality
an s-relaxedp metric space.

Theorem 2.3 (See [11]). A semimetric space has the metric boundedness prop-
erty if and only if it is an s-relaxedp metric space.

In any quasi-metric space limits are unique. However, it is easy to see
that the distance function need not be continuous. In fact if {qn} ⊂ X and if
limn→∞ qn = q, then for any p ∈ X all that can be said is that

s−1d (p, q) ≤ lim inf
n→∞

d (p, qn) ≤ lim sup
n→∞

d (p, qn) ≤ sd (p, q) .
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In general,

lim
n→∞

d (p, qn) = d (p, q) ⇐⇒ s = 1.

Indeed, open balls in such spaces need not be open sets. This prompts us to
suggest a strengthening of the notion of quasi-metric spaces that remedies
this defect. The following concept was introduced in [19].

Definition 2.4. A semimetric space (X, d) is said to be a strong quasi-metric
space (called an sb-metric space in [19]) if there exists s ≥ 1 such that for
each x, y, z ∈ X,

d (x, y) ≤ d (y, z) + sd (x, z) . (2.2)

The next result shows that strong quasi-metric spaces are precisely those
quasi-metric spaces that satisfy condition (2.6) of [30].

Proposition 2.5 (See [19]). A semimetric space (X, d) is a strong quasi-metric
space if and only if there exists s ≥ 1 such that for each p, q, r, t ∈ X,

|d (p, q)− d (r, t)| ≤ s [d (p, r) + d (q, t)] . (2.3)

Proof. Suppose that (X, d) is a strong quasi-metric space with constant s ≥ 1.
Then there exists s ≥ 1 such that for all p, q, r, t ∈ X,

d (p, q) ≤ d (p, r) + sd (q, r)

≤ d (r, t) + sd (p, t) + sd (q, r)

from which

d (p, q)− d (t, r) ≤ s [d (p, t) + d (q, r)] .

A similar argument shows that

d (t, r)− d (p, q) ≤ s [d (t, p) + d (r, q)] ;

hence

|d (p, q)− d (t, r)| ≤ s [d (p, r) + d (q, t)] .

Thus a strong quasi-metric space satisfies (2.3). The converse is trivial; merely
take q = t. �

Proposition 2.6 (See [19]). If a semimetric space (X, d) is a strong quasi-
metric space, then it is an s-relaxedp metric space.

Corollary 2.7. Let {pn} be a sequence in a strong quasi-metric space and
suppose that

∞∑
i=1

d (pi, pi+1) < ∞.

Then {pn} is a Cauchy sequence.

We give a slight extension of these facts below.



Vol. 17 (2015)	 Semimetric spaces	 545Semimetric spaces 5

Definition 2.8 (See [2]). Let (X, d) be a semimetric space. A mapping

Φ : R+ × R+ → R+

is said to be a triangle function for d if Φ is symmetric and monotone in-
creasing in both of its arguments, Φ(0, 0) = 0, and for all x, y, z ∈ X,

d (x, y) ≤ Φ (d (x, z) , d (z, y)) .

Notice that by taking z = x we conclude that for any triangle function,
for x, y ∈ X,

d (x, y) ≤ Φ(0, d (x, y)) .

It is shown in [2] that every semimetric space (X, d) has a basic triangle func-
tion Φd which has the property that if Φ is any other triangle function for d,
then Φd ≤ Φ. Only those semimetric spaces for which the basic triangle func-
tion is continuous at (0, 0) are considered in [2]. Such spaces are called regular.

A monotone increasing function φ : R+ → R+ is called a comparison
function if limn→∞ φn(t) = 0 for each t ∈ R+. If (X, d) is a semimetric space,
a mapping T : X → X is called a φ-contraction if

d (T (x) , T (y)) ≤ φ (d (x, y)) for each x, y ∈ X.

These concepts are due to Matkowski [20]. The following is the main result
of [2].

Theorem 2.9. If (X, d) is a complete regular semimetric space and φ is a
comparison function, then every φ-contraction has a unique fixed point.

We now introduce a strengthening of a triangle function definition anal-
ogous to the strengthening of a quasi-metric space to a strong quasi-metric
space.

Definition 2.10. Let (X, d) be a semimetric space and let Φ be a triangle
function. We say that Φ is a strong triangle function for d if Φ is monotone
increasing in each of its variables, Φ(0, 0) = 0 and for all x, y, z, w ∈ X,

|d (x, y)− d (z, w)| ≤ Φ(d (x, z) , d (y, w)) . (2.4)

Upon taking z = w we immediately see that a strong triangle function
for d is a triangle function for d. Also, in view of Proposition 2.5, if Φ(u, v) =
s(u + v), then (X, d) is a strong quasi-metric space. In view of this, the
following is an extension of Proposition 2.6.

Proposition 2.11. If a semimetric space (X, d) has a strong triangle function
Φ, then for each x, y, x1, . . . , xn−1 ∈ X,

d (x, y) ≤ Φ(0, d (x, x1)) + Φ (0, d (x1, x2)) + · · ·+Φ(0, d (xn−1, y)) .

Proof. Let {pn} ⊂ X. First we assert that for any n, j ∈ N,

d (pn, pn+j) ≤ d (pn, pn+1) +

n+j−1∑
i=n+1

Φ (0, d (pi, pi+1)) . (2.5)
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The proof is by induction on j. Taking j = 2 we have by (2.4)

d (pn, pn+2)− d (pn, pn+1) ≤ Φ(d (pn, pn) , d (pn+2, pn+1))

= Φ (0, d (pn+2, pn+1)) .

Thus

d (pn, pn+2) ≤ d (pn, pn+1) + Φ (0, d (pn+2, pn+1)) .

Assume that for j ≥ 2,

d (pn, pn+j) ≤ d (pn, pn+1) +

n+j−1∑
i=n+1

Φ (0, d (pi, pi+1)) .

Then by (2.4)

d (pn, pn+j+1)− d (pn, pn+j) ≤ Φ(d (pn, pn) , d (pn+j+1, pn+j))

= Φ (0, d (pn+j+1, pn+j)) ,

so by the inductive assumption

d (pn, pn+j+1) ≤ d (pn, pn+j) + Φ (0, d (pn+j+1, pn+j))

≤ d (pn, pn+1) +

n+j−1∑
i=n+1

Φ (0, d (pi, pi+1))

+ Φ (0, d (pn+j+1, pn+j))

= d (pn, pn+1) +

n+j∑
i=n+1

Φ(0, d (pi, pi+1)) .

This completes the induction. On the other hand, since

d (pn, pn+1) ≤ Φ(0, d (pn, pn+1)) ,

inequality (2.5) now implies

d (pn, pn+j) ≤
n+j−1∑
i=n

Φ(0, d (pi, pi+1)) .

Taking pn = x, pn+j = y, and xk = pn+k the conclusion follows. �

In view of the above, if

∞∑
i=n

Φ(0, d (pi, pi+1)) < ∞,

then {pn} is a Cauchy sequence. The following is Theorem 2.4 of [4]. It is
derived from a version of Ekeland’s variational principle in b-metric spaces.
(Recall that in a semimetric space (X, d), the distance function d is said to
be continuous if for any sequences {pn}, {qn} ⊆ X, limn→∞ d(pn, p) = 0 and
limn→∞ d(qn, q) = 0 imply that limn→∞ d(pn, qn) = d(p, q).)
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Theorem 2.12. Let (X, d) be a complete b-metric space (with s > 1) such that
the b-metric d is continuous, and let ψ : X → R be lower semicontinuous and
bounded from below. Suppose that f : X → X satisfies

d (u, v) + sd (u, f (u)) ≥ d (f (u) , v) (2.6)

and
s2

s− 1
d (u, f (u)) ≤ ψ (u)− ψ (f (u)) (2.7)

for all u, v ∈ X. Then f has a fixed point.

This quickly yields Caristi’s theorem for strong quasi-metric spaces. For
convenience we state Caristi’s theorem in its original form. (There have, of
course, been numerous extensions and generalizations of this result over the
years.) (Recall that if M is a metric space, a mapping φ : M → R is said to
be (sequentially) lower semicontinuous (l.s.c.) if, given x ∈ X and a sequence
{xn} in M , the conditions limn→∞ xn → x and limn→∞ φ(xn) → r imply
that φ(x) ≤ r.)

Theorem 2.13 (See [7]). Let (X, d) be a complete metric space. Let f : X → X
be a mapping, and φ : X → R+ a lower semicontinuous function. Suppose
that

d (x, f (x)) ≤ φ (x)− φ (f (x)) , x ∈ X. (C)

Then f has a fixed point.

Theorem 2.14 (See [19]). Let (X, d) be a complete strong quasi-metric space
(with s > 1) and let φ : X → R be lower semicontinuous and bounded from
below. Suppose that f : X → X satisfies

d (x, f (x)) ≤ φ (x)− φ (f (x))

for all x ∈ X. Then f has a fixed point.

Proof. Continuity of the distance functions comes from the fact that d is a
strong quasi-metric. Also, taking q = t in (2.3) we obtain

|d (p, t)− d (r, t)| ≤ sd (p, r)

for each p, r, t ∈ X. Thus

d (r, t) + sd (p, r) ≥ d (p, t)

for each p, r, t ∈ X, and it follows upon taking p = f(u), t = v, and r = u,
that

d (u, v) + sd (u, f (u)) ≥ d (f (u) , v)

for each u, v ∈ X, so (2.6) holds. Finally, taking ψ = s2

s−1 φ, we obtain (2.7).
�

Let (X, d) be a strong quasi-metric space, and let CB(X) be the col-
lection of all nonempty bounded closed subsets of X. Define the Hausdorff
distance H on CB(X) in the usual way. The following is a generalization of
Nadler’s set-valued contraction mapping theorem in metric spaces. With the
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aid of Corollary 2.7, Nadler’s original proof of [24] carries over with only
minor change. See [19] for the details.

Theorem 2.15. Let (X, d) be a complete strong quasi-metric space, and let
CB(X) be the collection of all nonempty bounded closed subsets of X endowed
with the Hausdorff strong quasi-metric H. Let k ∈ (0, 1) and suppose that
T : X → CB(X) satisfies

H (T (x) , T (y)) ≤ kd (x, y) (2.8)

for all x, y ∈ X. Then there exists x ∈ X such that x ∈ T (x).

The preceding discussion suggests the following fundamental questions.

Question 1. Does Caristi’s theorem hold in a complete regular semimetric
space which has a strong triangle function?

Question 2. Does the analogue of Nadler’s theorem hold in a complete regular
semimetric space which has a strong triangle function?

3. Generalized metric spaces

We now turn to the concept of generalized metric space. This section is
a sequel to [17]. In an effort to generalize Banach’s contraction mapping
principle, which holds in all complete metric spaces, to a broader class of
spaces, Branciari [6] conceived of the notion to replace triangle inequality with
a weaker assumption he called the quadrilateral inequality. This concept was
introduced by Branciari almost fifteen years ago. However, it is by no means
clear whether this concept has any utilitarian value aside from its curious
intrinsic interest because, as we note below, generalized metric spaces in the
sense of Branciari are invariably metric if all points are limits of nontrivial
Cauchy sequences. Thus generalized metric spaces which are not metric would
seem to be somewhat esoteric. He called these spaces “generalized metric
spaces.” These spaces retain the fundamental notion of distance. However, as
we shall see, the quadrilateral inequality, while useful in some sense, ignores
the importance of such things as the continuity of the distance function,
uniqueness of limits, etc. In fact it has been asserted (see, e.g., [25]) that for
an accurate generalization of Banach’s fixed point theorem along the lines
envisioned by Branciari, one needs the quadrilateral inequality in conjunction
with the assumption that the space is Hausdorff.

Throughout this section we shall refer to the following as the Cauchy
summation (CS) criterion.

Definition 3.1. A semimetric space (X, d) is said to satisfy the (CS ) criterion
if
∑∞

i=1 d(pi, pi+1) < ∞ for {pn} ⊂ X implies that {pn} is a Cauchy sequence.

Definition 3.2 (See [6]). Let X be a nonempty set and d : X ×X → [0,∞)
a mapping such that for all x, y ∈ X and all distinct points u, v ∈ X, each
distinct from x and y:

(i) d(x, y) = 0 ⇔ x = y;
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(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (quadrilateral inequality).

Then X is called a generalized metric space (g.m.s).

The following observation shows that the quadrilateral inequality im-
plies a weaker but useful form of distance continuity. (This is a special case of
[27, Proposition 1].)

Proposition 3.3 (See [17, 19]). Suppose that {qn} is a nontrivial (i.e., an in-
finite) Cauchy sequence in a generalized metric space X and suppose that

lim
n→∞

d(qn, q) = 0.

Then limn→∞ d(p, qn) = d(p, q) for all p ∈ X. In particular, {qn} does not
converge to p if p ̸= q.

Proof. We may assume that p ̸= q. If qn = p for arbitrarily large n, it must
be the case that p = q. So we may also assume that p ̸= qn for all n. Also
qn ̸= q for infinitely many n; otherwise the result is trivial. So we may assume
that qn ̸= qm ̸= q and qn ̸= qm ̸= p for all m,n ∈ N with m ̸= n. Then by
the quadrilateral inequality,

d (p, q) ≤ d (p, qn) + d (qn, qn+1) + d (qn+1, q)

and
d (p, qn) ≤ d (p, q) + d (q, qn+1) + d (qn+1, qn) .

Since {qn} is a Cauchy sequence, limn→∞ d(qn, qn+1) = 0. Therefore, letting
n → ∞ in the above inequalities,

lim sup
n→∞

d (p, qn) ≤ d (p, q) ≤ lim inf
n→∞

d (p, qn) . �

The above proposition shows that nontrivial Cauchy sequences in a
generalized metric space have unique limits. However, even more can be said.
(Cf. [15, Lemma 1.10] and [16, Lemma 3.1].)

Proposition 3.4. In a generalized metric space, any Cauchy sequence has at
most one limit.

Proof. Let (X, d) be a generalized metric space and let {xn} be a Cauchy
sequence in X which converges to x ∈ X. Suppose that there exists y ∈ X,
y ̸= x, such that limn→∞ xn = y. In view of Proposition 3.3 it must be the
case that {xn} is eventually constant, and since {xn} converges to x, it must
be the case that xn ≡ x for n sufficiently large. However, since y ̸= x, this
contradicts limn→∞ xn = y. �

The following result shows that many complete generalized metric spaces
have subspaces that are complete metric spaces.

Theorem 3.5. Let (X, d) be a complete generalized metric space and let

XC = {x ∈ X : x is the limit of a nontrivial Cauchy sequence in X} .
Then (XC , d) is a complete metric space.
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Proof. Let x, y, and z be three distinct points in XC and let {zn} be a non-
trivial Cauchy sequence converging to z. Since {zn} is infinite we may suppose
that for sufficiently large n, zn ̸= zn+1 and moreover, zn ̸= x ̸= zn+1 and
zn ̸= y ̸= zn+1. Then, by the quadrilateral inequality,

d (x, y) ≤ d (x, zn) + d (zn, zn+1) + d (zn+1, y) .

Upon letting n → ∞ and applying Proposition 3.3,

d (x, y) ≤ d (x, z) + d (z, y) .

This proves that (XC , d) is a metric space.

To see that (XC , d) is complete, let {xn} be a Cauchy sequence in XC .
Then, since (X, d) is complete, there exists x ∈ X such that limn→∞ xn = x.
If {xn} is infinite, x ∈ XC and there is nothing to prove. Otherwise {xn} is
finite, and since limn→∞ xn = x, it follows that xn = x for some n ∈ N. Since
xn ∈ XC , again x ∈ XC . This proves that (XC , d) is complete. �

Caristi’s theorem

The assertion in [17] that Caristi’s theorem holds in generalized metric spaces
is based, among other things, on the assertion that if {pn} is a sequence in a
generalized metric space (X, d), and if {pn} satisfies

∞∑
i=1

d (pi, pi+1) < ∞,

then {pn} is a Cauchy sequence. However, the authors of [17] later gave an
example in [18] which shows that this assertion is false, and it is also shown
in [18] that in fact Caristi’s theorem fails in such spaces. It is noteworthy that
in the space of the counterexample, there are no nontrivial Cauchy sequences.
Here we show that if this assumption holds in a generalized metric space, then
not only does Caristi’s theorem hold, but in fact, Caristi’s theorem almost
immediately reduces to its metric counterpart under this assumption.

We now prove the following. The approach given here was alluded to
in [17] but not explained in detail. As already mentioned, the significance of
generalized metric spaces remains unclear to the authors, and the additional
assumption that the space satisfies the (CS) criterion would seem to be a
strong further restriction.

Theorem 3.6 (Cf. Caristi [7]). Let (X, d) be a complete generalized metric
space which satisfies the (CS ) criterion. Let f : X → X be a mapping, and
let φ : X → R+ be a lower semicontinuous function. Suppose that

d (x, f (x)) ≤ φ (x)− φ (f (x)) , x ∈ X.

Then f has a fixed point.
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Proof. First observe that if f i(x) = f j(x) for some x ∈ X and i, j ∈ N, i > j,
then f has a fixed point. Indeed,

0 = φ
(
f i (x)

)
− φ

(
f j (x)

)

=
[
φ
(
f i (x)

)
− φ

(
f i+1 (x)

) ]
+
[
φ
(
f i+1 (x)

)
− φ

(
f i+2 (x)

)]

+ · · ·+
[
φ
(
f j−1 (x)

)
− φ

(
f j (x)

)]

≥ d
(
f i (x) , f i+1 (x)

)
+ d

(
f i+1 (x) , f i+2 (x)

)

+ · · ·+ d
(
f j−1 (x) , f j (x)

)
.

It follows that each of the terms on the right side of the inequality is 0, so it
must be the case that f i(x) is a fixed point of f .

We therefore assume that f i(x) ̸= f j(x) for each x ∈ X and i, j ∈ N,
i ̸= j.

Now let x ∈ X and n ∈ N. Then

φ (x)− φ (fn (x)) = φ (x)− φ (f (x)) + φ (f (x))− φ
(
f2 (x)

)

+ · · ·+ φ
(
fn−1 (x)

)
− φ (fn (x))

≥ d (x, f (x)) + d
(
f (x) , f2 (x)

)

+ · · ·+ d
(
fn−1 (x) , fn (x)

)
.

Hence
n−1∑
i=0

d
(
f i (x) , f i+1 (x)

)
≤ φ (x)− φ (fn (x)) ≤ φ (x) ,

so
∞∑
i=0

d
(
f i (x) , f i+1 (x)

)
< ∞.

Since (X, d) satisfies the (CS) criterion, this proves that {fn(x)} is an infinite
Cauchy sequence, and hence it converges to some point F (x) ∈ XC . We assert
that for each x ∈ XC ,

d (x, F (x)) ≤ φ (x)− φ (F (x)) . (3.1)

First we show that for each n ∈ N,

d
(
x, f2n+1 (x)

)
≤ φ (x)− φ

(
f2n+1 (x)

)
. (3.2)

The proof is by induction. By the quadrilateral inequality,

d
(
x, f3 (x)

)
≤ d (x, f (x)) + d

(
f (x) , f2 (x)

)
+ d

(
f2 (x) , f3 (x)

)

≤ φ (x)− φ
(
f3 (x)

)
.

Now assume that

d
(
x, f2n+1 (x)

)
≤ φ (x)− φ

(
f2n+1 (x)

)
.
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Then again by the quadrilateral inequality,

d
(
x, f2n+3 (x)

)
≤ d

(
x, f2n+1 (x)

)
+ d

(
f2n+1 (x) , f2n+2 (x)

)

+ d
(
f2n+2 (x) , f2n+3 (x)

)

≤ φ (x)− φ
(
f2n+1 (x)

)
+ φ

(
f2n+1 (x)

)
− φ

(
f2n+2 (x)

)

+ φ
(
f2n+2 (x)

)
− φ

(
f2n+3 (x)

)

= φ (x)− φ
(
f2n+3 (x)

)
.

This completes the induction and establishes (3.2). Now, using (3.2), Theo-
rem 3.5, and lower semicontinuity of φ, we have

d (x, F (x)) = lim
n→∞

d
(
x, f2n+1 (x)

)

≤ lim
n→∞

[
φ (x)− φ

(
f2n+1 (x)

)]

= φ (x)− lim
n→∞

φ
(
f2n+1 (x)

)

≤ φ (x)− φ
(
lim
n→∞

f2n+1 (x)
)

= φ (x)− φ (F (x)) .

Therefore, F : XC → XC is a mapping of the complete metric space (XC , d)
into itself which satisfies (3.1). In view of this, Caristi’s original theorem
implies that there exists x ∈ XC such that x = F (x). To see that this implies
f(x) = x recall that

n−1∑
i=0

d
(
f i (x) , f i+1 (x)

)
≤ φ (x)− φ (fn (x)) .

Letting n → ∞,

∞∑
i=0

d
(
f i (x) , f i+1 (x)

)
≤ φ (x)− lim

n→∞
φ (fn (x))

≤ φ (x)− φ
(
lim

n→∞
fn (x)

)

= φ (x)− φ (F (x))

= 0.

This implies that d(x, f(x)) = 0, so x = f(x). �

It might be interesting to note that the above observations yield a quick
proof of the Banach–Caccioppoli theorem in generalized metric spaces.

Theorem 3.7 (See [6]). Let (X, d) be a complete generalized metric space,
c ∈ [0, 1), and f : X → X a mapping such that

d (f (x) , f (y)) ≤ cd (x, y) for each x, y ∈ X. (3.3)

Then f has a fixed unique point.
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Let x ∈ X. As above, we may assume f i(x) ̸= f j(x) if i ̸= j. Defining

φ(x) =
1

1− c
d (x, f (x)) ,

inequality (3.3) reduces to

d (x, f (x)) ≤ φ (x)− φ (f (x)) .

We now have
k−1∑
i=0

d
(
f i (x) , f i+1 (x)

)
≤ φ (x)− φ

(
fk (x)

)
.

In particular,
∞∑
i=0

d
(
f i (x) , f i+1 (x)

)
< ∞,

and in general,

n+k−1∑
i=n

d
(
f i (x) , f i+1 (x)

)
≤ φ (fn (x))− φ

(
fn+k (x)

)
.

Thus, given ε > 0, for n sufficiently large,
∞∑
i=n

d
(
f i (x) , f i+1 (x)

)
<

ε

2

and

cnd
(
x, f2 (x)

)
<

ε

2
.

In order to show that {fn(x)} is a Cauchy sequence, we need to compare
d(fn(x), fn+k(x)) with

∑∞
i=n d(f

i(x), f i+1(x)). This can be done by essen-
tially following Branciari’s original inductive argument. If k is odd,

d
(
fn (x) , fn+k (x)

)
≤

n+k−1∑
i=n

d
(
f i (x) , f i+1 (x)

)
<

ε

2
.

On the other hand, if k ≥ 1 is even,

d
(
fn (x) , fn+k (x)

)

≤
n+k−1∑
i=n

d
(
f i (x) , f i+1 (x)

)
+ d

(
fn+k−1 (x) , fn+k+1 (x)

)

+ d
(
fn+k+1 (x) , fn+k (x)

)

≤ ε

2
+ d

(
fn+k−1 (x) , fn+k+1 (x)

)

≤ ε

2
+ cn+k−1d

(
x, f2 (x)

)

≤ ε

2
+ cnd

(
x, f2 (x)

)

< ε.
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Therefore {fn(x)} is a Cauchy sequence and, since X is complete and f is
continuous, there exists x0 ∈ X such that limn→∞ xn = x0 = f(x0). Unique-
ness follows in the usual way.
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A proposal to the study of contractions in quasi-metric spaces. Discrete Dyn.
Nat. Soc. 2014 (2014), Article ID 269286, 1–10.
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