
J. Fixed Point Theory Appl. 15 (2014) 241–272
DOI 10.1007/s11784-014-0183-2
Published online September 3, 2014
© Springer Basel 2014

Journal of Fixed Point Theory
and Applications

A thin-film limit in the
Landau–Lifshitz–Gilbert equation
relevant for the formation of Néel walls
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Abstract. We consider an asymptotic regime for two-dimensional ferro-
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1. Introduction and main results

The purpose of this paper is to study an asymptotic regime for two-dimen-
sional ferromagnetic thin films allowing for the occurrence and persistence of
special transition layers called Néel walls. We prove compactness, optimality
and energy concentration of Néel walls, together with dynamical properties
driven by the Landau–Lifshitz–Gilbert equation.

1.1. A two-dimensional model for thin-film micromagnetics

We focus on the following two-dimensional model for thin ferromagnetic films.
For that, let

Ω = R× T with T = R/Z

be a two-dimensional horizontal section of a magnetic sample that is infinite
in x1-direction and periodic in x2-direction. The admissible magnetizations
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are vector fields

m = (m′,m3) : Ω → S
2, m′ = (m1,m2),

that are periodic in x2-direction (this condition is imposed in order to rule out
lateral surface charges) and connect two mesoscopic directions forming an an-
gle, i.e., for a fixed m1,∞ ∈ [0, 1),

m(x1, x2) =

{
m−∞ for x1 ≤ −1,

m+∞ for x1 ≥ 1,
(1.1)

where

m±∞ =

⎛
⎜⎜⎝

m1,∞

±√
1−m1,∞2

0

⎞
⎟⎟⎠ .

We consider the following micromagnetic energy approximation in a thin-film
regime that is written in the absence of crystalline anisotropy and external
magnetic fields (see, e.g., [5, 14]):

Eδ(m) =

ˆ
Ω

(
|∇m|2 + 1

ε2
m2

3

)
dx+

1

δ

ˆ
Ω×R

|h(m′)|2 dx dz, (1.2)

where δ > 0 and ε = ε(δ) > 0 are two small parameters. The first term in (1.2)
is called the exchange energy, while the other two terms stand for the stray
field energy created by the surface charges m3 at the top and bottom of the
sample and by the volume charges ∇ ·m′ in the interior of the sample. More
precisely, the stray field h(m′) : Ω × R → R

3 generated only by the volume
charges is defined as the unique L2(Ω× R,R3)-gradient field

h(m′) =
(
∇,

∂

∂z

)
U(m′)

that is x2-periodic and is determined by static Maxwell’s equation in the
weak sense:1 For all ζ ∈ C∞c (Ω× R),

ˆ
Ω×R

(
∇,

∂

∂z

)
U(m′) ·

(
∇,

∂

∂z

)
ζ dx dz =

ˆ
Ω

m′ · ∇ζ dx. (1.3)

By explicitly solving (1.3) using2 the Fourier transform F(·), the stray-field

1In other words, h(m′) is the Helmholtz projection of the vector measure m′H2�Ω × {0}
onto the L2(Ω× R) space of gradient fields.
2Given a function ζ : Ω → R which is 1-periodic in x2, we introduce the combination of
Fourier transformation in x1 and Fourier series in x2 by F(ζ)(ξ) = 1√

2π

´
Ω e−iξ·xζ(x) dx,

where ξ ∈ R× 2πZ.
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energy can be equivalently expressed in terms of the homogeneous Ḣ−1/2-
norm of ∇ ·m′ (see, e.g., [10]):3ˆ

Ω×R

|h(m′)|2 dx dz =
1

2

ˆ
R×2πZ

1

|ξ| |F(∇ ·m′)(ξ)|2 dξ

=
1

2

ˆ
Ω

∣∣|∇|1/2H(m′)
∣∣2 dx,

(1.4)

where

H(m′) = −∇(−Δ)−1∇ ·m′,
that is,

F(H(·))(ξ) = ξ ⊗ ξ

|ξ|2 , ξ ∈ R× 2πZ \ {(0, 0)},
so that the gradient of the energy Eδ(m) is given by

∇Eδ(m) = −2Δm+

(
1

δ
(−Δ)1/2 H(m′),

2m3

ε2

)
. (1.5)

Here and in the following, we denote the planar coordinates by

x = (x1, x2) and (x1, x2)
⊥ = (−x2, x1),

the vertical coordinate by z and, furthermore, we write(
∇,

∂

∂z

)
=

(
∂

∂x1
,

∂

∂x2
,
∂

∂z

)
and Δ =

∂2

∂x2
1

+
∂2

∂x2
2

.

In this model, we expect two types of singular patterns: Néel walls and
vortices (the so-called Bloch lines in micromagnetic jargon). These patterns
result from the competition between the different contributions in the total
energy Eδ(m) and the nonconvex constraint |m| = 1. We explain these struc-
tures in the following and compare their respective energies (for more details,
see DeSimone et al. [6]).

Néel walls. The Néel wall is a dominant transition layer in thin ferromag-
netic films. It is characterized by a one-dimensional in-plane rotation con-
necting two directions (1.1) of the magnetization. More precisely, it is a one-
dimensional transition m = (m1,m2) : R → S

1 that minimizes the energy
under the boundary constraint (1.1):

Eδ(m) =

ˆ
R

∣∣∣∣ dmdx1

∣∣∣∣
2

dx1 +
1

2δ

ˆ
R

∣∣∣∣
∣∣∣∣ d

dx1

∣∣∣∣
1/2

m1

∣∣∣∣
2

dx1.

It follows that the minimizer is a two-length scale object: it has a small core
with fast varying rotation and two logarithmically decaying tails.4 As δ → 0,
the scale of the Néel core is given by

|x1| � wcore = O(δ)

3One computes that F(U(m′)(·, z))(ξ) = − 1
2|ξ| e

−|ξ| |z|F(∇ ·m′)(ξ) for ξ �= 0 and z ∈ R.
4In our model, the tails are contained in the system, thanks to the confining mechanism
of steric interaction with the sample edges placed at x1 = ±1.
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(up to a logarithmic scale in δ) while the two logarithmic decaying tails
scale as

wcore � |x1| � wtail = O(1).

The energetic cost (by unit length) of a Néel wall is given by

Eδ(Néel wall) =
π(1−m1,∞)2 + o(1)

2δ| log δ| as δ → 0

(see, e.g., [6, 8]).

Micromagnetic vortex. A vortex point corresponds in our model to a topo-
logical singularity at the microscopic level where the magnetization points
out-of-plane. The prototype of a vortex configuration is given by a vector
field m : B2 → S

2 defined in a unit disk Ω = B2 of a thin film that satisfies

∇ ·m′ = 0 in B2 and m′(x) = x⊥ on ∂B2

and minimizes the energy (1.2):5

Eδ(m) =

ˆ
B2

|∇m|2 dx+
1

ε2

ˆ
B2

m2
3 dx.

Since the magnetization turns in-plane at the boundary of the disk B2 (so,
deg(m′, ∂Ω) = 1), a localized region is created, that is the core of the vor-
tex of size ε, where the magnetization becomes indeed perpendicular to the
horizontal plane. Remark that the energy Eδ controls the Ginzburg–Landau
energy; i.e.,

Eδ(m) ≥
ˆ
B2

eε(m
′) dx with eε(m

′) = |∇m′|2 + 1

ε2
(
1− |m′|2)2

since |∇(m′,m3)|2 ≥ |∇m′|2 and m2
3 ≥ m4

3 = (1−|m′|2)2. Due to the similar-
ity with vortex points in Ginzburg–Landau-type functionals (see the seminal
book of Bethuel, Brezis and Hélein [3]), the energetic cost of a micromagnetic
vortex is given by

Eδ(Vortex) = 2π|log ε|+O(1)

(see, e.g., [9]).

Regime. We focus on an energetic regime allowing for Néel walls, but ex-
cluding vortices. More precisely, we assume that δ→0 and ε = ε(δ)→0 such
that

1

δ|log δ| = o (|log ε|) (1.6)

and we consider families of magnetization {mδ}0<δ<1/2 satisfying the energy
bound

sup
δ→0

δ|log δ|Eδ(mδ) < +∞. (1.7)

In particular, (1.6) implies that the size ε of the vortex core is exponentially
smaller than the size of the Néel wall core δ, i.e.,

ε = O
(
e−

1
δ|log δ|

)
.

5In our model, the parameter ε = ε(δ) > 0 is related to δ by (1.6).
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Compactness of Néel walls. We first show that the energetic regime (1.7) is
indeed favorable for the formation of Néel walls. We start by proving a com-
pactness result for S2-valued magnetizations in (1.6) and (1.7) that is remi-
niscent to the compactness results of Ignat and Otto in [12, 13].

Theorem 1.1. Let δ > 0 and ε(δ) > 0 be small parameters satisfying the
regime (1.6). Let mδ ∈ H1

loc(Ω, S
2) satisfy (1.1) and (1.7). Then {mδ}δ→0

is relatively compact in L2
loc(Ω) and any limit m : Ω → S

2 satisfies the
constraints (1.1) and

|m′| = 1, m3 = 0, ∇ ·m′ = 0 in D′(Ω).
The proof of compactness is based on an argument of approximating

S
2-valued magnetizations by S

1-valued magnetizations having the same level
of energy (see Theorem 2.1). Such an approximation is possible due to our
regime (1.6) and (1.7) that excludes existence of topological point defects.

Optimality of the Néel wall. Our second result proves the optimality of the
Néel wall, namely that the Néel wall is the unique asymptotic minimizer of
Eδ over S

2-valued magnetizations within the boundary condition (1.1). For
every magnetization m : Ω → S

2, we associate the energy density μδ(m) as
a nonnegative x2-periodic measure on Ω× R viaˆ

Ω×R

ζ dμδ(m)

:=
2

π
δ|log δ|

(ˆ
Ω

ζ(x, 0)

(
|∇m|2 + 1

ε2
m2

3

)
dx+

1

δ

ˆ
Ω×R

ζ|h(m′)|2 dx dz
)

(1.8)

for every ζ = ζ(x, z) ∈ Cc(Ω×R). Recall that h(m′) denotes the x2-periodic
stray field associated with m′ via (1.3). We now show that the straight
walls (1.10) are the unique minimizers of Eδ as δ → 0, in which case the
energy density μδ is concentrated on a straight line in x2-direction.

Theorem 1.2. Let δ > 0 and ε(δ) > 0 be small parameters satisfying the
regime (1.6). Let mδ ∈ H1

loc(Ω, S
2) satisfy (1.1) and

lim sup
δ→0

δ|log δ|Eδ(mδ) ≤ π

2
(1−m1,∞)2. (1.9)

Then there exists a subsequence δn→0 such that mδn →m∗ in L2
loc(Ω), where

m∗ is a straight wall given by

m∗(x1, x2) =

{
m−∞ for x1 < x∗1,
m+∞ for x1 > x∗1,

for some x∗1 ∈ [−1, 1]. (1.10)

In this case we have the concentration of the measures defined at (1.8) on the
jump line of m∗:

μδn(mδn) ⇀ (1−m1,∞)2 H1�{x∗1} × T× {0} weakly∗ in M(Ω× R).
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The energy bound (1.9) is relevant for Néel walls (see, e.g., [8]). A sim-
ilar result in the case of S1-valued magnetizations was previously proved by
Ignat and Otto in [12]. Theorem 1.2 represents the extension of that result
to the case of S2-valued magnetizations. An immediate consequence of The-
orem 1.2 is the following lower bound of the energy Eδ within the boundary
condition (1.1).

Corollary 1.3. Let δ > 0 and ε(δ) > 0 be small parameters satisfying the
regime (1.6). Let mδ ∈ H1

loc(Ω, S
2) satisfy (1.1). Then

lim inf
δ→0

δ|log δ|Eδ(mδ) ≥ π

2
(1−m1,∞)2. (1.11)

1.2. Dynamics. The Landau–Lifshitz–Gilbert equation

The dynamics in ferromagnetism is governed by a torque balance which gives
rise to a damped gyromagnetic precession of the magnetization around the ef-
fective field defined through the micromagnetic energy. The resulting system
is the Landau–Lifshitz–Gilbert (LLG) equations which is neither a Hamil-
tonian system nor a gradient flow.

Let us present the setting of LLG equations. As condition (1.1) is not
preserved by the LLG flow, we impose the boundary condition (1.1) at each
time t ≥ 0, and we look for solutions of LLG equations in the space domain

x ∈ ω := (−1, 1)× T.

In order to define the micromagnetic energy and its gradient on ω, we in-
troduce the functional calculus derived from the Laplace operator on ω with
Dirichlet boundary conditions. More precisely, for f ∈ H−1(ω), we define
g := (−Δ)−1f as the solution of{

−Δg = f in ω,

g(x1, x2) = 0 on ∂ω, i.e., for |x1| = 1, x2 ∈ T.
(1.12)

Then (−Δ)−1 is a bounded operator H−1(ω) → H1
0 (ω) and a compact self-

adjoint operator L2(ω) → L2(ω). We can therefore construct a functional
calculus based on it and denote as usual

|∇|−2s :=
[
(−Δ)−1

]s
for s = 1/2, 1/4.

The dynamics of the state of the thin ferromagnetic sample is described
by the time-dependent magnetization

m = m(t, x) : [0,+∞)× ω → S
2

that solves the following equation (see [7, 17]):

∂tm+ αm× ∂tm+ βm×∇Ẽδ(m) = 0 on [0,∞)× ω. (LLG0)

Here, × denotes the cross product in R
3, while α > 0 is the Gilbert damping
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factor characterizing the dissipation form of (LLG0) and β > 0 is the gyro-

magnetic ratio characterizing the precession. The micromagnetic energy Ẽδ

corresponding to the domain ω is defined via (1.12):

Ẽδ(m) =

ˆ
ω

(
|∇m|2 + 1

ε2
m2

3

)
dx+

1

2δ

ˆ
ω

∣∣|∇|−1/2∇ ·m′∣∣2 dx, (1.13)

so that the gradient of the energy Ẽδ(m) is given as

∇Ẽδ(m) = −2Δm+

(
1

δ
P(m′),

2m3

ε2

)
, (1.14)

where we have introduced6 the operator P acting on m′ ∈ H1(ω,R2) via
(1.12):

P(m′) := −∇|∇|−1∇ ·m′.
Observe that as in (1.4), we haveˆ

ω

∣∣|∇|−1/2P(m′)
∣∣2 dx =

ˆ
ω

∣∣|∇|−1/2∇ ·m′∣∣2 dx.
Remark 1.4. (i) We highlight that Theorems 1.1 and 1.2 remain valid in the

context of the micromagnetic energy Ẽδ on ω within the boundary condi-
tions (1.1), i.e., m(x1, x2) = m±∞ for x1 = ±1 and every x2 ∈ T.

(ii) Note that for a map m : ω → S
2, one has Ẽδ(m) < ∞ if and only if

m ∈ H1(ω).

In this paper, we consider a more general form of the LLG equation
including additional drift terms, which has been derived in a related setting
in [21, 22] (see also [15]):

∂tm+ αm× ∂tm+ βm×∇Ẽδ(m) + (v · ∇)m

= m× (v · ∇)m on [0,+∞)× ω,
(LLG)

where v : [0,+∞) × ω → R
2 represents the direction of an applied spin-

polarized current.7

Regime. We analyze the dynamics of the magnetization through (LLG) in
the asymptotics δ → 0, ε(δ) → 0 in the regime (1.6), while

α = νε, β = λε, (1.15)

where ν > 0 is kept fixed and

λ(δ) = o
(√

δ|log δ|
)
. (1.16)

The dynamics of the magnetization for equation (LLG0) has been de-
rived by Capella, Melcher and Otto [4] (see also Melcher [18]) in the asymp-
totics ε → 0 with fixed δ (see [4, Theorem 1]). The more general equa-
tion (LLG) (in the absence of the nonlocal energy term) was studied by

6Observe that our original nonlocal operator appearing in the energy gradient (1.5) can

be written as (−Δ)1/2H(m′) = −∇|∇|−1∇ ·m′.
7By definition (v · ∇)m = v1∂1m+ v2∂2m.
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Kurzke, Melcher and Moser in [15] where they derived rigorously the mo-
tion law of point vortices in a different regime, namely ε → 0 and δ = +∞.
We highlight that in those papers, the parameter δ > 0 is kept fixed or large
yielding a uniformH1 bound via the energy; it is far beyond the grasp of (1.6).
Therefore, in the analysis developed below, we will have to deal with the loss
of the uniform H1 bound; our strategy relies on the fine qualitative behavior
of the magnetization presented in Theorems 1.1 and 1.2 (that remain valid

in the context of the micromagnetic energy Ẽδ on ω within the boundary
condition (1.1)).

In the present paper we consider initial data with finite energy at δ > 0
fixed.8 We first have to solve the corresponding Cauchy problem for (LLG)
imposing the boundary condition (1.1) at each time t ≥ 0. Naturally, we un-
derstand that here the boundary condition (1.1) reads as

m(t, x1, x2) = m±∞ for x1 = ±1, x2 ∈ T, t ≥ 0.

Moreover, these solutions have finite energy for all time t ≥ 0. We insist on the
fact that the energy can possibly increase in time, unlike for (LLG0) which is
dissipative.

Definition 1.5. We say that m is a global weak solution to (LLG) if

m ∈ L∞loc
(
[0,+∞), H1

(
ω, S2

)) ∩ Ḣ1
loc

(
[0,+∞), L2(ω)

)
, (1.17)

and m solves equation (LLG) in the distributional sense D′((0,+∞)× ω).

Observe that the regularity assumption (1.17) of this definition allows
to make all terms in (LLG) meaningful in the distributional sense, this gives
its relevance to the definition.

Indeed, (1.17) first gives (due to Remark 1.4 (ii)) that Ẽδ(m(t)) is finite

for all t ≥ 0. Also, ∇Ẽδ(m) ∈ L∞loc([0,+∞), H−1(ω)) since for ∇m(t) ∈
L2(ω), Δm(t) ∈ H−1(ω), while P(m′(t)) ∈ L2(ω). From there, we infer that

m×∇Ẽδ(m) ∈ L∞loc([0,+∞), H−1(ω)). Indeed, by setting

〈m(t)×Δm(t), φ〉H−1(ω),H1
0 (ω) := −

2∑
j=1

ˆ
ω

(
m(t)× ∂jm(t)

) · ∂jφdx

and by noticing that P(m′) and m3 belong to L∞loc([0,+∞), L2(ω)), we get
for 0 < ε ≤ δ small (see (4.4)),

‖m(t)×∇Ẽδ(m(t))‖H−1(ω) ≤ C

ε
Ẽδ(m(t))1/2.

All the other terms in (LLG) belong to L2
loc([0,+∞)× ω).

We construct global weak solutions for (LLG) in the following theorem.

Theorem 1.6. Let δ ∈ (0, 1/2) be fixed, m0 ∈ H1(ω, S2) an initial data and the
spin current v ∈ L∞([0,+∞)× ω,R2).

8Recall that in the regime (1.7) the initial energy blows up in the limit δ → 0.
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Then there exists a global weak solution m to (LLG) (in the sense of Def-
inition 1.5), which satisfies the boundary conditions

m(t = 0, ·) = m0 in ω, (1.18)

m(t, x1, x2) = m0(x1, x2) if x1 = ±1 and for every x2 ∈ T, t ≥ 0. (1.19)

Furthermore, m satisfies the following energy bound: for all t ≥ 0,

Ẽδ(m(t)) +
α

2β

ˆ t

0

‖∂tm(s)‖2L2(ω) ds

≤ Ẽδ

(
m0

)
exp

(
4

αβ

ˆ t

0

‖v(s)‖2L∞(ω) ds

)
.

(1.20)

The proof of Theorem 1.6 takes its roots in [1] via a space discretization.
To the best of our knowledge, however, there is no such result taking into
account the nonlocal term in ∇Ẽδ (see (1.14)). One needs to carry on the
computations carefully, specially as it comes together with the constraint of
S
2-valued maps. For the convenience of the reader we provide a full proof in

Section 5 below.
We next specify our set of assumptions for the dynamics in the asymp-

totics δ, ε(δ) → 0.

(A1) The initial data m0
δ ∈ H1(ω, S2) satisfy (1.1) and

sup
δ→0

δ|log δ|Ẽδ

(
m0

δ

)
< +∞.

(A2) The regime (1.6) holds as δ → 0 and the parameters α and β satisfy
(1.15) and (1.16).

(A3) The spin-polarized current satisfies

‖vδ‖2L∞([0,+∞)×ω) ≤ αβ. (1.21)

In particular, we have vδ → 0 in L∞([0,+∞)× ω).

Due to the energy estimate (1.20), the energetic regime in (A1) holds for
all times t ≥ 0 (with no uniformity in t though). In particular, Theorem 1.1
implies that for all t > 0, the magnetizations {mδ(t)}δ admit a subsequence
converging in L2(ω) to a limiting magnetization (m′(t), 0) as δ → 0. Our main
result is that the subsequence does not depend on t and that the limiting
configuration is stationary.

Theorem 1.7. Let {m0
δ}0<δ<1/2 be a family of initial data in H1(ω, S2). Sup-

pose that assumptions (A1)–(A3) are satisfied. Let {mδ}0<δ<1/2 denote any
family of global weak solutions to (LLG) satisfying (1.18), (1.19) and the
energy estimate (1.20).

Then there exists a subsequence δn → 0 such that mδn(t) → m(t) in
L2(ω) for all t ∈ [0,+∞) as n → ∞ where the accumulation point

m = (m′, 0) ∈ C
(
[0,+∞), L2

(
ω, S2

))
satisfies

|m′(t)| = 1, ∇ ·m′(t) = 0 in D′(ω) ∀t ∈ [0,+∞).
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Moreover, the limit m is stationary, i.e.,

∂tm
′ = 0 in D′([0,+∞)× ω).

In particular, it follows immediately from Theorems 1.2 and 1.7 (and
Remark 1.4 (i)) that for well-prepared initial data, the asymptotic magneti-
zation is a static straight wall for all t ≥ 0.

Corollary 1.8. Under the same assumptions as in Theorem 1.7, assume more-
over that the initial data are well prepared:

lim sup
δ→0

δ|log δ|Ẽδ(m
0
δ) ≤

π

2
(1−m1,∞)2.

Let δn → 0 and let x∗1 ∈ [−1, 1] be such that m0
δn

→ m∗ in L2(ω), where m∗

is a straight wall defined by (1.10). Then we have mδn(t) → m∗ in L2(ω) for
all t ≥ 0.

The paper is organized as follows. In Sections 2 and 3, we focus on the
stationary results and prove Theorems 1.1 and 1.2. In Section 4, we prove
Theorem 1.7, assuming Theorem 1.6, which is proved in Section 5. Finally,
we prove in the appendix a uniform estimate in the context of the Ginzburg–
Landau energy, which is needed in the proof of Theorem 1.1.

In all the following, C denotes an absolute constant (independent of
the parameters of the system) which can possibly change from one line to
another.

2. Approximation and compactness

This section is devoted to the proof of Theorem 1.1. A similar compactness
result to Theorem 1.1 has been already established by Ignat and Otto in [12,
Theorem 4] for S1-valued magnetizations. In order to establish compactness
for S2-valued magnetizations, we will use an argument consisting in approx-
imating S

2-valued maps by S
1-valued maps with quantitative bounds given

in terms of the energy, which is stated as follows.

Theorem 2.1. Let β ∈ (0, 1). Let δ > 0 and ε(δ) > 0 satisfy the regime (1.6),
i.e.,

1

δ|log δ| |log ε| → 0 as δ → 0,

and let mδ = (m′δ,m3,δ) ∈ H1
loc(Ω, S

2) satisfy (1.1) and (1.7). Then there
exists Mδ ∈ H1

loc(Ω, S
1) that satisfies (1.1) such thatˆ

Ω

|Mδ −m′δ|2 dx ≤ Cε2βEδ(mδ),

ˆ
Ω

|∇(Mδ −m′δ)|2 dx ≤ CEδ(mδ),

(2.1)

ˆ
Ω×R

|h(Mδ)− h(m′δ)|2 dx dz ≤ CεβEδ(mδ), (2.2)
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and

Eδ(Mδ) ≤ Eδ(mδ) (1 + o(1)) , (2.3)

where

o(1) = O

((
1

δ|log δ| |log ε|
)1/6−)

and 1/6− is any fixed positive number less than 1/6. Moreover, for every full
square T (x, r) centered at x of side of length 2r with εβ/r → 0 as δ → 0, we
have9ˆ

T (x,r−2εβ)

|∇Mδ|2 dx ≤ (1 + o(1))

ˆ
T (x,r)

(
|∇m′δ|2 +

1

ε2
m2

3,δ

)
dx. (2.4)

Theorem 2.1 is reminiscent of the argument developed by Ignat and
Otto [13] with a major improvement given by (2.3); i.e., the approximating
S
1-map Mδ has lower energy than the S

2-map mδ (up to o(1) error).

Proof. To simplify notation, we will often omit the index δ in the following.
We introduce a Ginzburg–Landau-type energy density:

eε(m
′) = |∇m′|2 + 1

ε2
(
1− |m′|2)2. (2.5)

The approximation scheme is inspired by [13].

Step 1. Construction of a squared grid. For each shift t ∈ (0, εβ), we consider
the set

Ht =
{
x = (x1, x2) ∈ R× (0, 1) : x2 ∈ (

εβ , 1− εβ
)
, x2 ≡ t

(
mod εβ

)}
and we repeat it 1-periodically in x2 to obtain a net of horizontal lines at a
distance εβ in Ω. By the mean value theorem, there exists t ∈ (0, εβ) such
that ˆ

Ht

eε(m
′) dH1 ≤ 1

εβ

ˆ
Ω

eε(m
′) dx.

If one repeats the above argument for the net of vertical lines at distance εβ

in Ω, we get a shift s ∈ (0, εβ) such that the net

Vs :=
{
x ∈ Ω : x1 ∈ (− 1 + εβ , 1− εβ

)
, x1 ≡ s

(
mod εβ

)}
satisfies ˆ

Vs

eε(m
′) dH1 ≤ 1

εβ

ˆ
Ω

eε(m
′) dx.

Set

Ṽs := Vs ∪ {(x1, x2) : x1 ∈ {±1}, x2 ∈ [0, 1)}
and remark that ˆ

Vs

eε(m
′) dH1 =

ˆ
Ṽs

eε(m
′) dH1

9In (2.4), o(1) is the same as in (2.3).
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since m satisfies (1.1). Therefore, we obtain an x2-periodic squared grid R =

Ht ∪ Ṽs of size more than εβ such thatˆ
R
eε(m

′) dH1 ≤ 2

εβ

ˆ
Ω

eε(m
′) dx ≤ 2Eδ(m)

εβ
≤ C

εβδ|log δ| . (2.6)

Due to periodicity, one may assume that R includes the horizontal line R×
{0}.
Step 2. Vanishing degree on the cells of the grid R. In order to approximate
m′ in Ω by S

1-valued vector fields, it is necessary for m′ to have zero degree
on each cell of the grid R. Let us prove this property. For that, let C be a
full squared cell of R having all four sides of the cell of length ∈ [εβ , 4εβ ]. We
know that (2.6) holds (in particular, for eε on C). Set

κ :=
1

δ|log δ| = o (|log ε|) .

By Theorem A.1 given in the appendix, we deduce that |m′| ≥ 1/2 on R and
deg(m′, ∂C) = 0 for small ε > 0.

Step 3. Construction of an approximating S
1-valued vector field M of m′.

On each full squared cell C of R of side of length of order εβ , we define
u = uδ ∈ H1(C,R2) to be a minimizer of

min

{ˆ
C
eε(u) dx : u = m′ on ∂C

}
.

Putting together all the cells, u is now defined in the whole hull (R) (which
is [−1, 1] × T) and satisfies (1.1). Extend u by m± for ±x1 ≥ 1 so that u is
defined now in Ω and is periodic in x2. Moreover, by construction,ˆ

Ω

eε(u) dx ≤
ˆ
Ω

eε(m
′) dx.

By Theorem A.1 given in the appendix, we have

η := sup
Ω

∣∣|u|2 − 1
∣∣ ≤ C

(
1

δ|log δ| |log ε|
)1/6−

= o(1).

In particular,
|u|2 ≥ 1− η in Ω.

Therefore, we define M ∈ H1(Ω, S1) by

M :=
u

|u| in Ω.

So, M satisfies (1.1). We deduce that

|∇u|2 ≥ |u|2|∇M |2 ≥ (1− η)|∇M |2 in Ω

and

(1− η)

ˆ
Ω

|∇M |2 dx ≤
ˆ
Ω

|∇u|2 dx ≤
ˆ
Ω

eε(u) dx

≤
ˆ
Ω

eε(m
′) dx ≤ Eδ(m).

(2.7)
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We prove now (2.4) which is a local version of (2.7). Using the above con-
structed grid, we cover T (x, r − 2εβ) ∩ ([−1, 1] × T) by a subgrid

⋃
k∈K Ck,

with K finite, of full cells of R such that
⋃

k∈K Ck ⊂ T (x, r) ∩ ([−1, 1]× T).
Therefore, we have

(1− η)

ˆ
T (x,r−2εβ)

|∇M |2 dx

= (1− η)

ˆ
T (x,r−2εβ)∩([−1,1]×T)

|∇M |2 dx

≤ (1− η)

ˆ
⋃

k∈K Ck
|∇M |2 dx ≤

ˆ
⋃

k∈K Ck
|∇u|2 dx

≤
ˆ
⋃

k∈K Ck
eε(u) dx ≤

ˆ
⋃

k∈K Ck
eε(m

′) dx ≤
ˆ
T (x,r)

eε(m
′) dx.

The goal is now to prove that the S1-valued vector field M approximates
m′ in L2(Ω,R2) and the Ḣ1-seminorm of M is comparable with the one ofm′.

Step 4. Estimate ‖∇(M −m′)‖L2(Ω). Indeed, by (2.7), we have

(1− η)

ˆ
Ω

|∇M |2 dx ≤ Eδ(m) and

ˆ
Ω

|∇m|2 dx ≤ Eδ(m).

Thus, the second estimate in (2.1) holds.

Step 5. Estimate ‖M −m′‖L2(Ω). By Poincaré’s inequality, we have for each
full cell C of R,

ˆ
C

∣∣∣∣M −
 
∂C

M

∣∣∣∣
2

dx ≤ Cε2β
ˆ
C
|∇M |2 dx (2.8)

and ˆ
C

∣∣∣∣m′ −
 
∂C

m′
∣∣∣∣
2

dx ≤ Cε2β
ˆ
C
|∇m′|2 dx. (2.9)

Writing m′ = ρv′ with ρ ≥ 1
2 on R (by Theorem A.1), we have v′ = M on R

and by Jensen’s inequality, we also compute

ˆ
C

∣∣∣∣
 
∂C
(M −m′)

∣∣∣∣
2

dx =

ˆ
C

∣∣∣∣
 
∂C
(v′ −m′)

∣∣∣∣
2

dx = H2(C)
 
∂C
(1− ρ)2 dH1

≤ Cεβ
ˆ
∂C
(1− ρ2)2 dH1 ≤ Cεβ+2

ˆ
∂C

eε(m
′) dH1.

(2.10)

Summing up (2.8), (2.9) and (2.10) over all the cells C of the grid R, by (2.6)
and (2.7), we obtain ˆ

Ω

|M −m′|2 dx′ ≤ Cε2βEδ(m).
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Step 6. Proof of (2.2). Let h(m′) = ∇U(m′) and h(M) = ∇U(M) be the
unique minimal stray fields given by (1.3). By uniqueness and linearity of the
stray field, we deduce that h(m′)−h(M) is the minimal stray field associated
with m′ −M , i.e.,

h(m′)− h(M) = h(m′ −M).

Therefore, we have by interpolation,ˆ
Ω×R

|h(M)− h(m′)|2 dx dz
(1.4)
=

1

2

ˆ
Ω

∣∣∣ |∇|−1/2∇ · (M −m′)
∣∣∣2 dx

≤ C

ˆ
Ω

∣∣∣ |∇|1/2(M −m′)
∣∣∣2 dx

≤ C

( ˆ
Ω

|M −m′|2 dx
)1/2(ˆ

Ω

|∇(M −m′)|2 dx
)1/2

(2.1)

≤ CεβEδ(m).

Step 7. End of the proof. It remains to prove (2.3). Indeed, by (2.7) and
Step 6, we have

Eδ(M) =

ˆ
Ω

|∇M |2 dx+
1

δ

ˆ
Ω×R

|h(M)|2 dx dz

≤ 1

1− η

ˆ
Ω

eε(m
′) dx+

1

δ

ˆ
Ω×R

|h(m′)|2 dx dz + C

(
εβ

δ

)1/2

Eδ(m)

≤ (1 + Cη)Eδ(m)

because (εβ/δ)1/2 ≤ η by (1.6). �

Observe that Theorem 2.1 remains true in the context of the energy Ẽδ

on the domain ω.

Proof of Theorem 1.1. It is a direct consequence of the approximation result
in Theorem 2.1 and of the compactness result in [12] (see [12, Theorem 4],
and also [13, Theorem 2]). �

3. Optimality of the Néel wall

We present now the proof of Theorem 1.2. A similar result in the case of
S
1-valued magnetizations was proved by Ignat and Otto in [12] (see [12,

Theorem 1]). Theorem 1.2 represents the extension to the case of S2-valued
magnetizations.



Vol. 15 (2014) A thin-fi lm limit for Néel walls in LLG equation 255

Proof of Theorem 1.2. LetMδ be the approximating S1-map ofmδ construct-
ed in Theorem 2.1. By (1.9) and (2.3), we deduce that

lim sup
δ→0

δ|log δ|Eδ(Mδ) ≤ π

2
(1−m1,∞)2.

Then [12, Theorem 1] implies the existence of a sequence δ = δn and x∗1 ∈
[−1, 1] such that

Mδ −m∗ → 0 in L2(Ω),

which by (2.1) entails mδ − m∗ → 0 in L2(Ω). Moreover, the x2-periodic
uniformly bounded sequence of measures μδ(Mδ) has the property that

μδ(Mδ) ⇀ μ0 weakly∗ in M(Ω× R),

where μ0 is a nonnegative x2-periodic measure in Ω× R. Our first aim is to
prove that

μ0 = (1−m1,∞)2 H1�{x∗1} × T× {0}. (3.1)

Indeed, let us define the function χ : Ω → R by

χ = ±1

2
if ± x1 ≥ ±x∗1.

Then, by Step 3 of the proof of Theorem 1 (and Remark 4) in [12], it follows
that

1

4α

ˆ
Ω×R

ζ dμ0 =

ˆ
Ω

∇ζ ·m∗χdx+ (1− α)

ˆ
Ω

ζ|Dχ|

for every α ∈ (0, 1) and for every smooth test function ζ : R3 → R which is
1-periodic in x2 with compact support in x1 and x3. Then we computeˆ

Ω

∇ζ ·m∗χdx = −m1,∞
ˆ 1

0

ζ(x∗1, x2, 0) dx2

so that by setting

α :=
1−m1,∞

2
,

we conclude that ˆ
Ω×R

ζ dμ0 = 4α2

ˆ
{x∗

1}×[0,1)×{0}
ζ dH1,

i.e., μ0 = (1−m1,∞)2H1�{x∗1} × T× {0}.
It remains to show that μδ(mδ) ⇀ μ0 in M(Ω × R). Indeed, by (1.9),

there exists an x2-periodic nonnegative measure μ ∈ M(Ω×R) such that up
to a subsequence,

μδ(mδ) ⇀ μ weakly∗ in M(Ω× R). (3.2)

The aim is to show that

μ = μ0.

Indeed, let r > 0 and x = (x∗1, x2) ∈ Ω with x2 ∈ [0, 1). We consider an
arbitrary smooth nonnegative test function ζ : R

3 → [0,+∞) that is x2-
periodic with compact support in x1 and x3 such that ζ ≡ 1 on T (x, r) ×
(−γ, γ) for some fixed γ > 0 (recall that T (x, r) is the full closed square
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centered at x of side of length 2r). Within the notation (2.5), by Theorem 2.1,
for β = 1/2 and

η =

(
1

δ|log δ| |log ε|
)1/6−

,

we have

δ|log δ|
ˆ
T (x,r−2εβ)

|∇Mδ|2
(2.4)

≤ (1 + Cη)δ|log δ|
ˆ
Ω

eε(m
′
δ)ζ(x, 0) dx

and

|log δ|
ˆ
T (x,r−2εβ)×(−γ,γ)

|h(Mδ)|2 dx dz

≤ |log δ|
ˆ
Ω×R

|h(Mδ)|2ζ(x, z) dx dz
(2.2)

≤ |log δ|
ˆ
Ω×R

|h(m′δ)|2ζ(x, z) dx dz + ‖ζ‖L∞O(δεβ)1/2|log δ|Eδ(mδ).

Therefore, by (1.6), we obtain

lim inf
δ→0

ˆ
T (x,r−2εβ)×(−γ,γ)

dμδ(Mδ) ≤ lim inf
δ→0

ˆ
Ω×R

ζ(x, z) dμδ(mδ)

(3.2)
=

ˆ
Ω×R

ζ(x, z) dμ.

On the other hand, by (3.1), one has

2r(1−m1,∞)2 = μ0

(
Ṫ (x, r)× {0}) ≤ lim inf

δ→0

ˆ
T (x,r−2εβ)×(−γ,γ)

dμδ(Mδ),

where Ṫ (x, r) is the interior of T (x, r). Thus, we conclude that

2r(1−m1,∞)2 ≤
ˆ
Ω×R

ζ(x, z) dμ.

Taking infimum over all test functions ζ and then infimum over γ → 0, we
deduce that

2r(1−m1,∞)2 ≤ μ
(
T (x, r)× {0}).

Setting

Line := {x∗1} × T× {0} and μL := μ �Line,
we deduce that μL(S) ≥ (1 −m1,∞)2H1(S) = μ0(S) for every (closed) seg-
ment S ⊂ Line; therefore, μ0 ≤ μL ≤ μ as measures in M(Ω×R). In partic-
ular,

μ0(Line) ≤ μL(Line) ≤ μ(Ω× R) ≤ lim inf
δ→0

ˆ
Ω×R

dμδ(mδ)
(1.9)

≤ μ0(Line),

thus

μ = μL = μ0 in M(Ω× R).

Now (1.11) is straightforward. �
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4. Asymptotics of the Landau–Lifshitz–Gilbert equation

We start now the study of the dynamics of the magnetization. We assume
Theorem 1.6 holds and postpone its proof to the next section; our goal here
is to establish Theorem 1.7. Let {m0

δ}0<δ<1/2 be a family of initial data as
in Theorem 1.7 and let

mδ = (m′δ,m3,δ) : [0,+∞)× ω → S
2

be any family of global weak solutions to (LLG) satisfying (1.18), (1.19) and
the energy estimate (1.20). Throughout this section we assume that assump-
tions (A1)–(A3) are satisfied.

Let us also recall the energy inequality (1.20), on which we will crucially
rely:

Ẽδ(mδ(t)) +
α

2β

ˆ t

0

‖∂tmδ(s)‖2L2(ω) ds

≤ Ẽδ(m
0
δ) exp

(
4

αβ

ˆ t

0

‖vδ(s)‖2L∞(ω) ds

)
.

In particular, it follows from (1.20) and the assumption (A3) on vδ that

Ẽδ(mδ(t)) +
ν

2λ

ˆ t

0

‖∂tmδ(s)‖2L2(ω) ds

≤ Ẽδ

(
m0

δ

)
exp (CT ) , 0 < t ≤ T,

(4.1)

and therefore it follows from the energy bound (A1) on the initial data that

sup
0<δ<1/2

δ|log δ|Ẽδ(mδ(T )) < +∞ ∀T > 0. (4.2)

Also, we infer the following bound on the time derivative in L2
loc([0,+∞)×ω):

‖∂tmδ‖L2([0,T ],L2(ω)) ≤ C exp(CT )

√
λ√

δ|log(δ)| ∀T > 0. (4.3)

This is however not a uniform bound on λ/(δ|log(δ)|) as δ → 0 in the regime
(1.16). Nevertheless, in the next proposition, we will establish a uniform
bound of {∂tmδ} in the weaker space L2

loc(H
−1).

Proposition 4.1. Under the assumptions of Theorem 1.7, we have

‖∂tmδ‖L2([0,T ],H−1(ω)) ≤ C(T )√
δ|log(δ)|

(
λ+

λε

δ
+ ε2

)
∀T > 0.

Proof. Let T > 0. By (LLG) we have, on [0,+∞)× ω,

∂tmδ = −αmδ × ∂tmδ − βmδ ×∇Ẽδ(mδ)− (vδ · ∇)mδ +mδ × (vδ · ∇)mδ.
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First, inequality (4.3) yields

‖αmδ × ∂tmδ‖L2([0,T ],L2(ω)) ≤ C exp(CT )
ε
√
λ√

δ|log(δ)|

≤ C exp(CT )

(
ε2√

δ|log(δ)| +
λ√

δ|log(δ)|

)
.

Next, by (A3) we have

‖(vδ · ∇)mδ‖L2([0,T ],L2(ω)) + ‖mδ × (vδ · ∇)mδ‖L2([0,T ],L2(ω))

≤ C
√
T exp(CT )

ε
√
λ√

δ|log(δ)|

≤ C
√
T exp(CT )

(
ε2√

δ|log(δ)| +
λ√

δ|log(δ)|

)
.

Finally, recalling (1.14), we have

β
∥∥∥mδ(t)×∇Ẽδ(mδ)(t)

∥∥∥
H−1(ω)

≤ C

(
λε ‖∇mδ(t)‖L2(ω) +

λε

δ
‖∇mδ(t)‖L2(ω) + λ

∥∥∥∥m3,δ(t)

ε

∥∥∥∥
L2(ω)

)

≤ C exp(CT )
λ√

δ|log(δ)|
(
1 +

ε

δ

)
.

(4.4)

Combining the previous estimates, we obtain the estimate of the proposition.
�

We now prove Theorem 1.7.

Proof of Theorem 1.7. Let T > 0. By Proposition 4.1 and assumptions (1.6)
and (1.16) on ε, δ and λ, the family

{∂tmδ}0<δ<1/2

is bounded in L2([0, T ], H−1(ω)). On the other hand, {mδ}0<δ<1/2 is bounded

in L∞([0, T ], L2(ω)). Therefore, by the Aubin–Lions lemma (see, e.g., [20,
Corollary 1]), it is relatively compact in C([0, T ], H−1(ω)). Thus by a diagonal
argument, there exist δn → 0 and m ∈ C([0,+∞), H−1(ω)) such that mδn →
m in C([0, T ], H−1(ω)) for all T > 0 as n → ∞.

On the other hand, let t ∈ [0,+∞). In view of the bound (4.2) we con-
clude from Theorem 1.1 that any subsequence of (mδn(t))n∈N is relatively
compact in L2(ω). Since

mδn(t) → m(t) in H−1(ω),

we infer that the full sequence mδn(t) → m(t) = (m′(t), 0) strongly in L2(ω)
as n → ∞, where |m′(t)| = 1, m3(t) = 0 almost everywhere and ∇·m′(t) = 0
in the sense of distributions. In particular,

t �→ ‖m(t)‖L2(ω) = |ω|1/2 ∈ C([0,+∞),R).
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Let us now prove that m ∈ C([0,+∞), L2(ω)). Indeed, consider a se-
quence of times tn ≥ 0 converging to t ≥ 0. As m ∈ C([0, T ], H−1(ω)) and
m(tn) is bounded in L2(ω), we infer that m(tn) ⇀ m(t) weakly in L2(ω). But
we just saw that ‖m(tn)‖L2(ω) → ‖m(t)‖L2(ω), so that in fact m(tn) → m(t)

strongly in L2(ω). This is the desired continuity.
Finally, Proposition 4.1 and (1.16) imply that

∂tmδn → 0 = (∂tm
′, 0) in D′([0,+∞)× ω),

which concludes the proof. �

5. The Cauchy problem for the Landau–Lifshitz–Gilbert
equation

In this section we handle the Cauchy problem for the LLG equation in the
energy space.

Proof of Theorem 1.6. We use an approximation scheme by discretizing in
space. We first introduce some notation.

Notation and discrete calculus

Let n ≥ 1 be an integer, h = 1/n and ωh = hZ2 ∩ ω. For a vector field mh :
ωh → R

3, we will always assume x2-periodicity in the following sense:

mh(x1, 1 + eh) = mh(x1, eh) ∀x1 ∈ hZ ∩ [−1, 1], e ∈ Z.

We then define the differentiation operators as follows: for x = (x1, x2) ∈ ωh,

∂h
1m

h(x) =

⎧⎪⎨
⎪⎩

1

2h

(
mh(x1 + h, x2)−mh(x1 − h, x2)

)
if |x1| < 1,

± 1

2h

(
mh(x1, x2)−mh(x1 ∓ h, x2)

)
if x1 = ±1,

∂h
2m

h(x) =
1

2h

(
mh(x1, x2 + h)−mh(x1, x2 − h)

)
.

Observe that ∂h
1 is the half sum of the usual operators ∂h

1+ and ∂h
1− vanishing

at the boundary x1 = 1 and x1 = −1, respectively. Also we define the discrete
gradient and Laplacian: denoting (ê1, ê2) the canonical base of R2, we let

∇hmh =
2∑

k=1

∂h
km

h ⊗ êk, Δhmh =
2∑

k=1

∂h
k∂

h
km

h.

We introduce the scalar product〈
mh, m̃h

〉
h
= h2

∑
x∈ωh

mh(x) · m̃h(x)

and the L2
h-norm and Ḣ1

h-seminorm:

|mh|2L2
h
:=

〈
mh,mh

〉
h
, |mh|2

Ḣ1
h

:=
〈∇hmh,∇hmh

〉
h
.
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Then we have the integration-by-parts formulas:〈
∂h
1m

h, m̃h
〉
h
= −〈

mh, ∂h
1 m̃

h
〉
h
+ h

∑
x∈ωh, x1=1

mh(x)m̃h(x)

− h
∑

x∈ωh, x1=−1

mh(x)m̃h(x),

〈
∂h
2m

h, m̃h
〉
h
= −〈

mh, ∂h
2 m̃

h
〉
h
,

where we used the above boundary conditions and periodicity.
We now define the sampling and interpolating operators Sh and Ih. We

discretize a map m : ω → R
3 by defining Shm : ωh → R

3 as follows:

Shm(x) =

⎧⎪⎨
⎪⎩

1

h2

ˆ
Ch

x

m(y)dy if x1 < 1,

m(x) if x1 = 1,

where Ch
x = {y ∈ ω | xk ≤ yk < xk + h, k = 1, 2}. We will also identify Shm

with the function ω → R
3 which is constant on each cell Ch

x for x ∈ ωh with
value Shm(x). With this convention, Shm is the orthogonal projection onto
piecewise constant functions on each cell Ch

x in L2(ω). Also we have

|Shm|L2
h
= ‖Shm‖L2(ω),

and

|Shm|L2
h
≤ ‖m‖L2(ω), |∇hShm|L2

h
≤ ‖∇m‖L2(ω), |Shm|L∞

h
≤ ‖m‖L∞(ω).

(5.1)

We interpolate a discrete map mh : ωh → R
3 to Ihmh : ω → R

3 by a qua-
dratic approximation as follows: if x ∈ Ch

y with y ∈ ωh, we set

Ihmh(x) = mh(y)+

2∑
k=1

∂h+
k mh(y)(xk−yk)+∂h+

1 ∂h+
2 mh(y)(x1−y1)(x2−y2),

where

∂h+
k mh(y) =

⎧⎨
⎩

1

h

(
mh(y + hêk)−mh(y)

)
if k = 2 or (k = 1 and y1 < 1),

0 if k = 1 and y1 = 1.

One can check that Ihmh ∈ H1(ω) is continuous (it is linear in each variable
x1 and x2 and coincides with mh at every point of ωh), quadratic on each
cell Ch

y , and

|mh|L2
h
∼ ‖Ihmh‖L2(ω),

|∇hmh|L2
h
∼ ‖∇Ihmh‖L2(ω),

|mh|L∞
h

= ‖Ihmh‖L∞(ω)

(5.2)

(we refer the reader, for example, to [19]).
We discretize the nonlocal operator P so as to preserve the structure of

a discrete form of
´ ||∇|−1/2∇ ·m′|2. For this, notice that |∇|−1 and |∇|−1/2
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naturally act as compact operators on L2(ω), and hence if mh : ωh → R
3,

|∇|−1mh ∈ L2(ω) has a meaning. Also observe that due to Dirichlet boundary
conditions, d/dt commutes with (−Δ)−1, and hence with any operator of the
functional calculus: in particular,

d

dt
|∇|−1m = |∇|−1 dm

dt
.

Therefore, we define for mh : ωh → R
3 the discrete operator

Phmh′ := −∇hSh
(|∇|−1∇h ·mh′).

Then as ‖∇hShm‖L2
h
≤ C‖∇m‖L2(ω), we have

‖Phmh′‖L2
h
≤ C‖|∇|−1∇h ·mh′‖Ḣ1(ω)

≤ C‖∇h ·mh′‖L2(ω) ≤ C‖∇hmh′‖L2
h
.

(5.3)

Step 1: Discretized solution and uniform energy estimate. Let

vh(t) := Shv(t) : ωh → R
3 and mh

0 (x) :=
1

|Sh(m0)(x)|S
h(m0)(x).

We consider the solution mh(t) : ωh → R
3 to the following discrete ordinary

differential equation (ODE) system: for x = (x1, x2) ∈ ωh such that |x1| < 1,
we have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dmh

dt
+mh ×

(
α
dmh

dt
+ β

(
−2Δhmh +

(
1

δ
Ph

(
mh′), 2

ε2
mh

3

))

− (
vh · ∇h

)
mh −mh × (

vh · ∇h
)
mh

)
= 0,

mh(0, x) = mh
0 (x),

(5.4)

and at the boundary

mh(t,−1, x2) = mh
0 (−1, x2), mh(t, 1, x2) = mh

0 (1, x2). (5.5)

As the operator A(mh) : μ �→ μ + αmh × μ is (linear and) invertible, this
ODE takes the form

dmh

dt
= A

(
mh

)−1(
Φ
(
mh

))
,

where

Φ
(
mh

)
= mh ×

(
β

(
−2Δhmh +

(
1

δ
Ph

(
mh′), 2

ε2
mh

3

))

− (
vh · ∇h

)
mh −mh × (

vh · ∇h
)
mh

)
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is C∞. Hence the Cauchy–Lipschitz theorem applies and guarantees the ex-
istence of a maximal solution. Furthermore, we see that for all x ∈ ωh,

d

dt
|mh(t, x)|2 = 2

(
mh(t, x),

d

dt
mh(t, x)

)

=

(
mh(t, x),mh(t, x)×

(
α
d

dt
mh(t, x) + Φ

(
mh

)
(t, x)

))
= 0.

This shows that for all x ∈ ωh, |mh(t, x)| = 1 remains bounded, and hence
mh is defined for all times t ∈ R.

We now derive an energy inequality for mh. For this we take the L2
h

scalar product of (5.4) with mh × (dmh/dt). Recall that if a, b, c ∈ R
3, then

(a× b)× c = (a · c)b− (a · b)c,
hence

(c× a) · (c× b) = ((c× a)× c) · b = (a · b)|c|2 − (c · a)(c · b),
so that for any m̃ ∈ R

3, and pointwise (t, x) ∈ [0,+∞)× ωh,(
mh(t, x)× dmh

dt
(t, x)

)
· (mh(t, x)× m̃

)
=

dmh

dt
(t, x) · m̃.

Hence we have the pointwise equalities for x ∈ ωh with |x1| < 1:(
mh × dmh

dt

)
·
(
mh × α

dmh

dt

)
= α

∣∣∣∣dmh

dt

∣∣∣∣
2

,(
mh × dmh

dt

)
·
(
mh × 2

(
0, 0,mh

3

)T)
=

d

dt
|mh

3 |2.

If x ∈ ωh is on the boundary, that is |x1| = 1, then

dmh

dt
(0, x) = 0

due to (5.5), and the previous identities also hold: we can therefore sum over
x ∈ ωh. Now consider the term involving the discrete Laplacian. The discrete
integration by parts yields no boundary term due to dmh/dt; and of course
d/dt commutes with ∇h. Therefore,〈

mh × dmh

dt
,mh × (− 2Δhmh

)〉
h

= −2

〈
dmh

dt
,Δhmh

〉
h

= 2

〈
∇h dm

h

dt
,∇hmh

〉
h

=
d

dt

∥∥∇hmh
∥∥2
h
.

For the nonlocal term, |∇|−1/2 is a self-adjoint operator on L2 due to
the Dirichlet boundary conditions: the integration by parts yields no bound-
ary term either. More precisely, as d/dt commutes with all space operators,
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we have〈
dmh′

dt
,Phmh′

〉
h

= −
〈
∇h dm

h′

dt
, Sh|∇|−1∇h ·mh′

〉
h

=

ˆ
∇h dm

h′

dt
· (|∇|−1∇h ·mh′)

= −
ˆ (

|∇|−1/2∇h · dm
h′

dt

)(|∇|−1/2∇h ·mh′)

= −1

2

d

dt

∥∥|∇|−1/2∇h ·mh′∥∥2
L2 .

Thus we get

α

∥∥∥∥dmh

dt

∥∥∥∥
2

L2
h

+ β
d

dt

(∥∥∇hmh
∥∥2

L2
h

+
1

δ

∥∥|∇|−1/2
(∇h ·mh′)∥∥2

L2 +
1

ε2
∥∥mh

3

∥∥2

L2
h

)

=

〈(
vh · ∇h

)
mh +mh × (

vh · ∇h
)
mh,

dmh

dt

〉
L2

h

.

Denote

Eh(mh) =
∥∥∇hmh

∥∥2

L2
h

+
1

2δ

∥∥|∇|−1/2
(∇h ·mh′)∥∥2

L2 +
1

ε2
‖mh

3‖2L2
h
.

Now we have∣∣∣∣∣
〈(

vh · ∇h
)
mh +mh × (

vh · ∇h
)
mh,

dmh

dt

〉
L2

h

∣∣∣∣∣
≤

√
2
∥∥vh∥∥

L∞
h

∥∥∇hmh
∥∥
L2

∥∥∥∥dmh

dt

∥∥∥∥
L2

h

≤
√
2‖v‖L∞Eh

(
mh

)1/2 ∥∥∥∥dmh

dt

∥∥∥∥
L2

h

≤ α

2

∥∥∥∥dmh

dt

∥∥∥∥
2

L2
h

+
4

α
‖v‖2L∞Eh(mh).

Thus we obtain

α

2β

∥∥∥∥dmh

dt

∥∥∥∥
2

L2
h

+
d

dt
Eh

(
mh

) ≤ 4

αβ
‖v‖2L∞Eh

(
mh

)
.

By Gronwall’s inequality, we deduce that

Eh
(
mh(t)

)
+

α

2β

ˆ t

0

∥∥∥∥dmh

dt
(s)

∥∥∥∥
2

L2
h

ds

≤ Eh
(
mh(0)

)
exp

(
4

αβ

ˆ t

0

‖v(s)‖2L∞ds

)
.

(5.6)
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Step 2: Continuous limit of the discretized solution. Notice that ‖vh‖L∞ ≤
‖v‖L∞ . Also, as m0 ∈ H1(ω), then mh(0) → m0 in H1(ω) and

Eh
(
mh(0)

) → Ẽδ(m0).

Fix T > 0. It follows from (5.6) and (5.2) that the sequence Ihmh is
bounded in

L∞([0, T ], H1(ω)) and Ḣ1([0, T ], L2(ω))

(observe that ∂t(I
hmh) = Ih(dmh/dt)):

sup
h

(
sup

t∈[0,T ]

∥∥∇(
Ihmh

)
(t)

∥∥2

L2(ω)
+

ˆ T

0

∥∥∂t(Ihmh
)
(s)

∥∥
L2(ω)

ds

)
< +∞.

As this is valid for all T ≥ 0, we can extract via a diagonal argument a weak
limit m ∈ L∞loc([0,+∞), H1(ω)) ∩ Ḣ1

loc([0,+∞), L2(ω)) (up to a subsequence
that we still denote by mh) in the following sense:

Ihmh ∗
⇀ m weakly∗ in L∞loc([0,+∞), H1(ω)), (5.7)

∂t
(
Ihmh

)
⇀ ∂tm weakly in L2

loc([0,∞), L2(ω)), (5.8)

Ihmh → m a.e. (5.9)

By compact embedding, the following strong convergence also holds:

Ihmh → m strongly in L2
loc([0,+∞), L2(ω)).

Then it follows that for all t ≥ 0,

Ẽδ(m(t)) ≤ lim inf
h→0

Ẽδ

(
Ihmh(t)

)
= lim inf

h→0
Eh

(
mh(t)

)
≤ lim inf

h→0
Eh

(
mh(0)

)
exp

(
4

αβ

ˆ t

0

‖v(s)‖2L∞ds

)

≤ Ẽδ(m0) exp

(
4

αβ

ˆ t

0

‖v(s)‖2L∞ds

)
.

This is the energy dissipation inequality.
Observe that if ϕ is a test function, then ∇hϕ → ∇ϕ in L2 (strongly).

Using (5.9), it follows classically (cf. [16, p. 224]) that

mh → m strongly in L2
loc([0,+∞), L2(ω)).

Therefore, |m| = 1 a.e and

∇hmh ⇀ ∇m weakly in L2
loc([0,+∞, L2(ω)).

From there, arguing in the same way, it follows that

mh ×Δhmh = ∇h · (mh ×∇hmh
)

⇀ ∇ · (m×∇m) = (m×Δm) weakly in D′((0,+∞)× ω).

Also notice that

∂t
(
Ihmh

)
= Ih

dmh

dt
.

Hence
∂tm

h ⇀ ∂tm weakly in L2
loc([0,∞), L2(ω)).
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We can now deduce the convergences of the other nonlinear terms in the
distributional sense:

mh × ∂tm
h ⇀ m× ∂tm weakly in D′((0,+∞)× ω),

mh × (
v · ∇h

)
mh ⇀ m× (v · ∇)m weakly in D′((0,+∞)× ω)

and

mh × (
mh × (v · ∇h)mh

)
= −(

vh · ∇h
)
mh

⇀ −(v · ∇)m = m× (m× (v · ∇)m) weakly in D′((0,+∞)× ω).

It remains to consider the nonlocal term. As

∇hmh ⇀ ∇m weakly in L2
loc([0,+∞), L2(ω)),

we have

|∇|−1∇h ·mh′ ⇀ |∇|−1∇ ·m′ weakly in L2
loc([0,∞), H1(ω)).

But from (5.1), and noticing that Shϕ → ϕ in H1 strongly for any test func-
tion ϕ and as Sh is L2-self-adjoint, we infer that

Sh|∇|−1∇h ·mh′ ⇀ |∇|−1∇ ·m′ weakly in L2
loc([0,∞), H1(ω)),

and similarly,

Ph
(
mh′) = −∇hSh

(|∇|−1∇h ·mh′)
⇀ −∇|∇|−1∇ ·m = P(m′) weakly in L2

loc([0,∞), L2(ω)).

Recalling that mh → m strongly in L2
loc([0,∞), L2(ω)), we deduce by weak-

strong convergence that

mh ×Hh(mh) ⇀ m×H(m), D′([0,∞)× ω).

This shows that m satisfies (LLG) on [0,∞)×ω in the sense of Definition 1.5.
�

Appendix A. A uniform estimate

For ε > 0 small, we consider the full cell C = (0, εβ)2 ⊂ R
2 with ν (resp., τ)

the unit outer normal vector (resp., the tangent vector) at ∂C and a boundary
data gε ∈ H1(∂C,R2) with |gε| ≤ 1 on ∂C. We recall the definition of the
Ginzburg–Landau energy density

eε(u) = |∇u|2 + 1

ε2
(
1− |u|2)2 for u ∈ H1(C,R2).

Let uε ∈ H1(C,R2) be a minimizer of the variational problem

min

{ˆ
C
eε(u) dx : u = gε on ∂C

}
.

In the spirit of Bethuel, Brezis and Hélein [2], we will prove that |uε| is
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uniformly close to 1 as ε → 0 under certain energetic conditions. The same
argument is used in [11].10

Theorem A.1. Let β ∈ (0, 1). Let κ = κ(ε) > 0 be such that κ = o(| log ε|) as
ε → 0. Assume that there exists K0 > 0 such thatˆ

∂C

(
|∂τgε|2 + 1

ε2
(
1− |gε|2

)2)
dH1 ≤ K0κ

εβ
and

ˆ
C
eε(uε) dx ≤ K0κ

(A.1)
for all ε ∈ (0, 1/2). Then there exist ε0(β) > 0 and C(K0) > 0 such that for
all 0 < ε ≤ ε0 we have

sup
C

∣∣|uε| − 1
∣∣ ≤ C

(
κ

|log ε|
)1/6−

,

where 1/6− is any fixed positive number less that 1/6. In particular, |gε| ≥ 1/2
on ∂C and deg(gε, ∂C) = 0.

Remark A.2. In the setting of the proof of Theorem 1.1 we take

κ =
1

δ|log δ| .

The proof of Theorem A.1 is done by using the following results.

Lemma A.3. Under the hypothesis of Theorem A.1, we haveˆ
∂C

eε(uε) dx ≤ C K0κ

εβ
,

where C > 0 is some universal constant. Up to a change of K0 in Theo-
rem A.1, we will always assume that the above C = 1.

Proof. Since uε is a minimizer of eε, then uε is a solution of

−Δuε =
2

ε2
uε

(
1− |uε|2

)
in C. (A.2)

We use the Pohozaev identity for uε. More precisely, multiplying the equation
by (x− x0) · ∇uε and integrating by parts, we deduce that∣∣∣∣ 1ε2

ˆ
C
uε

(
1− |uε|2

) · ((x− x0) · ∇uε

)
dx

∣∣∣∣
=

∣∣∣∣ 1

2ε2

ˆ
C

(
1− |uε|2

)2
dx− 1

4ε2

ˆ
∂C
(x− x0) · ν

(
1− |gε|2

)2
dH1

∣∣∣∣
(A.1)

≤ CK0κ,

(A.3)

ˆ
C
Δuε ·

(
(x− x0) · ∇uε

)
dx

=

ˆ
∂C

(
− 1

2
(x− x0) · ν|∇uε|2 + ∂uε

∂ν
· ∂uε

∂(x− x0)

)
dH1,

(A.4)

10Theorem A.1 is an improvement of the results in [2] in the case where the energy of the
boundary data gε is no longer uniformly bounded.
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where
∂uε

∂(x− x0)
= ∇uε · (x− x0).

For x ∈ ∂C, we have x− x0 = εβ(ν + sτ) with s ∈ (−1, 1), uε(x) = gε(x) and
we write (as complex numbers)

∇uε = ∇u1,ε + i∇u2,ε =
∂uε

∂ν
ν +

∂gε
∂τ

τ on ∂C.
By (A.2), (A.3) and (A.4), it follows by Young’s inequality that

CK0κ

εβ
≥
ˆ
∂C

(
1

2

∣∣∣∣∂uε

∂ν

∣∣∣∣
2

− 1

2

∣∣∣∣∂gε∂τ

∣∣∣∣
2

+ s
∂uε

∂ν
· ∂gε
∂τ

)
dH1

≥
ˆ
∂C

(
1

4

∣∣∣∣∂uε

∂ν

∣∣∣∣
2

− 3

2

∣∣∣∣∂gε∂τ

∣∣∣∣
2
)
dH1.

Therefore, by (A.1), we deduce that
ˆ
∂C

∣∣∣∣∂uε

∂ν

∣∣∣∣
2

dH1 ≤ CK0κ

εβ

and the conclusion follows. �

In the following, we denote by T (x, r) the square centered at x of side of
length 2r.

Lemma A.4. Fix 1 > β1 > β2 > β > 0. Under the hypothesis of Theorem A.1,
there exist ε0 = ε0(β2, β) > 0 and C = C(K0) > 0 such that for every x0 ∈ C
and all 0 < ε ≤ ε0, we can find r0 = r0(ε) ∈ (εβ1 , εβ2) such thatˆ

∂(T (x0,r0)∩C)
eε(uε) dH1 ≤ Cκ

r0|log ε| . (A.5)

Moreover, we have

1

ε2

ˆ
T (x0,r0)∩C

(
1− |uε|2

)2
dx ≤ C̃κ

|log ε| (A.6)

for some C̃ > 0 depending on K0.

Proof. We distinguish two steps.

Step 1. Proof of (A.5). Fix ε0 ∈ (0, 1/2) (depending on β2 − β) such that

εβ2−β
0 |log ε0| ≤ 1/2. Assume by contradiction that for every C ≥ K0 there
exist x ∈ C and ε ∈ (0, ε0) such that for every r ∈ (εβ1 , εβ2), we haveˆ

∂(T (x0,r)∩C)
eε(uε) dH1 ≥ Cκ

r|log ε| .

By Lemma A.3, we haveˆ
∂C

eε(uε) dH1 ≤ K0κ

εβ
≤ K0κ

2εβ2 |log ε| ≤
Cκ

2r|log ε| ∀r ∈ (
εβ1 , εβ2

)
.
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Therefore, we deduce thatˆ
∂T (x0,r)∩C

eε(uε) dH1

≥
ˆ
∂(T (x0,r)∩C)

eε(uε) dH1 −
ˆ
∂C

eε(uε) dH1 ≥ Cκ

2r|log ε| .

Integrating with respect to r ∈ (εβ1 , εβ2), we obtain

K0κ
(A.1)

≥
ˆ
C
eε(uε) dx ≥

ˆ
T (x0,εβ2 )∩C

eε(uε) dx

≥
ˆ εβ2

εβ1

dr

ˆ
∂T (x0,r)∩C

eε(uε) dH1 ≥ C(β1 − β2)κ

2
,

which is a contradiction with the fact that C can be arbitrary large.

Step 2. Proof of (A.6). Let x0∈C. We use the same argument as in Lemma A.3
involving a Pohozaev identity for the solution uε of (A.2) in the domain

D := T (x0, r0) ∩ C,
where r0 is given in (A.5). Multiplying the equation by (x − x0) · ∇uε and
integrating by parts, we deduce thatˆ

D
−Δuε ·

(
(x− x0) · ∇uε

)
dx

=

ˆ
∂D

(
1

2
(x− x0) · ν|∇uε|2 − ∂uε

∂ν
· ∂uε

∂(x− x0)

)
dH1,

1

ε2

ˆ
D
uε

(
1− |uε|2

) · ((x− x0) · ∇uε

)
dx

=
1

2ε2

ˆ
D

(
1− |uε|2

)2
dx− 1

4ε2

ˆ
∂D

(x− x0) · ν
(
1− |uε|2

)2
dH1.

Since |x− x0| ≤
√
2r0 on ∂D, by (A.5), we deduce that (A.6) holds true. �

Lemma A.5. Under the hypothesis of Theorem A.1, we have ‖uε‖L∞(C) ≤ 1
and

|uε(x)− uε(y)| ≤ C

( |x− y|
ε

+
|x− y|1/2−

ε1/2−

)
∀x, y ∈ C,

where C ≥ 1 is a universal constant (independent of K0) and 1/2− is some
positive number less than 1/2.

Remark A.6. Unlike [2], the estimate ‖∇uε‖L∞(C) ≤ C/ε does not hold in
general here since it might already fail for the boundary data gε (due to
(A.1)). Therefore, the estimate given by Lemma A.5 is the natural one in our
situation.

Proof. Let ρ = 1− |uε|2. Then (A.2) implies that

−Δρ+
4

ε2
|uε|2ρ ≥ 0 in C
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and

ρ = 1− |gε|2 ≥ 0 on ∂C.
Thus, the maximal principle implies that ρ ≥ 0, i.e., |uε| ≤ 1 on ∂C. For the
second estimate, we do the rescaling U(x) = uε(ε

βx) for x ∈ Ω0 := (0, 1)2

and G(x) = gε(ε
βx) for x ∈ ∂Ω0 and get the equation

−ΔU =
2

ε2(1−β)
U
(
1− |U |2)

in Ω0 with U = G on ∂Ω0. Then we write U = V +W with⎧⎨
⎩−ΔV =

2

ε2(1−β)
U
(
1− |U |2) in Ω0,

V = 0 on ∂Ω0,{
ΔW = 0 in Ω0,

W = G on ∂Ω0.

In particular, −Δ|W |2 = −2|∇W |2 ≤ 0 in Ω0; since |W | ≤ 1 on ∂Ω0, the
maximal principle implies that |W | ≤ 1 in Ω0. Because |U | ≤ 1, we deduce
that |V | ≤ 2 in Ω0. Using the Gagliardo–Nirenberg inequality, we have

‖∇V ‖L∞(Ω0) ≤ C0‖V ‖1/2L∞(Ω0)
‖ΔV ‖1/2L∞(Ω0)

,

so that we obtain

‖∇V ‖L∞(Ω0) ≤
C

ε1−β
.

In order to have the C0,1/2− estimate for W , we start by noting that

ˆ
∂Ω0

|∂τG|2 dH1 = εβ
ˆ
∂C

|∂τgε|2 dH1
(A.1)

≤ K0κ.

So, by regularity theory for harmonic functions, we deduce that11

‖W‖Ḣ3/2−(Ω0)
≤ C0‖G‖Ḣ1−(∂Ω0)

≤ C(K0κ)
1/2.

By Sobolev embedding H3/2−(Ω0) ⊂ C0,1/2−(Ω0), it follows that

|W (x)−W (y)| ≤ C|x− y|1/2−‖W‖Ḣ3/2−(Ω0)

≤ C(K0κ)
1/2|x− y|1/2− ∀(x, y) ∈ Ω2

0.

11Let us consider for simplicity the following two-dimensional situation: ΔW = 0 for
x2 �= 0 and W = G for x2 = 0. Passing in Fourier transform in x1, we obtain that
F(W )(ξ1, x2) = e−|ξ1| |x2|F(G)(ξ1). Therefore, the Fourier transform in both variables

of R2 of W is given by Ŵ (ξ) = F(G)(ξ1)
´
R
e−iξ2x2e−|ξ1||x2| dx2 = F(G)(ξ1)(|ξ1|/|ξ|2)

because F(
x1 �→ 1/

(
1 + x2

1

))
(ξ1) = e−|x1|. Therefore, ‖W‖Ḣ3/2−(R2) ∼ ‖G‖Ḣ1−(R).
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Therefore, we obtain

|U(x)− U(y)| ≤ |V (x)− V (y)|+ |W (x)−W (y)|

≤ C

( |x− y|
ε1−β

+
|x− y|1/2−

ε
1−β
2 − (K0κ)

1/2ε
1−β
2 −

)
∀(x, y) ∈ Ω2

0.

Scaling back, we obtain the desired estimate for uε in C since

(K0κ)
1/2ε

1−β
2 − = o(1). �

Proof of Theorem A.1. We will show that

‖|uε|2 − 1‖L∞(C) ≤ C

(
κ

|log ε|
)1/6−

.

Let x0 ∈ C such that |uε(x0)| < 1. Set 0 < A < 1 such that

2C
(
2A+ (2A)1/2−

)
=

(
1− |uε(x0)|2

)
2

> 0,

where C is given by Lemma A.5. In particular,

A1/2− ≥ A ≥ C1

(
1− |uε(x0)|2

)2+
.

By Lemma A.5, we obtain for any y ∈ T (x0, Aε) ∩ C: |y − x0| ≤ 2Aε and

1− |uε(y)|2 ≥ 1− |uε(x0)|2 − 2C
(
2A+ (2A)1/2−

)
=

1− |uε(x0)|2
2

.

Hence, for small ε, we have Aε < ε ≤ εβ1 ≤ r0 (with r0 given in (A.5)) and

C̃κε2

|log ε|
(A.6)

≥
ˆ
T (x0,Aε)∩C

(
1− |uε(y)|2

)2
dy

≥ 1

16
A2ε2

(
1− |uε(x0)|2

)2
=

1

16
C2

1ε
2
(
1− |uε(x0)|2

)6+
.

Thus, we conclude that(
1− |uε(x0)|2

)6+ ≤ Ĉ
κ

|log ε| . �
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[2] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a
Ginzburg-Landau functional. Calc. Var. Partial Differential Equations 1 (1993),
123–148.



Vol. 15 (2014) A thin-fi lm limit for Néel walls in LLG equation 271
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École Polytech., Palaiseau, 2009.
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Institut de Mathématiques de Toulouse
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