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Abstract. The purpose of this note is to generalize the celebrated Ran–
Reurings fixed point theorem to the setting of a space with a binary re-
lation that is only transitive (and not necessarily a partial order) and a
relation-complete metric. The arguments presented here are simple and
straightforward. It is also shown that extensions by Rakotch and by Hu
and Kirk of Edelstein’s generalization of the Banach contraction princi-
ple to local contractions on chainable complete metric spaces are derived
from the Ran–Reurings theorem.
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1. Preliminaries

In 1961, Edelstein [2] extended the Banach contraction principle by establish-
ing that every uniform local contraction f : X → X of an ϵ-chainable com-
plete metric space (X, d) has a unique fixed point. In 1962, Rakotch [8] refined
Edelstein’s result to a local contraction f of a complete metric space contain-
ing some rectifiable path (i.e., a path of finite length1) joining a given point x0

to f(x0).
Recall that a metric space (X, d) is said to be ϵ-chainable for some ϵ > 0

if for all x, y ∈ X there exists a finite sequence {ui}mi=0 in X such that

x = u0, um = y, d(ui−1, ui) < ϵ for all i = 1, . . . ,m.

1The length of a (continuous) path γ : [0, 1] → X is l(γ) := sup{L(P ) : P ∈ P[0, 1]}, where
P[0, 1] is the collection of all finite partitions P = {0 = t0 < t1 < · · · < tn = 1} of [0, 1],
and L(P ) =

∑n
i=1 d(γ(ti−1), γ(ti)).

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-015-0218-3&domain=pdf
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It is readily seen that a connected metric space is ϵ-chainable. Thus, if
a metric space X is rectifiably path-connected (i.e., any two points in X are
joined by a rectifiable path), then it is ϵ-chainable.

A mapping f of a metric space (X, d) onto itself is a local contraction
(with constant 0 < k < 1) at a given point x ∈ X, if there exists ϵx > 0 such
that (see [8])

y, z ∈ B(x, ϵx) =⇒ d
(
f(y), f(z)

)
< kd(y, z).

The mapping f is a local contraction on X if it so at every point of X.
Improving on results of Holmes [5], Hu and Kirk [4] established in 1978 a

unique fixed point for a local radial contraction f of a complete metric space
containing an element x0 joined to f(x0) by a rectifiable path. Recall that a
self-mapping f of a metric space (X, d) is said to be a local radial contraction
at x if the weaker condition

d(x, y) < ϵx =⇒ d
(
f(x), f(y)

)
< kd(x, y) for x, y ∈ X

holds (see [5]). The mapping f is a local radial contraction on X if it so at
every point of X.

The authors in [4] insightfully noted that for a local radial contraction
f : X → X, Rakotch’s result readily reduces to the Banach contraction prin-
ciple applied to the restriction of f on a meaningful subspace of X, namely
the set X̃ consisting of those points of X that can be joined from x0 by a
rectifiable path. It turns out that X̃ is kept invariant by f and that f is a
contraction for the path metric

d̃(x, y) = inf
γ∈Γ(x;y)

l(γ)

on X̃, where Γ(x; y) is the collection of all rectifiable paths joining x to y.

As the completeness of (X, d) implies that of (X̃, d̃), the Banach contraction

principle thus applies to f on (X̃, d̃), yielding a fixed point for f .
Before going any further let us recall the original result of Ran and Reur-

ings, which can be seen as a combination of the Banach contraction principle
and the Tarski’s fixed point theorem (see, e.g., [3] for the two celebrated sem-
inal results). A partial order on a set X is a binary relation � that is reflexive,
antisymmetric, and transitive; the pair (X,�) consisting of a set with a par-
tial order is a poset.

Theorem 1.1 (See [9]). Let (X,�) be a poset where every pair x, y ∈ X has an
upper bound and a lower bound. Furthermore, let d be a metric on X such that
(X, d) is a complete metric space. If f : X → X is a continuous and mono-
tonic (i.e., either order-preserving or order-reversing) mapping such that

(i) there exists 0 < k < 1 with

d
(
f(x), f(y)

)
≤ kd(x, y) for all x ≼ y,

(ii) there exists x0 ∈ X such that x0 and f(x0) are comparable.2

2Two elements x, y in a poset (X,�) are said to be comparable if either x � y or y � x.
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Then f has a unique fixed point x∗ ∈ X with

lim
n→∞

fn(x) = x∗ for all x ∈ X.

Nieto and Rodŕıguez-López [7] noted in 2005 that the continuity of the
mapping f in Theorem 1.1 can be replaced by the following condition.

If a monotonic sequence {xn}n∈N → x∗ in X, then xn and x∗ are con-
sistently comparable for all n ∈ N (i.e., xn � x∗ for a nondecreasing
sequence).

The aim of this note is to extend the Ran–Reurings theorem in [9], but
by considering a space X equipped with a merely transitive binary relation �
(not a partial order) and with a so-called relation-complete metric d, and in
which, suitable comparable pairs can be joined by what we call ϵ-monotonic
chains.

This is a significant departure from Ran–Reurings’ theorem (Theo-
rem 1.1) and from its extensions by Nieto and Rodŕıguez-López. Interestingly,
we also show that the theorem of Hu and Kirk can easily be derived.

Set-valued formulations of the results below are easily written and left
to the reader. Applications of the main theorems will be discussed in a sub-
sequent work.

2. Fixed point for a uniform local contraction
on comparable elements

In the remainder of this section, (X,�, d) is a triple consisting of a set X
together with a transitive binary relation � and a metric d on X. It should
be kept in mind that the relation � is not necessarily a partial order on X.
Expediency imposes the occasional use of X to designate (X,�, d) in the ab-
sence of any confusion.

We introduce natural concepts of relation-chainability and relation-
completeness.

Definition 2.1. (i) Two elements x, y ∈ X are said to be comparable if either
x � y or y � x.

(ii) A mapping f : X → X is said to be monotonic if it is either always
relation-preserving, i.e., x � y =⇒ f(x) � f(y) or always relation-reversing,
i.e., x � y =⇒ f(y) � f(x) for any given x, y ∈ X.

(iii) Analogously, a sequence {xn}n∈N in X is monotonic if xn � xn+1

for all n or xn+1 � xn for all n.

(iv) Two elements x, y ∈ X are joined by an ϵ-monotonic chain for some
ϵ > 0 if there exists a monotonic sequence {ui}mi=0 in X such that

x = u0, um = y, d
(
ui−1, ui

)
< ϵ for all i = 1, . . . ,m.

(Note that, by transitivity, x and y must be comparable.)
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(v) The space (X,�, d) is said to be ϵ-monotonic chainable for some
ϵ > 0, if any two comparable elements x, y ∈ X are joined by an ϵ-monotonic
chain.

(vi) The metric d is monotonic complete if and only if every monotonic
Cauchy sequence converges in X.

We start with fixed point results for a uniform local contraction on com-
parable elements of (X,�, d) where d is a relation-complete metric.

Theorem 2.2. Let (X,�, d) be a triple consisting of a metric space (X, d) and
a transitive binary relation � on X, let f : X → X be a mapping, and let
ϵ > 0 be such that

(a) there exists x0 ∈ X such that x0 and f(x0) are joined by an ϵ-monotonic
chain;

(b) f is monotonic;
(c) if limn→∞ fn(x0) = x∗ ∈ X, then fn(x0) and x∗ are comparable (con-

sistent with the monotonicity of f) for all n;
(d) there exists 0 < k < 1 such that for any comparable elements x, y ∈ X,

d(x, y) < ϵ implies d(f(x), f(y)) ≤ kd(x, y).

Then, f has a fixed point x∗ = limn→∞ fn(x0) provided that the metric d
is monotonic complete.

Proof. By hypothesis, there exists a finite sequence {ui}m0 with

d(ui−1, ui) < ϵ

and, without loss of generality,

x0 = u0 � u1 � · · · � um

= f(x0) � f(u1) � · · · � f(um)

= f2(x0) � f2(u1) � · · · .

Thus,

d
(
x0, f(x0)

)
≤

m∑
i=1

d
(
ui−1, ui

)
< mϵ,

d
(
f(x0), f

2(x0)
)
≤

m∑
i=1

d
(
f(ui−1), f(ui)

)
≤ k

m∑
i=1

d(ui−1, ui) < mkϵ,

...

d
(
fn(x0), f

n+1(x0)
)
≤ k

m∑
i=1

d
(
fn−1(ui−1), f

n(ui)
)
≤ k

m∑
i=1

d(ui−1, ui)

< mknϵ for all n ∈ N.

Surely, there exists n0 ∈ N such that 0 < mkn0 < 1. We show that the
monotonic sequence {xn = fn0+n(x0)}∞n=1 is a Cauchy sequence inX. Indeed,



Vol. 16 (2014) The Ran–Reurings theorem without partial order 377The Ran–Reurings theorem without partial order 5

given n′ > n,

d(xn, xn′) ≤ d(xn, xn+1) + · · ·+ d(xn′−1, xn′)

≤ kn0
(
kn + kn+1 + · · ·+ kn

′−1
)
mϵ

= kn
(
1 + k + · · ·+ kn

′−n−1
)
ϵ

= kn

(
1− kn

′−n

1− k

)
ϵ

<
kn

1− k
ϵ.

Thus, d(xn, xn′) → 0 as n → ∞. By monotonic completeness, the se-
quence {xn}∞1 converges to some x∗ ∈ X which, by assumption (c), verifies
xn � x∗ for all n.

We conclude the proof by showing that x∗ = f(x∗).

For any ϵ′ ∈ (0, ϵ), there exists nϵ′ ∈ N such that

d(xn, x
∗) <

ϵ

2
for all n ≥ nϵ′ .

For all n > nϵ′ and since xn � x∗, it follows that

d
(
f(x∗), f(xn−1)

)
≤ kd(x∗, xn−1).

Now, as xn = f(xn−1),

d
(
f(x∗), x∗) ≤ d

(
f(x∗), f(xn−1)

)
+ d(xn, x

∗)

≤ kd(x∗, xn−1) + d(xn, x
∗) < k

ϵ′

2
+

ϵ′

2
< ϵ′.

As 0 < ϵ′ < ϵ is arbitrary,

f(x∗) = x∗ = lim
n→∞

fn0+n(x0) = lim
n→∞

fn(x0). �

Remark 2.3. (1) Clearly, if the monotonic mapping f : X → X globally con-
tracts comparable elements; i.e., there exists 0 < k < 1 with

d
(
f(x), f(y)

)
≤ kd(x, y)

for any comparable pair x, y ∈ X, and if there exists x0 ∈ X comparable to
f(x0), then, given any ϵ > 0, there exists u0 = fn(x0) with n large such that
u0 and f(u0) = fn+1(x0) are comparable, and d(u0, f(u0)) < ϵ, i.e., u0 and
f(u0) are joined by a two-element ϵ-monotonic chain. Theorem 2.2 thus ap-
plies to the pair u0, f(u0) to immediately obtain Nieto–Rodŕıguez-López’s
version of Ran–Reurings’ theorem. But here, we again point out that the re-
lation � is merely transitive and not an order relation.

(2) The existence of a fixed point holds if hypothesis (c) of Theorem 2.2
is replaced by the less general assumption:
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(c′) f is sequentially continuous along the sequence fn(x0), or more gener-
ally if f is monotonic-sequentially continuous, i.e.,

f
(
lim

n→∞
xn

)
= lim

n→∞
f(xn)

for any monotonic converging sequence {xn}n∈N in X.

(3) It is worth mentioning that hypothesis (d) of Theorem 2.2 implies lo-
cal uniqueness of comparable fixed points; i.e., there are no other fixed points
comparable to x∗ in the ball B(x∗, ϵ) (the author is indebted to an anonymous
referee for pointing this out).

To secure uniqueness of the fixed point, we require global ϵ-monotonic
chainability of the space as well as the existence, for any given pair of elements
x, y ∈ X, of a third element z ∈ X similarly comparable to both x and y
(i.e., z � x and z � y or x � z and y � z).

Theorem 2.4. If (X,�, d), where � is a transitive relation and d is a metric, is
ϵ-monotonic chainable for some ϵ > 0 and f : X → X is a mapping satisfying

(a) there exists x0 ∈ X such that x0 and f(x0) are comparable;
(b) f is monotonic;
(c) if limn→∞ fn(x0) = x∗ ∈ X, then fn(x0) and x∗ are comparable (con-

sistent with the monotonicity of f) for all n;
(d) there exists 0 < k < 1 such that if x, y ∈ X are comparable, d(x, y) < ϵ

implies
d
(
f(x), f(y)

)
≤ kd(x, y);

(e) every pair of elements of X admits a third element similarly comparable
to both.

Then, f has a unique fixed point x∗ = limn→∞ fn(x) for any initial point
x ∈ X, provided that the metric d is monotonic complete.

Proof. Proceeding along the lines of Ran and Reurings [9], given an arbitrary
element x ∈ X, we consider first the case where x and x0 are comparable,
say x � x0. By hypothesis, x and x0 can be joined by an ϵ-monotonic chain

x = v0 � · · · � vp = x0.

Arguing as in the preceding proof, it is easy to see that

d
(
fn(vi−1), f

n(vi)
)
≤ knϵ

for all n = 0, 1, . . . and all i = 1, . . . , p. It follows that for any given δ > 0,
there exists nδ ∈ N such that for n ≥ nδ,

d
(
fn(x), fn(x0)

)
≤ knp ϵ <

δ

2
and d

(
fn(x0), x

∗) < δ

2
.

Hence,

d
(
fn(x), x∗) ≤ d

(
fn(x), fn(x0)

)
+ d

(
fn(x0), x

∗) < δ

2
+

δ

2
= δ,

that is,
lim

n→∞
fn(x) = lim

n→∞
fn(x0) = x∗.
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To complete the proof, let x ∈ X be arbitrary and let z ∈ X be similarly
comparable to both x and x0, say,

z � x and z � x0.

From the first part of the argument, we have

lim
n→∞

fn(z) = lim
n→∞

fn(x0) = x∗.

Also, z and x are joinable by an ϵ-monotonic chain, and as above, for n
large enough, d(fn(z), fn(x)) can be made arbitrarily small. Thus,

lim
n→∞

fn(x) = lim
n→∞

fn(z) = x∗.

This completes the proof. �

Quite interestingly, the theorems of Rakotch [8] and Hu and Kirk [4] can
be obtained from Theorem 2.2 (in fact from Ran–Reurings’ theorem). The
proof makes crucial use of the following key observations.

Proposition 2.5 (See [4]). Let f : X → X be a local radial contraction with
constant 0 < k < 1 on a metric space (X, d). Then

d
(
f
(
γ(0)

)
, f

(
γ(1)

))
≤ kl(γ) and l

(
f(γ)

)
≤ kl(γ)

for any rectifiable path γ : [0, 1] → X.

The reader is referred to [4] for the proof.

Corollary 2.6 (See [4]). Let (X, d) be a complete metric space and f : X → X
a local radial contraction with constant k ∈ (0, 1). Suppose that there exists
x0 ∈ X such that x0 and f(x0) are joined by a rectifiable path. Then f has a
fixed point.

Proof. By hypothesis, there exists a rectifiable path γ0 joining x0 to f(x0).
By Proposition 2.5, each path fn(γ0) has length smaller than knl(γ0) and
joins the element fn(x0) to fn+1(x0). Let

X0 = {fn(x0)}∞n=0

(with f0(x0) = x0). Obviously,

f(X0) = {fn(x0)}∞n=1 ⊂ X0.

Define a total order on X0 as follows:

fn(x0) � fm(x0) ⇐⇒ n ≤ m.

Clearly, x0 � f(x0) and f is obviously monotonic on X0. Define a metric d0
on X0 as

d0
(
fn(x0), f

m(x0)
)
= d0

(
fm(x0), f

n(x0)
)
=

m−1∑
i=n

l
(
f i(γ0)

)
for n < m,

d0(x, y) = 0 ⇐⇒ x = y = fn(x0) for some n ∈ {0, 1, 2, . . .}.
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Note that the initial metric d, the path metric3 d̃, and the metric d0
verify d ≤ d̃ ≤ d0 on X0.

For any given pair x, y ∈ X0, say x = fn(x0) and y = fm(x0) with
x � y, it follows from Proposition 2.5 that

d0
(
f(x), f(y)

)
= d0

(
fn+1(x0), f

m+1(x0)
)

=

m∑
i=n+1

l
(
f i(γ0)

)

≤ k

m−1∑
i=n

l
(
f i(γ0)

)
= kd0(x, y),

i.e., f is a contraction on X0 relative to the metric d0.

Given an arbitrary but fixed ϵ > 0, one may assume, without loss of
generality, that

d0
(
fn(x0), f

n+1(x0)
)
< ϵ for n = 0, 1, 2, . . . .

Indeed, since kn ↓ 0+ as n → ∞, there exists a positive integer nϵ large enough
such that

knd0
(
x0, f(x0)

)
< ϵ for all n ≥ nϵ.

One could then replace the full sequence of iterates {fn(x0)}∞n=0 by its tail
{fn(x0)}n≥nϵ which verifies

d0
(
fn(x0), f

n+1(x0)
)
≤ knd0

(
x0, f(x0)

)
< ϵ for all n ≥ nϵ,

and view fnϵ(x0) as the initial point instead of x0. Therefore, every two ele-
ments in X0 can be joined by an ϵ-monotonic chain.

It was established in [4] that if the original metric d is complete on X,

then the path metric d̃ is complete on the space X̃ of points joinable from x0

by a rectifiable path. Naturally, the closure of X0 for the metric d0 must also
be complete. Indeed, let {xr} be a Cauchy sequence in (X0, d0). Since d ≤ d0,
the sequence {xm} is also Cauchy in (X, d), implying limm→∞ d(xm, x∗) = 0
for some x∗ ∈ X.

We establish first that every element xm of the Cauchy sequence can be
joined to x∗ by a rectifiable path γ. Indeed, let {ϵi} be a sequence of summable
positive real numbers, i.e.,

∑∞
i=1 ϵi < ∞. For each i, choose mi large enough

such that

l(γi) = d0(xmi , xmi+1) < ϵi,

where γi is the rectifiable path joining xmi = fnmi (x0) to xmi+1 = fnmi+1 (x0)
consisting of finite union

fnmi (γ0) ∪ · · · ∪ fnmi
−1(γ0).

3Note that X0 is a subset of the space X̃ := {x ∈ X; Γ(x0;x) ̸= ∅} equipped with the path

metric d̃(x, y) = infγ∈Γ(x;y) l(γ) defined in [4] and mentioned in the Preliminaries above.
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Each path γi can be rescaled as a path

γ :

[
1

i+ 1
,
1

i

]
−→ X.

Define a path γ : [0, 1] → X by putting

γ(t) = γi(t)

for t ∈ [ 1
i+1 ,

1
i ] and γ(0) = x∗. By construction, the path γ is continuous on

(0, 1]. To ascertain continuity at t = 0, let tk ↓ 0+. Observe that each tk is in
some interval [ 1

i+1 ,
1
i ] and, for all k large enough,

d
(
γ(tk), x

∗) ≤ d
(
γ(tk), xmi

)
+ d(xmi

, x∗)

≤ d(xmi , xmi+1) + d(xmi , x
∗)

≤ d0(xmi , xmi+1) + d(xmi , x
∗)

< ϵi + d(xmi , x
∗).

As tk → 0, i → ∞,mi → ∞, and ϵi → 0, thus d(γ(tk), x
∗) → 0, i.e.,

γ(tk) → γ(0). It should be noted, in addition, that the continuous path γ
joining x∗ and xm1 verifies

l(γ) ≤
∞∑
i=1

l(γi) ≤
∞∑
i=1

ϵi < ∞.

Now, define d0(xmi , x
∗) = l(γ|[0, 1i ]) and note that

d0(xmi , x
∗) = l

(
γ|[0, 1i ]

)
≤

∞∑
j=i

ϵj → 0 as i → ∞.

Since {xmi} is a subsequence of the Cauchy sequence {xm} in X0, it fol-
lows that

lim
m→∞

d0(xm, x∗) = 0,

i.e., x∗ ∈ X0
d0
, which means that X0

d0
is d0-complete. Let us extend the bi-

nary relation � to X0
d0

by putting

x � z for all x ∈ X0 and all z ∈ X0
d0 \X0.

To conclude the proof, it remains to note that the mapping f (a d0-
contraction on comparable elements of X0) naturally extends to a contraction

on comparable elements ofX0
d0
, thus verifying all hypotheses of Theorem 2.2

on X0
d0
. �

Remark 2.7. Of course, it is much simpler to prove Corollary 2.6 by observing
that X0 = {fn(x0)}∞n=0 is a Cauchy sequence in (X, d), hence convergent to
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a fixed point of f . Indeed, for all m > n ≥ nϵ, we do have

d
(
fm(x0), f

n(x0)
)
≤

m−1∑
i=n

d
(
f i+1(x0), f

i(x0)
)

≤
m−1∑
i=n

ki+1 l(γ0)

= kn+1
(
1 + · · ·+ km−(n+1)

)
l(γ0)

= kn+1

(
1− km−n

1− k

)
l(γ0)

<
kn

1− k
l(γ0) → 0 as n → ∞.

But our point here is to show that the results of Hu and Kirk and Rakotch
follow also from Theorem 2.2 (and indeed from the Ran–Reurings theorem).
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