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Abstract. This paper concerns the existence of solitons, namely stable
solitary waves in the nonlinear beam equation with a suitable nonlin-
earity. An equation of this type has been introduced in [P. J. McKenna
and W. Walter, Arch. Ration. Mech. Anal., 98 (1987), 167–177] as a
model of a suspension bridge. We prove both the existence of solitary
waves for a large class of nonlinearities and their stability. As far as we
know this is the first result about stability of solitary waves in nonlinear
beam equation.

Mathematics Subject Classification. 74J35, 35C08, 35A15, 35Q74, 35B35.

Keywords. Nonlinear beam equation, travelling solitary waves, hylomor-
phic solitons, variational methods.

1. Introduction

Let us consider the nonlinear beam equation

∂2u

∂t2
+

∂4u

∂x4
+W ′(u) = 0, (1)

where u = u(t, x) and W ∈ C1(R). In this paper, we prove that, under suit-
able assumptions, equation (1) admits soliton solutions. Roughly speaking,
a solitary wave is a solution of a field equation whose energy travels as a
localized packet and which preserves this localization in time. A soliton is a
solitary wave which exhibits some form of stability so that it has a particle-
like behavior (see, e.g., [3] or [5]). Following [3], a soliton or solitary wave
is called hylomorphic if its stability is due to a particular ratio between en-
ergy E and the hylenic charge C which is another integral of motion. More
precisely, a soliton u0 is hylomorphic if

E(u0) = min{E(u) | C(u) = C(u0)}.
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The physical meaning of C depends on the problem (in this case C is the
momentum, see Section 3.1). The main result of this paper is the proof of the
existence of hylomorphic solitons for equation (1) provided that W satisfies
suitable assumptions (namely, (W-i), (W-ii) and (W-iii) of Section 3.1). In
particular, these assumptions are satisfied by

W (s) =

{
1
2s

2 for s ≤ 1,

s− 1
2 for s ≥ 1.

(2)

Equation (1) with W (s) as in (2) has been proposed as a model for a
suspension bridge (see [9], [7], [8]). In particular, in [10] and [11] the existence
of travelling waves has been proved.

Observe that u(t, x) − 1 denotes the displacement of the beam from
the unloaded state u(x) ≡ 1, and the bridge is seen as a vibrating beam
supported by cables which are treated as springs. The force relative to the
potential W (s) in (2) is given by

F (s) = −W ′(s) =

{
−s for s ≤ 1,

−1 for s ≥ 1;

namely, for s ≥ 1, only the constant gravity force −1 acts; while, for s ≤ 1, an
elastic force (of intensity 1− s), due to the suspension cables, must be added
to the constant gravity force −1 . Of course, assumptions (W-i), (W-ii) and
(W-iii) are satisfied also by the potential

W (s) = s− 1 + e−s (3)

which has been considered in [10] and [11] as an alternative smooth model
for a suspension bridge.

2. Hylomorphic solitary waves and solitons

2.1. An abstract definition of solitary waves and solitons

Solitary waves and solitons are particular states of a dynamical system de-
scribed by one or more partial differential equations. Thus, we assume that
the states of this system are described by one or more fields which mathe-
matically are represented by functions

u : RN → V, (4)

where V is a vector space with norm | · |V which is called the internal pa-
rameters space. We assume the system to be deterministic; this means that
it can be described as a dynamical system (X, γ), where X is the set of the
states and γ : R × X → X is the time evolution map. If u0(x) ∈ X, the
evolution of the system will be described by the function

u (t, x) := γtu0(x). (5)

We assume that the states of X have “finite energy” so that they decay at ∞
sufficiently fast.

We give a formal definition of a solitary wave.
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Definition 1. A state u(x) ∈ X is called a solitary wave if there is ξ(t) such
that

γtu(x) = u(x− ξ(t)).

The solitons are solitary waves characterized by some form of stability.
To define them at this level of abstractness, we need to recall some well-known
notions in the theory of dynamical systems.

Definition 2. A set Γ ⊂ X is called invariant if ∀u ∈ Γ, ∀t ∈ R, γtu ∈ Γ.

Definition 3. Let (X, d) be a metric space and let (X, γ) be a dynamical
system. An invariant set Γ ⊂ X is called stable, if ∀ε > 0, ∃δ > 0, ∀u ∈ X,

d(u,Γ) ≤ δ

implies that
∀t ≥ 0, d(γtu,Γ) ≤ ε.

Let G be the group induced by the translations in R
N , namely, for every

τ ∈ R
N , the transformation gτ ∈ G is defined as follows:

(gτu) (x) = u(x− τ). (6)

Definition 4. A subset Γ ⊂ X is called G-invariant if

∀u ∈ Γ, ∀τ ∈ R
N , gτu ∈ Γ.

Definition 5. A closed G-invariant set Γ ⊂ X is called G-compact if for any
sequence un(x) in Γ there is a sequence τn ∈ R

N such that un(x− τn) has a
converging subsequence.

Now we are ready to give the definition of a soliton.

Definition 6. A solitary wave u(x) is called soliton if there is an invariant set
Γ such that

(i) u(x) ∈ Γ,
(ii) Γ is stable,
(iii) Γ is G-compact.

Usually, in the literature, the kind of stability described by the above
definition is called orbital stability.

Remark 7. The above definition needs some explanation. For simplicity, we
assume that Γ is a manifold (actually, this is the generic case in many situ-
ations). Then (iii) implies that Γ is finite dimensional. Since Γ is invariant,
u0 ∈ Γ ⇒ γtu0 ∈ Γ for every time. Thus, since Γ is finite dimensional, the
evolution of u0 is described by a finite number of parameters. Thus the dy-
namical system (Γ, γ) behaves as a point in a finite-dimensional phase space.
By the stability of Γ, a small perturbation of u0 remains close to Γ. How-
ever, in this case, its evolution depends on an infinite number of parameters.
Thus, this system appears as a finite-dimensional system with a small pertur-
bation. Since dim(G) = N , dim(Γ) ≥ N and hence, the “state” of a soliton
is described by N parameters which define its position and, may be, other
parameters which define its “internal state.”
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2.2. Integrals of motion and hylomorphic solitons

In recent papers (see, e.g., [3], [2], [4]), the notion of hylomorphic soliton
has been introduced and analyzed. The existence and the properties of hylo-
morphic solitons are guaranteed by the interplay between the energy E and
another integral of motion which, in the general case, is called hylenic charge
and it will be denoted by C. More precisely, we have the following definition.

Definition 8. Assume that the dynamical system has two first integrals of
motion E : X → R and C : X → R. A soliton u0 ∈ X is hylomorphic if Γ (as
in Definition 6) has the following structure:

Γ = Γ (e0, p0) = {u ∈ X | E(u) = e0, C(u) = p0},
where

e0 = min{E(u) | C(u) = p0}
for some p0 ∈ R.

Clearly, for a given p0 the minimum of E might not exist; moreover,
even if the minimum exists, it is possible that Γ does not satisfy (ii) or (iii)
of Definition 6.

In this section, we present an abstract theorem which guarantees the
existence of hylomorphic solitons. Before stating the abstract theorem, we
need some definitions.

Definition 9. A functional J on X is called G-invariant if

∀g ∈ G, ∀u ∈ X, J(gu) = J(u).

Definition 10. Let G be a group of translations acting on X. A sequence un

in X is called G-compact if we can extract a subsequence unk
such that there

exists a sequence gk ∈ G such that gkunk
is convergent. A functional J on X

is called G-compact if any minimizing sequence of J is G-compact.

Remark 11. Clearly, a G-compact functional admits a minimizer. Moreover,
if J is G-invariant and u0 is a minimizer, then {gu0 | g ∈ G} is a set of
minimizers; so, if G is not compact, the set of minimizers is not compact
(unless u0 is a constant). This fact adds an extra difficulty to this kind of
problems.

We make the following (abstract) assumptions on the dynamical system
(X, γ).

(EC-1) There are two first integrals E : X → R and C : X → R.
(EC-2) E(u) and C(u) are G-invariant.

Theorem 12. Assume that the dynamical system (X, γ) satisfies (EC-1) and
(EC-2). Moreover, we set

J(u) =
E(u)

|C(u)| + δE(u), (7)
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where δ is a positive constant and assume that J is G-compact. Then J(u)
has a minimizer u0. Moreover, if we set

e0 = E(u0), p0 = C(u0), (8)

Γ = Γ (e0, p0) = {u ∈ X | E(u) = e0, C(u) = p0}, (9)

then every u ∈ Γ is a hylomorphic soliton according to Definition 8.

Proof. The proof of this theorem is in [4]. Here we just give an idea of it.
Let un be a minimizing sequence of J . J is G-compact, then, for a suitable
subsequence unk

and a suitable sequence gk, we get gkunk
→ u0. Clearly, u0

is a minimizer of J .

Now, let Γ be defined as in (9). It remains to show that every u ∈ Γ is
a hylomorphic soliton according to Definition 8. First of all, notice that u0

is a minimizer of E on the set

Mp0 = {u ∈ X | C(u) = p0}
and hence, according to Definition 8, every u ∈ Γ is a hylomorphic soliton
provided that Γ satisfies (i), (ii), (iii) of Definition 6. Clearly, (i) and (iii) are
satisfied. In order to prove (ii), namely that Γ is stable, we set

V (u) = (E (u)− e0)
2
+ (C (u)− c0)

2
. (10)

It can be shown that V is a Lyapunov function, since J is G-compact. Then
it is sufficient to apply the classical Lyapunov theorem. �

Remark 13. The reader may wonder why we use the functional J rather than
minimizing E on the manifold Mp, p ∈ R. As a matter of fact, in general
E does not have a minimum on Mp; on the contrary, if you choose p0 given
by (8), E has a minimum on Mp0 . In general, there is a set I of real values
such that δ ∈ I implies that J given by (7) is G-compact; then for every
δ ∈ I, there is a p = p(δ) such that E has a minimum on Mp(δ). Moreover,
if you perform a numerical simulation, it is more efficient to minimize the
functional J rather than the functional E constrained on Mp(δ).

3. The existence result

3.1. Statement of the main results

Equation (1) has a variational structure, namely it is the Euler–Lagrange
equation with respect to the functional

S =
1

2

∫ ∫ (
u2
t − u2

xx

)
dx dt−

∫ ∫
W (u) dx dt. (11)

The Lagrangian relative to the action (11) is

L =
1

2

(
u2
t − u2

xx

)−W (u). (12)
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This Lagrangian does not depend on t nor x. Then, by Noether’s theorem
(see, e.g., [6], [5]), the energy E and the momentum C defined by

E =

∫ (
∂L
∂ut

ut − L
)
dx =

1

2

∫ (
u2
t + u2

xx

)
dx+

∫
W (u) dx,

C = −
∫ (

∂L
∂ut

ux

)
dx = −

∫
utux dx

are constant along the solutions of (1).
Equation (1) can be rewritten as a Hamiltonian system as follows:{

∂tu = v,

∂tv = −∂4
xu−W ′(u).

(13)

The phase space is given by

X = H2(R)× L2(R)

and the generic point in X will be denoted by

u =

[
u
v

]
.

Here H2(R) denotes the usual Sobolev space.
The norm of X is given by

‖u‖ =

(∫ (
v2 + u2

xx + u2
)
dx

) 1
2

.

We shall assume that the initial value problem for (13) is globally well-posed
for any initial data u ∈X.

The energy and the momentum, as functionals defined on X, take the
following form:

E (u) =
1

2

∫
(v2 + u2

xx) dx+

∫
W (u) dx,

C(u) = −
∫

vux dx.

Next, we will apply the abstract theory of Section 2 where the momen-
tum C(u) plays the role of the hylenic charge.

We make the following assumptions.
(W-i) (Positivity) ∃η > 0 such that W (s) ≥ ηs2 for |s| ≤ 1 and W (s) ≥

η for |s| ≥ 1.
(W-ii) (Nondegeneracy at 0) W ′(0) = 0 and W ′′(0) = 1.
(W-iii) (Hylomorphy) ∃M > 0, ∃α ∈ [0, 2) ∀s ≥ 0,

W (s) ≤ M |s|α.
Here there are some comments on assumptions (W-ii) and (W-iii).
(W-ii) The assumption W ′′(0) = 1 can be weakened just assuming the

existence of W ′′(0). In fact, by (W-i) we have W ′′(0) > 0 and we can reduce
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to the case W ′′(0) = 1 by rescaling space and time. By this assumption we
can write

W (s) =
1

2
s2 +N(s), N(s) = o(s2). (14)

(W-iii) This is the crucial assumption which characterizes the poten-
tials which might produce hylomorphic solitons; notice that this assumption
concerns W only for the positive values of s.

We have the following results.

Theorem 14. Assume that (W-i), (W-ii) and (W-iii) hold, then there exists
an open interval I ⊂ R such that, for every δ ∈ I, there is a hylomorphic
soliton uδ for the dynamical system (13).

Theorem 15. Let uδ = (uδ, vδ) be a soliton as in Theorem 14. Then the
solution of equation (1) with initial data (uδ, vδ) has the following form:

u(t, x) = uδ(x− ct),

where uδ is a solution of the following equation:

∂4uδ

∂x4
+ c2

∂2uδ

∂x2
+W ′(uδ) = 0, (15)

and c is a constant which depends on uδ.

Remark 16. So we get the existence of solutions of (15) by a different proof
from that in [10] and [11]. We point out that (15) could have solutions which
are not minimizers. In this case, these solutions give rise to solitary waves
which are not solitons.

The proofs of Theorems 14 and 15 will be given in the next section.

3.2. Proof of the main results

By (W-ii), we have that, for u = [ uv ] ∈ X = H2(R)× L2(R),

E (u) =
1

2
‖u‖2 +

∫
N(u) dx. (16)

Lemma 17. Let M > 0. Then there exists a constant C > 0 such that

(E(u) ≤ M) ⇒ (‖u‖ ≤ C).

Proof. Assume that

E (u) =
1

2

∫ (
v2 + u2

xx

)
dx+

∫
W (u) dx ≤ M. (17)

Then, since W (u) ≥ 0, we have that∫ (
v2 + u2

xx

)
dx ≤ M. (18)

It remains to prove that also∫
u2dx is bounded. (19)
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We now set

Ω+
u = {x | u(x) > 1}; Ω−

u = {x | u(x) < −1}.
Then, if (17) holds, by (W-i) we have

M ≥
∫

W (u) dx+ ≥
∫
Ω+

u∪Ω−u
W (u) dx ≥ η

∣∣Ω+
u

∣∣+ η
∣∣Ω−

u

∣∣ , (20)

where |Ω| denotes the measure of Ω. Now we show that∫
Ω+

u

u2dx is bounded. (21)

Set v = u− 1, then, since v = 0 on ∂Ω+
u , by the Poincarè inequality, there is

a constant c > 0 such that∫
Ω+

u

v2dx ≤ c

∫
Ω+

u

v2xdx. (22)

Since we are in dimension one, it is easy to check that c ≤ |Ω+
u |2 .

On the other hand,∫
Ω+

u

v2x dx = −
∫
Ω+

u

v vxxdx ≤ ‖v‖L2(Ω+
u ) ‖vxx‖L2(Ω+

u ) . (23)

Then, since v = u− 1, by (22) and (23),

‖u− 1‖2L2(Ω+
u ) ≤ c ‖u− 1‖L2(Ω+

u ) ‖uxx‖L2(Ω+
u ) ,

we easily get

‖u‖2
L2(Ω+

u )
− 2|Ω+

u |
1
2 ‖u‖L2(Ω+

u ) + |Ω+
u | ≤ c

(
‖u‖L2(Ω+

u ) + |Ω+
u |
)
‖uxx‖L2(Ω+

u ).

(24)
By (18) and (20) we have

‖uxx‖L2(Ω+
u ) ≤

√
M,

∣∣Ω+
u

∣∣ ≤ M

η
. (25)

By (24) and (25) we get

‖u‖2L2(Ω+
u ) − 2

(
M

η

) 1
2

‖u‖L2(Ω+
u ) ≤ c

√
M

(
‖u‖L2(Ω+

u ) +
M

η

)
.

From which we easily deduce (21). Analogously, we get also that∫
Ω−u

u2 dx is bounded. (26)

By (W-i),

M ≥
∫

W (u) dx

=

∫
|u(x)|≤1

W (u(x)) dx+

∫
Ω+

u∪Ω−u
W (u(x)) dx

≥ η

∫
|u(x)|≤1

u2 dx.
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So, by (21), (26) and the above inequality, there is a constant R such that∫
u2 dx =

∫
|u(x)|≤1

u2 dx+

∫
Ω+

u∪Ω−u
u2 dx ≤ M

η
+R.

We conclude that
∫
u2dx is bounded. �

Lemma 18. Let un be a sequence in X such that

E (un) → 0. (27)

Then, up to a subsequence, we have ‖un‖X → 0.

Proof. Let un = (un, vn), with un ∈ H2(R) and vn ∈ L2(R), be a sequence
such that E (un) → 0. Then clearly ‖vn‖L2 → 0. By Lemma 17, un is bounded
in H2(R) and hence, by the Sobolev embedding theorem, un is bounded in
L∞(R); moreover, for all n we have un(x) → 0 for |x| → ∞.

For each n let τn be a maximum point of |un| and set

u′
n(x) = un(τn + x), v′n(x) = vn(τn + x),

so that

|u′
n(0)| = max |u′

n| . (28)

Clearly, u′
n is bounded in H2(R), then, up to a subsequence, we get

u′
n ⇀ u weakly in H2(R) (29)

and consequently
d2u′

n

dx2
⇀

d2u

dx2
weakly in L2(R). (30)

On the other end, since E (un) → 0, we have d2un

dx2 → 0 in L2(R). Then also

d2u′
n

dx2
→ 0 in L2(R). (31)

From (30) and (31) we get

d2u

dx2
= 0.

So u ∈ H2(R) is linear and consequently

u = 0. (32)

Now set

BR = {x ∈ R : |x| < R} , R > 0,

then, by the compact embedding H2(BR) � L∞(BR), by (29) and (32), we
get

u′
n → 0 in L∞(BR). (33)

By (28) and (33) we get

‖u′
n‖L∞(R) = |u′

n(0)| → 0.

So, if n is sufficiently large, we have |u′
n(x)| ≤ 1 for all x.
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Then, setting u′
n = (u′

n, v
′
n), by (W-i), we have that

E (u′
n) =

∫ (
1

2

(
v′2n +

(
∂2
xxu

′
n

)2)
+W (u′

n)

)
dx

≥
∫ (

1

2

(
v′2n +

(
∂2
xxu

′
n

)2)
+ ηu′2

n

)
dx

≥ c ‖u′
n‖2 ,

(34)

where c is a positive constant.

Since

E (u′
n) = E(un), ‖u′

n‖ = ‖un‖,
by (34), (27) we have

‖un‖X → 0. �

We set

Λ0 = inf
u∈X

1
2 ‖u‖2
|C (u)| ,

Λ∗ = inf
u∈X

E (u)

|C (u)| = inf
u∈X

1
2 ‖u‖2 +

∫
N(u) dx

|C (u)| .

Lemma 19. The following inequality holds:

Λ0 ≥ 1.

Proof. For u = (v, u) we have

|C (u)| ≤
∫

|v∂xu| dx ≤
(∫

v2 dx

)1/2

·
(∫

|∂xu|2 dx

)1/2

≤ 1

2

∫
v2 dx+

1

2

∫
|∂xu|2 dx

=
1

2

∫
v2 dx− 1

2

∫
uuxx dx

≤ 1

2

∫
v2 dx+

1

2

∫
1

2

[
u2 + u2

xx

]
dx

≤ 1

2

∫ [
v2 + u2

xx + u2
]
dx =

1

2
‖u‖2 .

Then, for every u,

Λ0 ≥
1
2 ‖u‖2
|C (u)| ≥ 1. �

The next lemma provides a crucial estimate for the existence of solitons.

Lemma 20. We have

Λ∗ < 1.
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Proof. Let U ∈ C2 be a positive function with compact support such that∫
(Uxx)

2∫
(Ux)

2 <
1

2
. (35)

Such a function exists; in fact if U0 is any positive function with compact
support, U(x) = U0

(
x
λ

)
satisfies (35) for λ sufficiently large. Take

uR = (uR, v) = (RU,RUx).

By the definition of X, uR ∈ X. Now we can estimate Λ∗:

Λ∗ = inf
u∈X

1
2 ‖u‖2 +

∫
N(u) dx

|C (u)| ≤
1
2 ‖uR‖2 +

∫
N(uR) dx

|C (uR)|

=

1
2

∫ [
(RUx)

2
+ (RUxx)

2
+ (RU)

2
]
dx+

∫
N(RU) dx∫

(RUx)
2
dx

=

1
2

∫ [
(RUx)

2
+ (RUxx)

2
]
dx∫

(RUx)
2
dx

+

∫
W (RU) dx∫
(RUx)

2
dx

=
1

2
+

1

2

∫
(Uxx)

2
dx∫

(Ux)
2
dx

+

∫
W (RU) dx∫
(RUx)

2
dx

(by (W-iii))

≤ 1

2
+

1

2

∫
(Uxx)

2
dx∫

(Ux)
2
dx

+

∫
M |RU |α dx∫
(RUx)

2
dx

(by (35))

<
1

2
+

1

4
+

M

R2−α
·
∫ |U |α dx∫

U2
x dx

.

Then, for R sufficiently large, we get the conclusion. �

Lemma 21. Consider any sequence

un = u+wn ∈ X,

where wn converges weakly to 0. Then

E(un) = E(u) + E(wn) + o(1) (36)

and

C(un) = C(u) + C(wn) + o(1). (37)

Proof. First of all, we introduce the following notation:

K(u) =

∫
N(u) dx and KΩ(u) =

∫
Ω

N(u) dx, Ω open subset in R.

As usual u,wn will denote the first components, respectively, of u,wn ∈
H2(R)× L2(R).
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We have to show that limn→∞ |E(u+wn)−E(u)−E(wn)| = 0. By (16)
we have that

lim
n→∞ |E(u+wn)− E(u)− E(wn)|

≤ lim
n→∞

1

2

∣∣∣‖u+wn‖2 − ‖u‖2 − ‖wn‖2
∣∣∣

+ lim
n→∞

∣∣∣∣
∫

(N (u+ wn)−N (u)−N (wn)) dx

∣∣∣∣ .
(38)

If (·, ·) denotes the inner product induced by the norm ‖ · ‖, we have

lim
n→∞

∣∣‖u+wn‖2 − ‖u‖2 − ‖wn‖2
∣∣ = lim

n→∞ |2 (u,wn)| = 0. (39)

Then by (38) and (39) we have

lim
n→∞ |E (u+wn)− E (u)− E (wn)|

≤ lim
n→∞

∣∣∣∣
∫

(N (u+ wn)−N (u)−N (wn)) dx

∣∣∣∣ . (40)

Choose ε > 0 and R = R(ε) > 0 such that∣∣∣∣∣
∫
Bc

R

N (u)

∣∣∣∣∣ < ε,

∫
Bc

R

|u|2 < ε, (41)

where

Bc
R = R−BR and BR = {x ∈ R : |x| < R}.

Since wn ⇀ 0 weakly in H2(R), by usual compactness arguments, we have
that

KBR (wn) → 0 and KBR (u+ wn) → KBR(u). (42)

Then we have

lim
n→∞

∣∣∣∣
∫

[N (u+ wn)−N (u)−N (wn)]

∣∣∣∣
= lim

n→∞

∣∣∣KBc
R
(u+ wn) +KBR

(u+ wn)

−KBc
R
(u)−KBR (u)−KBc

R
(wn)−KBR (wn)

∣∣∣.
(43)

The above equality with (42) and (41) gives

lim
n→∞

∣∣∣∣
∫

[N (u+ wn)−N (u)−N (wn)]

∣∣∣∣
= lim

n→∞
∣∣KBc

R
(u+ wn)−KBc

R
(u)−KBc

R
(wn)

∣∣
≤ lim

n→∞
∣∣KBc

R
(u+ wn)−KBc

R
(wn)

∣∣+ ε.

(44)

By the intermediate value theorem there are ζn in (0, 1) such that

∣∣KBc
R
(u+ wn)−KBc

R
(wn)

∣∣ = ∣∣∣∣
∫
Bc

R

N ′ (ζnu+ wn)u dx

∣∣∣∣. (45)
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Since wn is bounded in H2(R), ζnu + wn is bounded in L∞, so that there
exists a positive constant M such that

‖ζnu+ wn‖L∞ ≤ M. (46)

Now by (14) there exists a constant CM > 0 depending on M such that

|N ′(s)| ≤ CM |s| for |s| ≤ M. (47)

Then by (45), (46) and (47) we get∣∣KBc
R
(u+ wn)−KBc

R
(wn)

∣∣ ≤ ∫
Bc

R

|N ′(ζnu+ wn)u| dx

≤ CM

∫
Bc

R

|(ζnu+ wn)u| dx

≤ CM

(
‖u‖2L2(Bc

R)
+ ‖wn‖L2(Bc

R)
‖u‖L2(Bc

R)

)
≤ CM (ε+ c1ε) = c2ε (by (41)),

where c1 = sup ‖wn‖L2(Bc
R)

and c2 = CM (1 + c1).

Then we get ∣∣KBc
R
(u+ wn)−KBc

R
(wn)

∣∣ ≤ c2ε. (48)

So by (44) and (48),

lim
n→∞

∣∣∣∣
∫

[N (u+ wn)−N (u)−N (wn)] dx

∣∣∣∣ ≤ c2ε+ ε. (49)

Finally, by (40) and (49) and since ε is arbitrary, we get

lim
n→∞ |E (u+wn)− E (u)− E (wn)| = 0,

and so (36) is proved. The proof of (37) is immediate. �

By Lemmas 19 and 20, we have that

Λ∗ < Λ0.

So there exist u0 ∈ X and b > 0 such that

E(u0)

|C(u0)| ≤ Λ0 − b.

Then we can choose δ > 0 such that

E(u0)

|C(u0)| + δE(u0) ≤ Λ0 − b

2
(50)

and we define

J(u) =
E(u)

|C(u)| + δE(u). (51)

Then we have that

J∗ := inf J(u) ≤ J(u0) ≤ Λ0 − b

2
. (52)
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Lemma 22. The functional defined by (51) is G-compact (where G is defined
by (6)).

Proof. Let un = (un, vn) be a minimizing sequence for J . Since the G-
compactness depends on subsequences, we can take a subsequence in which
all the C(un) have the same sign. So, to fix the ideas, we can assume that

C(un) > 0; (53)

thus we have that

J(un) =
E(un)

C(un)
+ δE(un).

It is immediate to see that E(un) =
1
2 ‖un‖2+

∫
N(un) dx is bounded. Then,

by Lemma 17, ‖un‖ is bounded and hence, passing eventually to a suitable
subsequence, we have un ⇀ u weakly in X. Now, starting from un, we
construct a minimizing sequence u′

n which weakly converges to

ū �= 0. (54)

To this end we first show that

‖un‖L∞ does not converge to 0. (55)

Arguing by contradiction, assume that

‖un‖L∞ → 0.

Then, since N(s) = o(s2), there is a sequence of positive real numbers εn
with εn → 0 such that

Λ(un) =
E(un)

C(un)
≥

1
2

(∥∥∥d2un

dx2

∥∥∥2
L2

+ ‖un‖2L2

)
− ∫ |N(un)| dx

C(un)

=

1
2

(∥∥∥d2un

dx2

∥∥∥2
L2

+ ‖un‖2L2

)
− εn

2 ‖un‖2L2

C(un)

≥
1
2

(∥∥∥d2un

dx2

∥∥∥2
L2

+ ‖un‖2L2

)
− εn

2

(∥∥∥d2un

dx2

∥∥∥2
L2

+ ‖un‖2L2

)
C(un)

=

1
2

(∥∥∥d2un

dx2

∥∥∥2
L2

+ ‖un‖2L2

)
C(un)

(1− εn)

≥ Λ0(1− εn) (by definition of Λ0).

And hence
J(un) ≥ Λ0(1− εn). (56)

On the other hand, by (52),

lim J(un) ≤ Λ0 − b

2
. (57)

Clearly (57) contradicts (56).
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So (55) holds and consequently there exist b > 0 and a sequence xn such
that, up to a subsequence,

|un(xn)| ≥ b. (58)

Now we set

u′
n(x) = un(x+ xn), u′

n(x) = un(x+ xn).

Clearly also u′
n(x) is a minimizing sequence; moreover, by (58),

|u′
n(0)| ≥ b. (59)

Since, up to a subsequence, u′
n ⇀ ū ∈ X weakly in X, we have, by a compact

embedding result, that

u′
n → ū in L∞(−1, 1),

where ū denotes the first component of ū. Then by (59) we have ū �= 0 and
then ū �=0. So (54) is proved.

Now set

u′
n = ū+wn

with wn ⇀ 0 weakly in X.

We finally show that there is no splitting, namely that wn → 0 strongly
in X. To this end, first we show that

C(ū+wn) does not converge to 0. (60)

Arguing by contradiction assume that C(ū+wn) converges to 0. Then, since
ū+wn is a minimizing sequence for J , also E(ū+wn) converges to 0 and
then, by Lemma 18, we get

ū+wn → 0 in X. (61)

From (61) and since wn ⇀ 0 weakly in X, we have that ū = 0, contradicting
(54). So (60) holds and, passing eventually to a subsequence, we can assume

C(ū+wn) ≥ δ > 0. (62)

By Lemma 21, we have

E(u′
n) = E(ū+wn) = E(ū) + E(wn) + o(1)

and

C(u′
n) = C(ū+wn)

= C(ū) + C(wn) + o(1)

≥ δ (by (62))

> 0.

(63)
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Then

J∗ := lim J(u′
n) = lim

E(u′
n)

C(u′
n)

+ δE(u′
n)

= lim

[
E(ū) + E(wn) + o(1)

C(ū) + C(wn) + o(1)
+ δE(ū) + δE(wn) + o(1)

]

= lim

[
E(ū) + E(wn)

C(ū) + C(wn)
+ δE(ū) + δE(wn)

]

≥ lim

[
E(ū) + E(wn)

|C(ū)|+ |C(wn)| + δE(ū) + δE(wn)

]

≥ lim

[
min

(
E(ū)

|C(ū)| ,
E(wn)

|C(wn)|
)
+ δE(ū) + δE(wn)

]
.

Now we consider two cases. First case:

E(ū)

|C(ū)| ≥
E(wn)

|C(wn)| ;

then

J∗ ≥ lim

[
E(wn)

|C(wn)| + δE(ū) + δE(wn)

]

= lim [J(wn) + δE(ū)] ≥ J∗ + δE(ū).

This case cannot occur since it implies δE(ū) ≤ 0 and this contradicts (54).
Then we have the second case:

E(ū)

|C(ū)| <
E(wn)

|C(wn)| .

In this case,

J∗ ≥ lim

[
E(ū)

|C(ū)| + δE(ū) + δE(wn)

]

= lim [J(ū) + δE(wn)] ≥ J∗ + δ limE(wn).

Then
δ limE(wn) ≤ 0. (64)

Then by Lemma 18 and by (64) we have wn → 0 strongly in X. �

Proof of Theorem 14. We shall use Theorem 12. Obviously assumptions (EC-
1) and (EC-2) are satisfied with G given by (6). Then by Lemma 22 and
Theorem 12, we have the existence of soliton solutions. �

Proof of Theorem 15. Since uδ = (uδ, vδ) ∈ X = H2(R) × L2(R) is a mini-
mizer, we have J ′(uδ) = 0. Then

E′(uδ)

C(uδ)
− E(uδ)

C(uδ)2
C ′(uδ) + δE′(uδ) = 0,

namely (
C(uδ) + δC(uδ)

2
)
E′(uδ) = E(uδ)C

′(uδ).
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Since, by (53), C(uδ) > 0, then C(uδ) + δC(uδ)
2 > 0, and hence we can

divide both sides by C(uδ) + δC(uδ)
2 and we get

E′(uδ) = cC ′(uδ), (65)

where

c =
E(uδ)

C(uδ) + δC(uδ)2
.

If we write (65) explicitly, we get, for all ϕ ∈ H2(R) and all ψ ∈ L2(R),∫
∂2
xuδ∂

2
xϕ+W ′(uδ)ϕ = c

∫
vδ∂xϕ,∫

vδψ = c

∫
ψ∂xuδ,

namely

∂4
xuδ +W ′(uδ) = −c ∂xvδ,

vδ = c ∂xuδ,

and so we get

∂4
xuδ + c2∂2

xuδ +W ′(uδ) = 0.

Now, we can check directly that

u(t, x) = uδ(x− ct)

solves equation (1) with initial conditions (uδ(x),−c∂xuδ(x)). �
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274.

[8] A. C. Lazer and P. J. McKenna, Large amplitude periodic oscillations in sus-
pension bridge: Some new connections with nonlinear analysis. SIAM Rev. 32
(1990), 537–578.

[9] P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge.
Arch. Ration. Mech. Anal. 98 (1987), 167–177.



278 V. Benci and D. Fortunato JFPTA

[10] P. J. McKenna and W. Walter, Travelling waves in a suspension bridge. SIAM
J. Appl. Math. 50 (1990), 703–715.

[11] S. Santra and J. Wei, Homoclinic solutions for fourth order traveling wave
equations, SIAM J. Math. Anal. 41 (2009), 2038–2056.

Vieri Benci
Dipartimento di Matematica Applicata “U. Dini”
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