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Abstract. Brezis and Mironescu have announced several years ago that
for a compact manifoldNn ⊂ R

ν and for real numbers 0 < s < 1 and 1 ≤
p < ∞, the class C∞(Q

m
;Nn) of smooth maps on the cube with values

into Nn is dense with respect to the strong topology in the Sobolev
space W s,p(Qm;Nn) when the homotopy group π�sp�(N

n) of order �sp�
is trivial. The proof of this beautiful result is long and rather involved.
Under the additional assumption that Nn is �sp� simply connected, we
give a shorter and different proof of their result. Our proof for sp ≥ 1
is based on the existence of a retraction of R

ν onto Nn except for a
small subset in the complement of Nn and on the Gagliardo–Nirenberg
interpolation inequality for maps in W 1,q ∩ L∞. In contrast, the case
sp < 1 relies on the density of step functions on cubes in W s,p.
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1. Introduction

We address in this paper the problem of density of smooth maps in the
fractional Sobolev spaces W s,p with values into manifolds. More precisely,
let 0 < s < 1 and 1 ≤ p < +∞, and let Nn be a compact manifold of
dimension n imbedded in the Euclidean space Rν . The class of Sobolev maps
W s,p(Qm;Nn) on the unit m dimensional cube Qm with values into Nn is
defined as the set of measurable maps u : Qm → R

ν such that

u(x) ∈ Nn for a.e. x ∈ Qm

having finite Gagliardo seminorm [13],

[u]W s,p(Qm) =

(∫
Qm

∫
Qm

|u(x)− u(y)|p
|x− y|m+sp

dx dy

)1/p

.
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The following question arises naturally, does W s,p(Qm;Nn) coincide with the

closure of smooth maps C∞(Q
m
;Nn) with respect to the distance given by

ds,p(u, v) = ‖u− v‖Lp(Qm) + [u− v]W s,p(Qm)?

This is indeed the case when sp ≥ m.

Proposition 1.1. If sp ≥ m, then the family of smooth maps C∞(Q
m
;Nn) is

strongly dense in W s,p(Qm;Nn).

Here is the sketch of the argument: given u ∈ W s,p(Qm;Nn), we con-
sider the convolution ϕε ∗ u with a smooth kernel ϕε. If the range of ϕε ∗ u,
which is a subset of Rν , lies in a small tubular neighborhood of Nn, then we
may project ϕε ∗ u pointwise into Nn. We can always do this for ε > 0 suffi-
ciently small as long as sp ≥ m. Indeed, in this caseW s,p(Qm;Rν) imbeds into
the space of functions of vanishing mean oscillation VMO(Qm;Rν), whence
dist (ϕε ∗ u,Nn) converges uniformly to 0 as ε→ 0 (see [11, eq. (7)]).

The counterpart of Proposition 1.1 for W 1,p(Qm;Nn) and p ≥ m is due
to Schoen and Uhlenbeck [27]. The role played by VMO functions in this
problem was first observed by Brezis and Nirenberg [11].

In the subtler case sp < m, the answer to the density problem only
depends on the topology of the manifold Nn.

Theorem 1.2. If sp<m, then C∞(Q
m
;Nn) is strongly dense in W s,p(Qm;Nn)

if and only if π�sp�(Nn) 	 {0}.

We denote by 
sp� the integral part of sp and for every � ∈ N, π�(N
n) is

the �th homotopy group of Nn. The topological assumption π�sp�(Nn) 	 {0}
means that every continuous map f : S�sp� → Nn on the 
sp� dimensional
sphere is homotopic to a constant map. The necessity of this condition has
been known for some time (see [12, Theorem 3], [27, Section 4, Example],
[24, Theorem 4.4]).

Brezis and Mironescu have announced this beautiful result in a personal
communication in April 2003 and up to now only a sketch of the proof is avail-
able [23, pp. 205–206]. The analogue of Theorem 1.2 for W 1,p Sobolev maps
had been obtained by Bethuel in his seminal paper [2] (see also [16]). Partial
results for fractional Sobolev exponents s were known when the manifold Nn

is a sphere with dimension n ≥ sp (see [12]) and also in the setting of trace
spaces with s = 1− 1/p (see [3], [14], [25]).

The proof of Theorem 1.2 is long and quite involved and we refer the
reader to the work in progress of Brezis and Mironescu for the detailed argu-
ment. In this paper we prove the reverse implication of Theorem 1.2 in the
case of 
sp� simply connected manifolds Nn. Under this assumption, we give
a shorter and different argument which leads to the following theorem.

Theorem 1.3. If sp < m and if for every � ∈ {0, . . . , 
sp�},
π�(N

n) 	 {0},

then C∞(Q
m
;Nn) is strongly dense in W s,p(Qm;Nn).
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The 
sp� simply connectedness assumption of the manifold Nn allows us
to focus on the target Nn by using a retraction of a large part of Rν onto Nn.
The proof under the weaker assumption π�sp�(Nn) 	 {0} relies instead on
constructions in the domain Qm. In the same order of ideas, the 
p� sim-
ply connectedness condition has been used by Haj�lasz [15] to give a simpler
proof of Bethuel’s density result for W 1,p. In [8], we explained how Haj�lasz’s
strategy can be implemented for every Sobolev exponent s ≥ 1 using some
pointwise estimates involving the maximal function operator inspired by the
work of Maz’ya and Shaposhnikova [21].

In order to treat the case s < 1, we introduce here an additional ingredi-
ent based on the density of maps which are smooth except for a small set. The
case sp ≥ 1 is covered by Proposition 2.1 below which relies on a projection
argument due to Hardt and Lin [17] (Lemma 2.2 below) and on analytical
estimates by Bourgain, Brezis and Mironescu [6]. The case sp < 1 is based
on the density of step functions on cubes (Proposition 3.2 below) inspired by
the works of Escobedo [12] and Bourgain, Brezis and Mironescu [7].

Theorem 1.2 settles the question of strong density of smooth maps in
W s,p(Qm;Nn) for 0 < s < 1. In contrast, the problem of weak sequential
density of smooth maps in the case where strong density fails has not been
fully understood. As far as we know, the answer is negative for sp �∈ N—
as in the setting of W 1,p maps [2, Theorem 3]—and positive in W

1
2 ,2(S2; S1)

(see [26, Theorem 1.2]). Concerning more general manifolds, a first step would
be to prove that smooth maps are weakly sequentially dense inW s,p(Qm;Nn)
when Nn is 
sp− 1� simply connected. This would be the counterpart of
Haj�lasz’s weak density result for W 1,p maps [15, Theorem 1(b)].

2. Strong density for sp ≥ 1

The proof of Theorem 1.3 for sp ≥ 1 is based on two main ingredients:

(1) when the manifold Nn is 
sp� simply connected, smooth maps are
strongly dense in W 1,q(Qm;Nn) for every 1 ≤ q < 
sp�+ 1,

(2) locally Lipschitz continuous maps outside a set of dimensionm−
sp�−1
are dense in W s,p(Qm;Nn).

The proof of the first assertion can be found in [15, 8]. Before giving the
precise statement of the second assertion, we introduce, for j ∈ {0, . . . ,m−2},
the class Rj(Q

m;Nn) of maps u : Q
m → Nn such that

(i) there exists a finite union of j dimensional submanifolds T ⊂ R
m such

that u is locally Lipschitz continuous in Q
m \ T ,

(ii) for almost every x ∈ Q
m \ T ,

|Du(x)| ≤ C

dist (x, T )

for some constant C > 0 depending on u.
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We observe that for every 1 ≤ q < m − j, Rj(Q
m;Nn) ⊂ W 1,q(Qm;Nn),

whence by the Gagliardo–Nirenberg interpolation inequality (see [10], [22,
Remark 1]), for every 0 < s < 1,

Rj(Q
m;Nn) ⊂W s, qs (Qm;Nn).

In particular, Rm−�sp�−1(Q
m;Nn) is a subset of W s,p(Qm;Nn).

Assertion (2) above can be stated as follows.

Proposition 2.1. If 1 ≤ sp < m and Nn is 
sp� − 1 simply connected, then
the class Rm−�sp�−1(Q

m;Nn) is strongly dense in W s,p(Qm;Nn).

The proof of Theorem 1.2 by Brezis and Mironescu is based on the
fact that Rm−�sp�−1(Q

m;Nn) is strongly dense in W s,p(Qm;Nn) for every
compact manifold Nn. This is also known to be the case for every s ∈ N∗
(see [2, 9]). In both cases, in order to approximate a map u ∈W s,p(Qm;Nn),
one first constructs a map v ∈ Rm−�sp�−1(Q

m;Nn) of the form v = u ◦ Φ,
where Φ : Qm → Qm is smooth outside a small subset of Qm. Our proof of
Proposition 2.1 is based on a different strategy. Indeed, we consider a map w
of the form Ψ ◦ u, where Ψ : Rν → Nn is a retraction onto Nn which is well
defined and smooth outside a small subset of Rν . A similar method has been
used in the case where Nn is a sphere; see [4] for the space W 1,p(Q�p�+1; S�p�)
and [26] and [6] for W

1
2 ,2(Q2; S1). In that case, the retraction Ψ has the

following simple explicit expression: one first introduces the map

πa(x) =
x− a

|x− a|
for some point a ∈ R

ν , |a| < 1. Then, one defines for x ∈ R
ν \ {a},

Ψ(x) = (πa|Sν−1)−1(πa(x)).

The map Ψ is smooth on R
ν \ {a}. The choice of the point a depends on the

map u to be approximated.
When the sphere is replaced by an 
sp� − 1 simply connected submani-

fold Nn, the retraction Ψ cannot be described by a simple analytic formula.
Moreover, Ψ is only defined outside a finite union of planes, in contrast to
the case of a sphere where the singular set of the retraction was just a point.
This involves new technical difficulties; see Lemma 2.3 below.

We expect that Proposition 2.1 remains true for every noninteger s > 1
by adapting the proof of the case 0 < s < 1. This would yield the first result
on the density of the class Rm−�sp�−1(Q

m;Nn) for noninteger s > 1 and
manifolds Nn different from the sphere.

We temporarily assume Proposition 2.1 and complete the proof of The-
orem 1.3.

Proof of Theorem 1.3 when sp≥1. By Proposition 2.1, we only need to prove
that any map u ∈ Rm−�sp�−1(Q

m;Nn) can be approximated in the W s,p

norm by smooth maps.
Since u ∈ W 1,q(Qm;Nn) for every 1 ≤ q < 
sp� + 1, by the topologi-

cal assumption on the manifold Nn there exists a sequence of smooth maps
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converging to u in W 1,q(Qm;Nn). When sp > 1, we may take q = sp and by
the Gagliardo–Nirenberg interpolation inequality [7, Lemma D.1], the same
sequence converges to u in W s,p(Qm;Nn). The Gagliardo–Nirenberg inter-
polation inequality fails for q = 1 in the sense that W 1,1 ∩ L∞ is not contin-
uously imbedded into W s, 1s . When sp = 1 we then take any fixed 1 < q < 2
and by the Gagliardo–Nirenberg interpolation inequality W 1,q is continu-
ously imbedded into W s,p. This implies that the sequence converges to u in
W s,p(Qm;Nn) as before. �

We now turn ourselves to the proof of Proposition 2.1. The main geo-
metric ingredient asserts the existence of a retraction from a cube Qν

R onto
Nn except for a small set [17, Lemma 6.1].

Lemma 2.2. Let � ∈ {0, . . . , ν−2}. If Nn is � simply connected and contained
in a cube Qν

R for some R > 0, then there exist a closed subset X ⊂ Qν
R \Nn

contained in a finite union of ν − � − 2 dimensional planes and a locally
Lipschitz retraction κ : Qν

R \X → Nn such that for x ∈ Qν
R \X,

|Dκ(x)| ≤ C

dist (x,X)

for some constant C > 0 depending on ν and Nn.

Proof. Let K be a triangulation of a polyhedral neighborhood Kν of Nn such
that Nn is a Lipschitz deformation retract of Kν . In particular, Kν and Nn

are homotopically equivalent [18, p. 3] and there exists a Lipschitz retraction
h : Kν → Nn. We extend K as a triangulation of Qν

R that we denote by T .
Since for every j ∈ {0, . . . , �},

πj(K
ν) 	 πj(N

n) 	 {0},

there exists a Lipschitz retraction g : T �+1∪Kν → Kν . Denoting by L a dual
skeleton of T (see [28, Chapter 6]), let f :

(
T ν \Lν−�−2

)
∪Kν → T �+1 ∪Kν

be a locally Lipschitz retraction such that for every x ∈
(
T ν \Lν−�−2

)
∪Kν ,

|Df(x)| ≤ C
1

dist(x, Lν−�−2)
.

The conclusion follows by taking

X := Lν−�−2 \Kν and κ := h ◦ g ◦ f. �

The next lemma ensures that the approximation we construct in the
proof of Proposition 2.1 belongs to a suitable class Rj .

Lemma 2.3. Let Ω ⊂ R
m be an open set, v ∈ C∞(Ω;Rν) and let λ ∈ N be

such that λ ≤ min {m, ν}. If Y ⊂ R
ν is a finite union of ν − λ dimensional

planes, then for almost every ξ ∈ R
ν ,

(i) the set v−1(Y + ξ) is a finite union of smooth submanifolds of Rm of
dimension m− λ,
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(ii) for every compact subset K ⊂ Ω there exists a constant C > 0 such that
for every x ∈ K,

dist (x, v−1(Y + ξ)) ≤ C dist (v(x), Y + ξ).

Proof. We first assume that Y is a single ν−λ dimensional plane and, without
loss of generality,

Y = {0′} × R
ν−λ (2.1)

with 0′ ∈ R
λ. Let P : Rλ × R

ν−λ → R
λ be the orthogonal projection on

the λ first coordinates. For every ξ = (ξ′, ξ′′) ∈ R
λ × R

ν−λ,

v−1(Y + ξ) = v−1(Y + (ξ′, 0′′)) = v−1(P−1({ξ′})) = (P ◦ v)−1({ξ′}).
By Sard’s lemma, almost every ξ′ ∈ R

λ is a regular value of the map P ◦ v.
We deduce in this case that v−1(Y +ξ) is an m−λ smooth submanifold of Ω.

We pursue the proof of the estimate in (ii) by assuming that ξ = 0 and Y
is of the form (2.1) where every element of Y is a regular value of P ◦v. Given
a ∈ Ω such that v(a) ∈ Y , the linear transformation P ◦Dv(a) is surjective,

whence there exist δ > 0 with Bm
δ (a) ⊂ Ω and a smooth diffeomorphism

ψ : Bm
δ (a)→ R

m such that for every x ∈ Bm
δ (a),

P ◦ v(x) = P ◦Dv(a)[ψ(x)]. (2.2)

This is a consequence of the inverse function theorem. Indeed, let ψ1 be the
orthogonal projection in R

m onto kerP ◦Dv(a) and let

ψ2 =
(
P ◦Dv(a)|(kerP◦Dv(a))⊥

)−1 ◦ P ◦ v.
Then, D(ψ1 + ψ2)(a) = idRm , whence by the Inverse function theorem the
function ψ = ψ1+ψ2 is a smooth diffeomorphism in a neighborhood of a and
satisfies P ◦ v = P ◦Dv(a) ◦ ψ.

It follows from (2.2) that dist (v(x), Y ) = dist (Dv(a)(ψ(x)), Y ). Denot-
ing

V = (Dv(a))−1(Y ),

we observe that for every y ∈ Bm
δ (a), v(y) ∈ Y if and only if ψ(y) ∈ V . Since

ψ is a diffeomorphism, there exist C1 > 0 such that for x ∈ Bm
δ (a),

dist (x, v−1(Y ) ∩Bm
δ (a)) ≤ C1 dist (ψ(x), V ∩ ψ(Bm

δ (a))).

By the counterpart of (ii) for linear transformations, there exists a constant
C2 > 0 such that for every z ∈ R

m,

dist (z, V ) ≤ C2 dist (Dv(a)[z], Y );

this property can be proved using the linear bijection R◦Dv(a)|V ⊥ , where R
is the orthogonal projection onto Y ⊥. Thus, for every x ∈ Bm

δ (a),

dist (ψ(x), V ) ≤ C2 dist (Dv(a)[ψ(x)], Y ) = C2 dist (v(x), Y ).

To conclude the argument, take 0 < δ ≤ δ such that for every x ∈ Bm
δ (a),

dist (x, v−1(Y )) = dist (x, v−1(Y ) ∩Bm
δ (a))

and
dist (ψ(x), V ) = dist (ψ(x), V ∩ ψ(Bm

δ (a))).
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We deduce from the above that for x ∈ Bm
δ (a),

dist (x, v−1(Y )) ≤ C1C2 dist (v(x), Y ).

Using a covering argument of K ∩ v−1(Y ), the conclusion follows when Y is
a single ν − λ dimensional plane.

We now assume that Y is a finite union of ν − λ dimensional planes
Y1, . . . , Yj . The first assertion is true for almost every ξ ∈ R

ν . Concerning the
second assertion, note that for every x ∈ Ω and for every ξ ∈ R

ν ,

dist (x, v−1(Y + ξ)) = min
i∈{1,...,j}

dist (x, v−1(Yi + ξ))

and

dist (v(x), Y + ξ) = min
i∈{1,...,j}

dist (v(x), Yi + ξ).

Let ξ ∈ R
ν . If the estimate holds for every Yi with some constant C ′

i > 0,
then for every x ∈ K,

dist (x, v−1(Y + ξ)) ≤
(

max
i∈{1,...,j}

C ′
i

)
min

i∈{1,...,j}
dist (v(x), Yi + ξ)

=

(
max

i∈{1,...,j}
C ′

i

)
dist (v(x), Y + ξ).

This concludes the proof of the lemma. �

Given a domain Ω ⊂ R
m and a measurable function u : Ω → R

ν , we
now estimate the convolution function ϕt ∗ u and its derivative in terms of a
fractional derivative of u. More precisely, given 0 < s < 1 and 1 ≤ p < +∞,
define for x ∈ Ω (see [22]),

Ds,pu(x) =

(∫
Ω

|u(x)− u(y)|p
|x− y|m+sp

dy

)1/p

.

We assume that ϕ : Rm → R is a mollifier. In other words,

ϕ ∈ C∞
c (Bm

1 ), ϕ ≥ 0 in Bm
1 and

∫
Bm

1

ϕ = 1. (2.3)

For every t > 0, define ϕt : R
m → R for h ∈ R

m by

ϕt(h) =
1

tm
ϕ

(
h

t

)
.

Using the notation above we have the following lemma.

Lemma 2.4. If u ∈ W s,p(Ω;Rν), then for every t > 0 and for every x ∈ Ω
such that dist (x, ∂Ω) > t,

(i) |ϕt ∗ u(x)− u(x)| ≤ CtsDs,pu(x),

(ii) |D(ϕt ∗ u)(x)| ≤ C ′t−(1−s)Ds,pu(x),

for some constants C > 0, depending on ϕ, and C ′ > 0, depending on Dϕ
and p.
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Proof. By Jensen’s inequality,

|ϕt ∗ u(x)− u(x)|p ≤
∫
Rm

ϕt(h)|u(x− h)− u(x)|p dh

=

∫
Rm

ϕt(h)|h|m+sp |u(x− h)− u(x)|p
|h|m+sp

dh.

Since ϕt is supported in Bm
t , for every h ∈ R

m, ϕt(h)|h|m+sp ≤ C1t
sp. The

first estimate follows.
Next, since

∫
Rm Dϕt = 0,

|D(ϕt ∗ u)(x)| ≤
∫
Rm

|Dϕt(h)||u(x− h)− u(x)| dh.

Since ∫
Rm

|Dϕt| ≤
C2

t
,

by Jensen’s inequality,

|D(ϕt ∗ u)(x)|p ≤
Cp−1

2

tp−1

∫
Rm

|Dϕt(h)||u(x− h)− u(x)|p dh

=
Cp−1

2

tp−1

∫
Rm

|Dϕt(h)||h|m+sp |u(x− h)− u(x)|p
|h|m+sp

dh.

Since for every h ∈ R
m, |Dϕt(h)||h|m+sp ≤ C3t

sp−1, the second estimate
follows. �

If u ∈ W s,p(Ω;Rν) and κ : R
ν → R

ν is Lipschitz continuous, then
κ ◦ u ∈W s,p(Ω;Rν) and

[κ ◦ u]W s,p(Ω) ≤ |κ|Lip(Rν)[u]W s,p(Ω), (2.4)

where |κ|Lip(Rν) denotes the best Lipschitz constant of κ. The next lemma
gives the continuity of the composition operator u �→ κ ◦ u in W s,p.

Lemma 2.5. Let Ω ⊂ R
m be a bounded open set and u ∈W s,p(Ω;Rν). For ev-

ery ε > 0, there exists δ > 0 such that if κ : Rν → R
ν is Lipschitz continuous,

v ∈W s,p(Ω) and ‖u− v‖W s,p(Ω;Rν) ≤ δ, then

[κ ◦ u− κ ◦ v]W s,p(Ω) ≤ |κ|Lip(Rν)ε.

By a result of Marcus and Mizel [20, Theorem 1] in the scalar case ν = 1,
the map u ∈W 1,p(Ω;R) �→ κ ◦ u ∈W 1,p(Ω;R) is continuous. Lemma 2.5 has
been proved by Bourgain, Brezis and Mironescu [6, Claim (5.43)]. For the
convenience of the reader we present their proof, organized differently.

Proof of Lemma 2.5. For u, v ∈ W s,p(Ω;Rν) and κ : Rν → R
ν , define for

x, y ∈ Ω,

I(x, y) =
|κ(u(x))− κ(v(x))− κ(u(y)) + κ(v(y))|p

|x− y|m+sp
,
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so that

[κ ◦ u− κ ◦ v]W s,p(Ω) =

∫
Ω

∫
Ω

I(x, y) dx dy.

Observe that

I(x, y) ≤ 2p−1 |κ(u(x))− κ(v(x))|p + |κ(u(y))− κ(v(y))|p
|x− y|m+sp

≤ 2p−1|κ|pLip(Rν)

|u(x)− v(x)|p + |u(y)− v(y)|p
|x− y|m+sp

and that

I(x, y) ≤ 2p−1 |κ(u(x))− κ(u(y))|p + |κ(v(x))− κ(v(y))|p
|x− y|m+sp

≤ 2p−1|κ|pLip(Rν)

|u(x)− u(y)|p + |v(x)− v(y)|p
|x− y|m+sp

≤ C1|κ|pLip(Rν)

(
|u(x)− u(y)|p
|x− y|m+sp

+
|u(x)− v(x)− u(y) + v(y)|p

|x− y|m+sp

)
.

Given ε > 0, let

Av,ε =
{
(x, y) ∈ Ω× Ω : |u(x)− v(x)|p + |u(y)− v(y)|p ≥ ε|x− y|m+sp

}
.

Using the first upper bound of I(x, y) on the set (Ω×Ω)\Av,ε and the second
one on the set Av,ε, we get

[κ ◦ u− κ ◦ v]pW s,p(Ω)

≤ |κ|pLip(Rν)

(
2p−1ε|Ω|2 + C1

∫∫
Av,ε

|u(x)− u(y)|p
|x− y|m+sp

dx dy + C1[u− v]pW s,p(Ω)

)
.

Since u ∈ W s,p(Ω) and |Av,ε| → 0 as v → u in W s,p(Ω), the conclusion
follows from the dominated convergence theorem. �

Despite of the estimate (2.4), when κ is not affine there is no inequality
of the form

[κ ◦ u− κ ◦ v]W s,p(Ω) ≤ C|κ|Lip(Rν)[u− v]W s,p(Ω).

In fact, the map u �→ κ ◦ u is not even uniformly continuous in W s,p. We
explain the argument when the domain is the unit cube Qm. For this purpose,
let ϕ ∈ C∞

c (Qm;Rν) and denote by ϕ̄ the periodic extension of ϕ to R
m.

Define for j ∈ N∗,
vj(x) = ϕ̄(jx)

and, for some fixed ξ ∈ R
ν ,

uj(x) = ϕ̄(jx) + ξ.

We observe that

‖uj − vj‖W s,p(Qm) = ‖uj − vj‖Lp(Qm) = 2m|ξ|
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whereas

[κ ◦ uj − κ ◦ vj ]pW s,p(Qm)

≥ jsp
∫
Qm

∫
Qm

∣∣κ(ϕ(x) + ξ)− κ(ϕ(x))− κ(ϕ(y) + ξ) + κ(ϕ(y))
∣∣p

|x− y|m+sp
dx dy.

(2.5)

When κ is not affine, there exist ξ, τ, σ ∈ R
ν such that

κ(τ + ξ)− κ(τ) �= κ(σ + ξ)− κ(σ).

Taking ϕ ∈ C∞
c (Qm;Rν) for which both sets ϕ−1({σ}) and ϕ−1({τ}) have

positive measure, we have∫
Qm

∫
Qm

∣∣κ(ϕ(x) + ξ)− κ(ϕ(x))− κ(ϕ(y) + ξ) + κ(ϕ(y))
∣∣p

|x− y|m+sp
dx dy > 0.

As we let j tend to infinity in (2.5), we conclude that u �→ κ ◦ u is not uni-
formly continuous in W s,p.

Proof of Proposition 2.1. Let u ∈ W s,p(Qm;Nn). The restrictions to Qm of
the maps uγ ∈W s,p(Qm

1+2γ ;N
n), defined for x ∈ Qm

1+2γ by

uγ(x) = u

(
x

1 + 2γ

)
,

converge strongly to u in W s,p(Qm;Nn) as γ tends to 0. We can thus assume
from the beginning that u ∈W s,p(Qm

1+2γ ;N
n) for some γ > 0.

Let κ : Rν \X → Nn be the locally Lipschitz retraction of Lemma 2.2
with � = 
sp� − 1; we may assume that ν ≥ � + 2. For every ξ ∈ R

ν , we
consider the map κξ : Rν \ (X + ξ)→ Nn defined by

κξ(x) = κ(x− ξ).

Given a mollifier ϕ (see (2.3)), the map κξ ◦ (ϕt ∗ u) is locally Lipschitz
continuous in Qm

1+γ \ (ϕt ∗ u)−1(X + ξ). Moreover, by the chain rule and by
the pointwise estimate satisfied by Dκ,

∣∣D[κξ ◦ (ϕt ∗ u)]
∣∣ ≤ C1

|D(ϕt ∗ u)|
dist (ϕt ∗ u,X + ξ)

. (2.6)

The setX is contained in a finite union of ν−
sp�−1 dimensional planes
Y in R

ν . Applying Lemma 2.3 to v = ϕt ∗u ∈ C∞(Qm
1+γ ;R

ν), we obtain that

for every 0 < t ≤ γ and for almost every ξ ∈ R
ν , the set (ϕt ∗ u)−1(X + ξ) is

contained in a finite union of m− 
sp� − 1 dimensional submanifolds,

T = (ϕt ∗ u)−1(Y + ξ).

By (2.6) and the inclusion X ⊂ Y ,∣∣D[κξ ◦ (ϕt ∗ u)]
∣∣ ≤ C2

1

dist (ϕt ∗ u,X + ξ)
≤ C2

1

dist (ϕt ∗ u, Y + ξ)
.
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By Lemma 2.3 (ii), we conclude that for x ∈ Q
m \ (ϕt ∗ u)−1(Y + ξ),

∣∣D[κξ ◦ (ϕt ∗ u)](x)
∣∣ ≤ C3

1

dist (x, (ϕt ∗ u)−1(Y + ξ))
=

C3

dist (x, T )
.

In particular, for every 0 < t ≤ γ and for almost every ξ ∈ R
ν , the map

κξ ◦ (ϕt ∗ u) belongs to Rm−�sp�−1(Q
m;Nn).

We proceed using an idea from [6] for W
1
2 ,2 maps with values into the

circle S
1. Let

α =
1

4
dist (X,Nn),

let θ : Rν → R be a Lipschitz continuous function such that

(a) for dist (x,X) ≤ 2α, θ(x) = 1,
(b) for dist (x,X) ≥ 3α, θ(x) = 0,

and let

κ̄ξ = (1− θ)κξ and κ ξ = θκξ.

Since κξ = κ̄ξ on u(Qm
1+2γ) ⊂ Nn, we have by the triangle inequality,∥∥κξ ◦ (ϕt ∗ u)− u
∥∥
W s,p(Qm)

≤ ‖κ ξ ◦ (ϕt ∗ u)‖W s,p(Qm)

+ ‖κ̄ξ ◦ (ϕt ∗ u)− κ̄ξ ◦ u‖W s,p(Qm)

+ ‖κξ ◦ u− u‖W s,p(Qm).

(2.7)

Since κ is Lipschitz continuous on a neighborhood of Nn and κξ◦u = κ(u−ξ),
we have by continuity of the composition operator in W s,p (Lemma 2.5),

lim
ξ→0

‖κξ ◦ u− u‖W s,p(Qm) = 0. (2.8)

By Lemma 2.5, as the maps κ̄ξ are uniformly Lipschitz continuous and ϕt ∗u
converges to u in W s,p(Qm),

lim
t→0
‖κ̄ξ ◦ (ϕt ∗ u)− κ̄ξ ◦ u‖W s,p(Qm) = 0, (2.9)

uniformly with respect to ξ.

It remains to estimate the first term on the right-hand side of (2.7).
This is done in the following.

Claim 1. For every 0 < t ≤ γ,∫
Bν

α

‖κ ξ ◦ (ϕt ∗ u)‖pW s,p(Qm) dξ ≤ C

∫
{|ϕt∗u−u|≥α}

(Ds,pu)p.

We assume temporarily the claim and complete the proof of Proposi-
tion 2.1. Since Ds,pu ∈ Lp(Qm) and ϕt ∗ u converges to u in measure as t
tends to zero, by the claim we have

lim
t→0

∫
Bν

α

‖κ ξ ◦ (ϕt ∗ u)‖pW s,p(Qm) dξ = 0.
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By the Chebyshev inequality,

lim
t→0

∣∣∣∣∣
{
ξ ∈ Bm

α : ‖κ ξ ◦ (ϕt ∗ u)‖pW s,p(Qm)

≥
(∫

Bm
α

‖κ ζ ◦ (ϕt ∗ u)‖pW s,p(Qm) dζ

)1/2
}∣∣∣∣∣ = 0.

Thus, for every 0 < t ≤ γ, there exists ξt ∈ Bm
α such that limt→0 ξt = 0 and

lim
t→0
‖κ ξt

◦ (ϕt ∗ u)‖W s,p(Qm) = 0.

We conclude from (2.7), (2.8) and (2.9) that

lim
t→0

∥∥κξt ◦ (ϕt ∗ u)− u
∥∥
W s,p(Qm)

= 0.

This gives the conclusion of Proposition 2.1. �

It remains to establish the claim.

Proof of the claim. Let 1 < q < p < r be such that

1

p
=

1− s

r
+

s

q
. (2.10)

By the Gagliardo–Nirenberg interpolation inequality,

‖κ ξ ◦ (ϕt ∗ u)‖W s,p(Qm)

≤ C4‖κ ξ ◦ (ϕt ∗ u)‖1−s
Lr(Qm)‖κ ξ ◦ (ϕt ∗ u)‖sW 1,q(Qm).

(2.11)

As Nn is compact, we observe that the functions κ ξ ◦ (ϕt ∗ u) are uniformly
bounded and supported on the set {dist (ϕt ∗ u,X) ≤ 3α}. Moreover,{

dist (ϕt ∗ u,X) ≤ 3α
}
⊂

{
|ϕt ∗ u− u| ≥ α

}
.

Thus,

‖κ ξ ◦ (ϕt ∗ u)‖Lr(Qm) ≤ C4

∣∣{|ϕt ∗ u− u| ≥ α}
∣∣ 1
r . (2.12)

Next, by the Leibniz rule and by (2.6),

|D(κ ξ ◦ (ϕt ∗ u))|

≤
(
|Dθ(ϕt ∗ u)||κξ(ϕt ∗ u)|+ |θ(ϕt ∗ u)||Dκξ(ϕt ∗ u)|

)
|D(ϕt ∗ u)|

≤ C5

(
1 +

1

dist (ϕt ∗ u,X + ξ)

)
|D(ϕt ∗ u)|.

Since the functions D(κ ξ ◦ (ϕt ∗ u)) are also supported in the set{
|ϕt ∗ u− u| ≥ α

}
,

we get

‖κ ξ ◦ (ϕt ∗ u)‖qW 1,q(Qm)

≤ C6

∫
{|ϕt∗u−u|≥α}

[
1 +

(
1 +

1

dist (ϕt ∗ u,X + ξ)
q

)
|D(ϕt ∗ u)|q

]
.
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For

q ≥ sp

we have, by Hölder’s inequality and by Fubini’s theorem,∫
Bν

α

‖κ ξ ◦ (ϕt ∗ u)‖spW 1,q(Qm) dξ

≤ |Bν
α|1−

sp
q

(∫
Bν

α

‖κ ξ ◦ (ϕt ∗ u)‖qW 1,q(Qm) dξ

) sp
q

≤ C7

(∫
{|ϕt∗u−u|≥α}

∫
Bν

α

[
1 +

(
1 +

1

dist (ϕt ∗ u(x), X + ξ)
q

)

× |D(ϕt ∗ u)(x)|q
]
dξ dx

) sp
q

.

We have∫
Bν

α

1

dist (ϕt ∗ u(x), X + ξ)
q dξ =

∫
Bν

α

1

dist (ϕt ∗ u(x)−X, ξ)
q dξ

=

∫
Bν

α+ϕt∗u(x)

1

dist (X, ξ)
q dξ

≤
∫
Bν

R

1

dist (X, ξ)
q dξ,

where R > 0 is such that for every x ∈ Qm, Bν
α +ϕt ∗ u(x) ⊂ Bν

R. Since X is
a closed subset of a finite union of ν−
sp�− 1 dimensional planes, assuming
in addition that

q < 
sp�+ 1

then the last integral is finite. Thus,

∫
Bν

α

‖κ ξ ◦ (ϕt ∗ u)‖spW 1,q(Qm) dξ ≤ C8

(∫
{|ϕt∗u−u|≥α}

[
1 + |D(ϕt ∗ u)|q

]) sp
q

.

Inserting this estimate and (2.12) into (2.11), we deduce that

∫
Bν

α

‖κ ξ ◦ (ϕt ∗ u)‖pW s,p(Qm) dξ

≤ C9

∣∣{|ϕt ∗ u− u| ≥ α}
∣∣ (1−s)p

r

(∫
{|ϕt∗u−u|≥α}

[
1 + |D(ϕt ∗ u)|q

]) sp
q

.
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Since q < p, by Hölder’s inequality and by the identity (2.10) satisfied by the
exponents r, p and q,∫

Bν
α

‖κ ξ ◦ (ϕt ∗ u)‖pW s,p(Qm) dξ

≤ C10

∣∣{|ϕt ∗ u− u| ≥ α}
∣∣1−s

(∫
{|ϕt∗u−u|≥α}

[
1 + |D(ϕt ∗ u)|p

])s

.

By the Chebyshev inequality and by Lemma 2.4,∣∣{|ϕt ∗ u− u| ≥ α}
∣∣ ≤ 1

αp

∫
{|ϕt∗u−u|≥α}

|ϕt ∗ u− u|p

≤ C11t
sp

∫
{|ϕt∗u−u|≥α}

(Ds,pu)p.

By Lemma 2.4, we also have∫
{|ϕt∗u−u|≥α}

|D(ϕt ∗ u)|p ≤
C12

t(1−s)p

∫
{|ϕt∗u−u|≥α}

(Ds,pu)p.

We conclude that∫
Bν

α

‖κ ξ ◦ (ϕt ∗ u)‖pW s,p(Qm) dξ ≤ C13(t
sp + 1)

∫
{|ϕt∗u−u|≥α}

(Ds,pu)p.

This proves the claim. �

3. Strong density for sp < 1

The proof of Theorem 1.3 when sp < 1 relies on the density of step functions
in W s,p based on a Haar projection [7]. This analytical step is developed in
Propositions 3.1 and 3.2 below. Then, a standard tool from differential topol-
ogy (Proposition 3.3) allows us to reduce the problem to an approximation of
a map with values in a convex set and this can be carried out by convolution.

Given a function v ∈ L1(Qm;Rν), we consider the Haar projection

Ej(v) : Q
m → R

ν

defined almost everywhere on Qm. More precisely, denoting by Km
2−j the

standard cubication of Qm in 2jm cubes of radius 2−j , for every σ ∈ Km
2−j

the function Ej(v) is constant in intσ and for x ∈ intσ,

Ej(v)(x) =
1

|σ|

∫
σ

v.

In particular, Ej(v) is a step function.

Proposition 3.1. Let v ∈ Lp(Qm;Rν). Then, for every j ∈ N∗,

‖Ej(v)‖Lp(Qm) ≤ ‖v‖Lp(Qm)

and the sequence (Ej(v))j∈N∗ converges strongly to v in Lp(Qm;Rν).
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Proof. The estimate follows from Hölder’s inequality. To prove the conver-
gence of the sequence (Ej(v))j∈N∗ , we write

‖Ej(v)− v‖pLp(Qm) =
∑

σ∈Km
2−j

∫
σ

∣∣v(x)− 1

|σ|

∫
σ

v
∣∣p dx

≤
∑

σ∈Km
2−j

1

|σ|

∫
σ

∫
σ

|v(x)− v(y)|p dx dy.

Approximating v in Lp(Qm;Rν) by a continuous function, we deduce that the
right-hand side converges to 0 as j tends to infinity. This gives the conclusion.

�

The counterpart of the previous proposition still holds in the case of
fractional Sobolev spaces W s,p for sp < 1.

Proposition 3.2. Let v ∈W s,p(Qm;Rν). If sp < 1, then for every j ∈ N∗,

[Ej(v)]W s,p(Qm) ≤ C[v]W s,p(Qm)

for some constant C > 0 depending on s, p and m. In addition, the sequence
(Ej(v))j∈N∗ converges strongly to v in W s,p(Qm;Rν).

The first part of the statement is due to Bourgain, Brezis and Mironescu
[7, Corollary A.1]. Their proof is based on a characterization of the fractional
Sobolev spaces W s,p for sp < 1 due to Bourdaud [5] in terms of the Haar
basis. We present an alternative argument relying directly on the Gagliardo
seminorm. The main ingredient is the following.

Claim 2. If sp < 1, then for every σ, ρ ∈ Km
2−j ,∫

σ

∫
ρ

1

|x− y|m+sp
dx dy ≤ C ′ |σ||ρ|

δ(σ, ρ)m+sp
,

where
δ(σ, ρ) = sup

{
|x− y| : x ∈ σ and y ∈ ρ

}
and the constant C ′ > 0 depends on m and sp.

Proof of the claim. For every (x, y) ∈ σ × ρ,

|x− y| ≥ δ(σ, ρ)− diamσ − diam ρ = δ(σ, ρ)− 2−j+2
√
m.

If δ(σ, ρ) ≥ 2−j+3
√
m, then

1

2
δ(σ, ρ) ≤ |x− y| ≤ δ(σ, ρ),

and the result follows in this case. Since the indicator function of the unit
cube χQm belongs to W s,p(Rm) for sp < 1, a scaling argument leads to the
following estimate

1

|σ||ρ|

∫
σ

∫
ρ

1

|x− y|m+sp
dx dy ≤ C12

j(m+sp).

In turn, this implies the claim when δ(σ, ρ) < 2−j+3
√
m. �
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Proof of Proposition 3.2. Let σ, ρ ∈ Km
2−j . For x ∈ σ and y ∈ ρ,

|Ej(v)(x)− Ej(v)(y)| ≤
1

|σ||ρ|

∫
σ

∫
ρ

|v(x̃)− v(ỹ)| dx̃ dỹ.

Thus, by Jensen’s inequality,

|Ej(v)(x)− Ej(v)(y)|p ≤
1

|σ||ρ|

∫
σ

∫
ρ

|v(x̃)− v(ỹ)|p dx̃ dỹ.

We deduce that∫
σ

∫
ρ

|Ej(v)(x)− Ej(v)(y)|p
|x− y|m+sp

dx dy

≤ C ′

δ(σ, ρ)m+sp

∫
σ

∫
ρ

|v(x̃)− v(ỹ)|p dx̃ dỹ

≤ C ′
∫
σ

∫
ρ

|v(x̃)− v(ỹ)|p
|x− y|m+sp

dx̃ dỹ.

(3.1)

The desired estimate follows from (3.1) by summation over dyadic cubes
in Km

2−j .

To prove the convergence in W s,p we write for every λ > 0,

[Ej(v)− v]pW s,p(Qm)

≤ 2p−1

∫∫
Dλ

|Ej(v)(x)− Ej(v)(y)|p + |v(x)− v(y)|p
|x− y|m+sp

dx dy

+
2p|Qm|
λm+sp

∫
Qm

|Ej(v)− v|p,

where

Dλ =
{
(x, y) ∈ Qm ×Qm : |x− y| ≤ λ

}
.

By estimate (3.1),∫∫
Dλ

|Ej(v)(x)− Ej(v)(y)|p
|x− y|m+sp

dx dy

≤ C1

∑
σ,ρ∈Km

2−j

(σ×ρ)∩Dλ =∅

∫
σ

∫
ρ

|v(x)− v(y)|p
|x− y|m+sp

dx dy

≤ C1

∫∫
Dλ+Q2m

2−j+1

|v(x)− v(y)|p
|x− y|m+sp

dx dy.

Hence,

[Ej(v)− v]pW s,p(Qm)

≤ C2

∫∫
Dλ+Q2m

2−j+1

|v(x)− v(y)|p
|x− y|m+sp

dx dy +
2p|Qm|
λm+sp

∫
Qm

|Ej(v)− v|p.
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By Proposition 3.1, the last integral tends to zero as j tends to infinity. Thus,

lim sup
j→∞

[Ej(v)− v]pW s,p(Qm) ≤ C2

∫∫
Dλ

|v(x)− v(y)|p
|x− y|m+sp

dx dy.

The conclusion follows by choosing λ > 0 small enough. �

In the proof of Theorem 1.3 we need the following property from differ-
ential topology.

Proposition 3.3. Let Nn be a connected manifold. Then, for every finite subset
A in Nn, there exists an open neighborhood of A in Nn which is diffeomorphic
to the Euclidean ball Bn.

Proof. Let U ⊂ Nn be an open set which is diffeomorphic to the Euclidean
ball Bn. There exists a diffeomorphism f : Nn → Nn mapping A into U
(see [19, Lemma 5.2.6]); in dimension n ≥ 2 this follows from the multitran-
sitivity in the group of diffeomorphism of Nn (see [1, Lemma 2.1.10]). The
set f−1(U) is thus diffeomorphic to Bn and contains A. �

Proof of Theorem 1.3 when sp < 1. Let u ∈ W s,p(Qm;Nn) and let ι > 0 be

such that the nearest point projection Π into Nn is smooth on Nn +B
ν

ι .
Let b ∈ Nn. For every j ∈ N∗, we define uj : Q

m → R
ν for x ∈ Qm by

uj(x) =

{
Ej(u)(x) if dist (Ej(u)(x), N

n) < ι,

b otherwise.

Then, (uj)j∈N∗ is a sequence of step functions with values into Nn +Bν
ι . By

the triangle inequality,

‖uj − u‖W s,p(Qm) ≤ ‖Ej(u)− uj‖W s,p(Qm) + ‖Ej(u)− u‖W s,p(Qm). (3.2)

We need to estimate the first term on the right-hand side of this inequality.
Since the range of Ej(u) is contained in a fixed bounded set—for instance
the convex hull of Nn—for every j ∈ N∗,

‖Ej(u)− uj‖Lp(Qm) = ‖Ej(u)− b‖Lp({dist (Ej(u),Nn)≥ι})

≤ C1

∣∣{x : dist (Ej(u)(x), N
n) ≥ ι}

∣∣ 1
p .

Since |Ej(u)(x)− u(x)| ≥ ι on {x : dist (Ej(u)(x), N
n) ≥ ι}, we get

‖Ej(u)− uj‖Lp(Qm) ≤ C1

∣∣{x : |Ej(u)(x)− u(x)| ≥ ι}
∣∣ 1
p .

Thus, by the Chebyshev inequality,

‖Ej(u)− uj‖Lp(Qm) ≤
C1

ι
1
p

‖Ej(u)− u‖Lp(Qm). (3.3)

We need a similar estimate for the Gagliardo seminorm W s,p.

Claim 3. There exists C > 0 depending on s, p and m such that for every
j ∈ N∗,

[Ej(u)− uj ]W s,p(Qm) ≤ C
(
[Ej(u)− u]W s,p(Qm) + [u]W s,p(Aj)

)
,
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where

Aj = {x ∈ Qm : dist (Ej(u)(x), N
n) ≥ ι}.

Proof of the claim. First note that

[Ej(u)− uj ]
p
W s,p(Qm) = 2

∑
σ∈A

∑
ρ∈Km

2−j \A

∫
σ

∫
ρ

|Ej(u)(x)− b|p
|x− y|m+sp

dx dy

+
∑
σ∈A

∑
ρ∈A

∫
σ

∫
ρ

|Ej(u)(x)− Ej(u)(y)|p
|x− y|m+sp

dx dy,

where

A =
{
σ ∈ Km

2−j : dist (Ej(u)(x), N
n) ≥ ι for x ∈ σ

}
.

By (3.1), we have∑
σ∈A

∑
ρ∈A

∫
σ

∫
ρ

|Ej(u)(x)− Ej(u)(y)|p
|x− y|m+sp

dx dy ≤ C1[u]
p
W s,p(Aj)

.

We now estimate the term

I =
∑
σ∈A

∑
ρ∈Km

2−j \A

∫
σ

∫
ρ

|Ej(u)(x)− b|p
|x− y|m+sp

dx dy.

Since the image of u is contained in Nn and Nn is bounded, there exists a
constant C2 > 0 such that for every j ∈ N∗,

|Ej(u)− b| ≤ C2.

Since sp < 1, by Claim 2,

I ≤ Cp
2

∑
σ∈A

∑
ρ∈Km

2−j \A

∫
σ

∫
ρ

1

|x− y|m+sp
dx dy

≤ C3

∑
σ∈A

∑
ρ∈Km

2−j \A

|σ||ρ|
δ(σ, ρ)m+sp

.

For every σ ∈ A, ∫
σ

|Ej(u)− u|p ≥ ιp|σ|.

Thus,

I ≤ C3

ιp

∑
σ∈A

∑
ρ∈Km

2−j \A

|ρ|
δ(σ, ρ)m+sp

∫
σ

|Ej(u)− u|p.

Since Ej(u) =
1
|ρ|

∫
ρ
u in ρ, for x ∈ σ we have by the triangle inequality,

|Ej(u)(x)− u(x)| ≤ 1

|ρ|

∫
ρ

|Ej(u)(x)− u(x)− Ej(u)(y) + u(y)| dy.

Thus, by Jensen’s inequality,

|Ej(u)(x)− u(x)|p ≤ 1

|ρ|

∫
ρ

|Ej(u)(x)− u(x)− Ej(u)(y) + u(y)|p dy.
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We deduce that

I ≤ C3

ιp

∑
σ∈A

∑
ρ∈Km

2−j \A

∫
σ

∫
ρ

|Ej(u)(x)− u(x)− Ej(u)(y) + u(y)|p
|x− y|m+sp

dy dx

and the claim follows. �

By the triangle inequality (3.2), by estimate (3.3) and by the previous
claim, we have for every j ∈ N∗,

‖uj − u‖W s,p(Qm) ≤ C4‖Ej(u)− u‖W s,p(Qm) + C[u]W s,p(Aj).

Since (Ej(u))j∈N∗ converges to u in measure and u(x) ∈ Nn for almost every
x ∈ Qm, the sequence (|Aj |)j∈N∗ converges to zero. Since u ∈ W s,p(Qm), by
the dominated convergence theorem we get

lim
j→+∞

[u]W s,p(Aj) = 0.

Applying Proposition 3.2, we deduce that (uj)j∈N∗ converges strongly to u in

W s,p(Qm;Rν). Since uj(Q
m) ⊂ Nn+B

ν

ι , the sequence (Π◦uj)j∈N∗ converges
strongly to u in W s,p(Qm;Nn).

To conclude the proof of Theorem 1.3, we may then assume that u is a
step function. In this case, u(Qm) is a finite set of points in Nn. By Proposi-
tion 3.3, there exists an open neighborhood U of u(Qm) in Nn and a smooth

diffeomorphism Φ : U → B
n
to the unit closed ball in R

n. Since the set B
n

is convex, there exists a sequence of smooth maps (vi)i∈N in C∞(Q
m
;B

n
)

which converges strongly to Φ ◦ u in W s,p(Qm;B
n
). Hence, the sequence

(Φ−1 ◦ vi)i∈N converges strongly to u in W s,p(Qm;Nn). This completes the
proof of Theorem 1.3 for sp < 1. �
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Chemin du Cyclotron 2, L7.01.02
1348 Louvain-la-Neuve
Belgium
e-mail: Jean.VanSchaftingen@uclouvain.be


	Strong approximation of fractional Sobolev maps
	Abstract
	1. Introduction
	2. Strong density for sp ≥ 1
	3. Strong density for sp < 1
	Acknowledgments
	References


