
J. fixed point theory appl. 6 (2009), 285–294
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1. Introduction

This paper continues the work in [8], where we described a numerical algorithm
to count the number of zeros in n-dimensional real projective space of a system of
n real homogeneous polynomials. The algorithm works with finite precision and
both its complexity and the precision required to ensure correctness are bounded
in terms of n, the maximum D of the polynomials’ degrees, and a condition num-
ber κ(f).

In this paper we replace κ(f)—which was originally defined using the com-
putationally friendly infinity norm—by a version κ̃(f) (defined in Section 2 below)
which uses instead Euclidean norms. This difference is of little consequence in
complexity estimates since one has (cf. Proposition 3.3 below)

κ̃(f)√
n
≤ κ(f) ≤

√
2n κ̃(f). (1)
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It allows one, however, to prove a result following a classical theme in condition-
ing—the relation between condition and distance to ill-posedness—and to deduce
from this result a probabilistic analysis for κ̃(f) and, a fortiori, for the complex-
ity of the algorithm in [8]. This analysis is of interest since, in contrast with n
and D, the value of κ̃(f) (or of κ(f)) is not apparent in f and therefore complex-
ity or accuracy bounds depending on this condition number are not of immediate
use. A solution pioneered by John von Neumann and collaborators (see [14, §2.1]
and references therein) and reintroduced by Steve Smale [23, 24] is to assume a
probability measure on the space of data and to study the condition number at
data f as a random variable. This approach yields bounds on accuracy or complex-
ity for random data and has been pursued in several contexts: systems of linear
equations [12, 13], polyhedral conic systems [3, 5, 9, 15, 25], linear programs [4],
complex polynomial systems [21], [18], etc. In our case it allows us to trade the
presence of κ̃(f) in deterministic bounds for probabilistic bounds in n and D only.

1.1. Distance to ill-posedness

It has since long been observed [11] that the condition number for several problems
(in its original acception, as a measure of the worst possible magnification of small
input errors in the output [19]) either coincides with the relativized inverse of the
distance from the input to the set of ill-posed data or is bounded by a small multiple
of this inverse. A data is ill-posed when the magnification above is unbounded. In
our case, a polynomial system f is ill-posed when arbitrarily small perturbations
of f may change its number of projective real zeros. Systems having this property
are exactly those having multiple (real projective) zeros. Let us denote the set
of such systems by ΣR. Also, let Hd denote our set of input systems, i.e. the
set of f = (f1, . . . , fn), n real homogeneous polynomials in n + 1 variables of
degrees d := (d1, . . . , dn) respectively, endowed with the Bombieri–Weyl norm
‖ ‖W (defined in Section 2). Finally, let dist be the distance on Hd induced by this
norm.

Our main result in this note is the following.

Theorem 1.1. For all f ∈ Hd, κ̃(f) = ‖f‖W /dist(f,ΣR).

Remark 1.2. It is worth noting that, although κ̃(f) is somehow related to the
condition number µnorm(f) for complex polynomial systems (cf. [1, 20]) a result
like Theorem 1.1 does not hold for the latter. Actually, such a result holds on the
fibers of the zeros (see [1, Ch. 12, Theorem 3]) but not globally.

We also note that, as a consequence of Theorem 1.1, we have κ̃(f) ≥ 1 for all
f ∈ Hd. This feature, although not immediate from the definition of κ̃(f), follows
immediately from the fact that 0 ∈ ΣR.

1.2. Smoothed analysis

Theorem 1.1 carries meaningful consequences in the probabilistic analysis of κ̃(f).
The usual probabilistic analysis for polynomial systems assumes that ran-

dom f are drawn from the unit sphere S(Hd) with the uniform distribution (or
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from such a distribution on the real projective space induced by this sphere).
A different approach to the randomization of input data has recently been pro-
posed under the name of smoothed analysis [22]. The idea consists in replacing
‘random data’ by ‘random perturbations of given data’. A recent result in [2] de-
rives smoothed analysis bounds for condition numbers which can be written as
inverses to distances to ill-posedness. Because of Theorem 1.1, these bounds can
be straightforwardly applied to κ̃(f).

To state this result we need to introduce some notation. Let Pp(R) denote
the real projective space of dimension p and dP be the projective distance on Pp(R)
(i.e. the sinus of the Riemannian distance). For a point a ∈ Pp(R) and σ ∈ (0, 1]
we denote by B(a, σ) the ball (with respect to dP) centered at a and of radius σ.
That is,

B(a, σ) := {x ∈ Pp(R) | dP(x, a) ≤ σ}.
In what follows we assume B(a, σ) endowed with the uniform probability measure.
Note that in the particular case σ = 1 we obtain B(a, σ) = Pp(R) for each a ∈ Pp,
and hence the usual probabilistic analysis referred to above.

Theorem 1.3 ([2]). Let S ⊂ Pp be contained in a projective hypersurface H of
degree at most d and C : Pp → [1,∞] be given by

C (z) =
1

dP(z, S)
.

Then, for all σ ∈ (0, 1] and all t ≥ (2d+ 1)p/σ,

sup
a∈Pp

Prob
z∈B(a,σ)

{C (z) ≥ t} ≤ 13dp
1
σt

and

sup
a∈Pp

E
z∈B(a,σ)

[ln C (z)] ≤ 2 ln p+ 2 ln d+ ln
(

1
σ

)
+ 5. �

As a consequence of this result we obtain the following corollary (which we
prove in Section 3). Here P(Hd) denotes the projective space associated to Hd, N
denotes its dimension and D = d1 · · · dn its associated Bézout number.

Corollary 1.4. For all σ ∈ (0, 1] and all t ≥ (4nD2 + 1)N/σ,

sup
f∈P(Hd)

Prob
g∈B(f,σ)

{κ̃(g) ≥ t} ≤ 13n2DDN 1
σt

and

sup
f∈P(Hd)

E
g∈B(f,σ)

[ln κ̃(g)] ≤ 2 lnN + 4 lnn+ 2 lnD + ln D + ln
(

1
σ

)
+ 6.

In particular, taking σ = 1, we obtain average analysis: for all t ≥ N(4nD2 + 1),

Prob
g∈Pp
{κ̃(g) ≥ t} ≤ 13n2DDN 1

t
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and
E
g∈Pp

[ln κ̃(g)] ≤ 2 lnN + 4 lnn+ 2 lnD + ln(D) + 6.

A recent result [7] extends Theorem 1.3 to absolutely continuous measures
on B(a, σ) whose densities are radially symmetric around a and may have a pole
at a. Applications of this result to κ̃(f) readily follow.

2. Setting and notations

For d ∈ N, Hd denotes the subspace of R[x0, . . . , xn] of homogeneous polynomials
of degree d. We endow Hd with the Bombieri–Weyl inner product 〈 , 〉W , defined
for f =

∑
|j|=d ajx

j and g =
∑
|j|=d bjx

j by

〈f, g〉W =
∑
|j|=d

ajbj(
d
j

)
where for j = (j0, . . . , jn),

(
d
j

)
:= d!

j0!···jn! . The main feature of this inner product
is its invariance under the action of the orthogonal group O(n+ 1). That is, for all
ψ ∈ O(n+1) and all f, g ∈ Hd, 〈f ◦ψ, g ◦ψ〉W = 〈f, g〉W . Next, for d1, . . . , dn ∈ N,
we endow Hd = Hd1 × · · · × Hdn with the inner product

〈f, g〉W =
n∑
i=1

〈fi, gi〉W

where f = (f1, . . . , fn), g = (g1, . . . , gn) ∈ Hd. We write ‖ ‖W and dist to denote
the norm and distance on Hd induced by this inner product.

Projective zeros of polynomial systems f ∈ Hd correspond to pairs of zeros
(−ζ, ζ) of the restriction f|Sn of f to the n-dimensional unit sphere Sn ⊂ Rn+1.
We will thus consider a system f ∈ Hd as a (centrally symmetric) mapping of Sn

into Rn.
For a point x ∈ Sn and a system f ∈ Hd one may define both ill-posedness

and condition relative to this point. For the first, one defines

ΣR(x) = {f ∈ Hd | x is a multiple zero of f},

the set of systems which are ill-posed at x. Note that ΣR(x) 6= ∅ for all x ∈ Sn
and that

ΣR = {f ∈ Hd | f has a multiple zero in Sn} =
⋃
x∈Sn

ΣR(x).

Towards the definition of κ̃(f), for f ∈ Hd and x ∈ Sn, we define

µ̃norm(f, x) = ‖f‖W

∥∥∥∥∥∥∥Df(x)−1
|TxSn


√
d1

. . . √
dn


∥∥∥∥∥∥∥ (2)
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where Df(x)|TxSn is the restriction to the tangent space of x at Sn of the derivative
of f at x and the norm is the spectral norm, i.e. the operator norm with respect
to ‖ ‖2.

Next, we define the condition of f relative to x to be

κ̃(f, x) =
‖f‖W

(‖f‖2W µ̃norm(f, x)−2 + ‖f(x)‖22)1/2
.

Finally, we take the condition number κ̃(f) of f ∈ Hd to be its condition relative
to its worst conditioned point,

κ̃(f) = max
x∈Sn

κ̃(f, x).

Note that for all λ 6= 0, κ̃(λf) = κ̃(f) and dist(λf,ΣR) = |λ| dist(f,ΣR). The
same is true relative to a point x ∈ Sn. We will therefore assume, without loss of
generality, that ‖f‖W = 1, and denote by S(Hd) the unit sphere in Hd.

3. The proofs

3.1. The main results

Proposition 3.1. For all x ∈ Sn and f ∈ S(Hd),

κ̃(f, x) =
1

dist(f,ΣR(x))
.

Proof. For 0 ≤ i ≤ n, let ei = (0, . . . , 0, 1, 0, . . . , 0) denote the ith coordinate vec-
tor. The group O(n+1) acts on Hd×Sn and leaves µnorm, κ̃ and distance to ΣR( )
invariant. Therefore, we may assume without loss of generality that x = e0. This
implies that Te0S

n ' 〈e1, . . . , en〉 and we may write the singular value decompo-
sition

diag

(
1√
di

)
Df(e0)|Te0S

n =

u1 . . . un


︸ ︷︷ ︸

U

σ1

. . .
σn

V t

with U and V orthogonal and σ1 ≥ · · · ≥ σn ≥ 0. Since the subgroup of O(n+ 1)
leaving e0 invariant is isomorphic to O(n) acting on Te0S

n we may as well as-
sume that V = Id. Note that µ̃norm(f, e0) = σ−1

n , and therefore κ̃(f, e0) =
(σ2
n + ‖f(e0)‖22)−1/2.

Let gi(x) := fi(x)−fi(e0)xdi
0 −
√
diσnuinx

di−1
0 xn, where un = (u1n, . . . , unn)t.

Clearly, gi(e0) = 0 and Dgi(e0)en = 0 (here and below we denote Dgi(e0)|Te0S
n

simply by Dgi(e0)) since ∂gi/∂xn(e0) = ∂fi/∂xn(e0) −
√
diuinσn = 0. Thus,

g = (g1, . . . , gn) ∈ ΣR(e0). Moreover,

‖fi − gi‖2W =
(
di
di

)−1

fi(e0)2 +
(

di
di − 1, 1

)−1

(
√
diσnuin)2 = |fi(e0)|2 + σ2

nu
2
in
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and hence, using ‖un‖ = 1,

‖f − g‖2W = ‖f(e0)‖22 + σ2
n = κ̃(f, e0)−2.

It follows that
dist(f,ΣR(e0)) ≤ ‖f − g‖W = κ̃(f, e0)−1.

For the reciprocal, let g ∈ ΣR(e0). Then g(e0) = 0 and Dg(e0) is singular.
We want to show that ‖f − g‖W ≥ κ̃(f, e0)−1. To this end, we write

fi(x) = fi(e0)xdi
0 +

∂fi
∂x1

(e0)xdi−1
0 x1 + · · ·+ ∂fi

∂xn
(e0)xdi−1

0 xn +Qi(x)

with degx0
Qi ≤ di − 2 and, similarly,

gi(x) =
∂gi
∂x1

(e0)xdi−1
0 x1 + · · ·+ ∂gi

∂xn
(e0)xdi−1

0 xn +Ri(x).

Then
‖fi − gi‖2W ≥ |fi(e0)|2 +

1
di
‖Dfi(e0)−Dgi(e0)‖22

and

‖f − g‖2W ≥ ‖f(e0)‖22 +
∥∥∥∥diag

(
1√
di

)
Df(e0)− diag

(
1√
di

)
Dg(e0)

∥∥∥∥2

F

.

We know that diag(1/
√
di)Dg(e0) is singular. Hence, denoting by Singn the set of

singular n×n matrices and by distF the Frobenius distance on this set of matrices,

distF

(
diag

(
1√
di

)
Df(e0), diag

(
1√
di

)
Dg(e0)

)
≥ distF

(
diag

(
1√
di

)
Df(e0),Singn

)
= σn,

the last by the Eckart–Young Theorem [1, §11.1]. It follows that

‖f − g‖2W ≥ ‖f(e0)‖22 + σ2
n = κ̃(f, e0)−2. �

Proof of Theorem 1.1. Again we can assume f ∈ S(Hd). Note that

dist(f,ΣR) = min
g∈ΣR

dist(f, g) = min
x∈Sn

dist(f,ΣR(x))

since ΣR =
⋃
x∈Sn ΣR(x). Then

κ̃(f) = max
x∈Sn

κ̃(f, x) = max
x∈Sn

1
dist(f,ΣR(x))

=
1

min
x∈Sn

dist(f,ΣR(x))

=
1

dist(f,ΣR)
. �

Before proving Corollary 1.4 we recall some useful facts in algebraic geometry.
For 1 ≤ i ≤ n, let fi =

∑
|j|=di

uijx
j be a generic (i.e. with indeterminate

coefficients) homogeneous polynomial of degree di in the variables x = (x0, . . . , xn)
and f = (f1, . . . , fn). Set N :=

∑n
i=1

(
di+n
n

)
− 1, the dimension of the projective
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coefficients space. The d-discriminant variety ΣC ⊂ PN (C) is the locus of such
polynomial systems f = (f1, . . . , fn) with multiple zeros, i.e. such that there exists
z ∈ Cn+1, z 6= 0, with f1(z) = · · · = fn(z) = 0 and Df(z) has rank < n. It is well-
known that ΣC is a hypersurface in PN (C) defined by an irreducible polynomial
Disc(f) ∈ Z[uij ] (see [17] or [16, Ch. 10]). For lack of a precise reference we prove
the following result.

Lemma 3.2.

deg(ΣC) = nD + (d1 + · · ·+ dn − n− 1)D
n∑
j=1

1
dj
.

Proof. We know that deg(ΣC) = deg(Disc(f)). We apply Identity (13) of [10]:

Resρ,d1,...,dn
(Jf , f1, . . . , fn) = Resd1,...,dn

(f0
1 , . . . , f

0
n)Disc(f),

where the standard notation Resd1,...,dn
is for the multihomogeneous projective re-

sultant of n generic homogeneous polynomials of respective degrees d1, . . . , dn in n
variables, ρ := d1+· · ·+dn−n, Jf is the determinant of the matrix (∂fi/∂xj)1≤i,j≤n
and f0

i denotes the homogeneous component (of degree di) of fi(1, x1, . . . , xn).
We note that deg(Jf ) is a polynomial of degree ρ in x whose coefficients are

polynomials in uij of degree n. On the other hand, Resd1,...,dn
is a multihomoge-

neous polynomial of degree
∏
k 6=i dk in the group of variables uij ([6]). Therefore,

since Jf has degree n in the uij , we derive

nD + ρ
∑

1≤j≤n

D
dj

=
∑

1≤j≤n

D
dj

+ deg(Disc(f)).

The statement easily follows. �

Proof of Corollary 1.4. We have ΣR ⊂ ΣC and for all f ∈ Hd, f 6= 0,

κ̃(f) =
‖f‖W

dist(f,ΣR)
=

1
dP(f,ΣR ∩ PN (R))

.

The statement now follows from Theorem 1.3 with p = N , S = ΣR ∩ PN (R),
H = ΣC ∩ PN (R), and d = n2DD, the last by Lemma 3.2 since we have nD +
(ρ− 1)D

∑n
j=1 1/dj ≤ n2DD. �

3.2. The equivalence of condition numbers

In [8] we considered Hd endowed with the norm given by

‖f‖ := max
1≤i≤n

‖fi‖W

(we note ‖f‖ ≤ ‖f‖W ≤
√
n ‖f‖) and defined

κ(f) := max
x∈Sn

min
{
µnorm(f, x),

‖f‖
‖f(x)‖∞

}
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with

µnorm(f, x) :=
√
n ‖f‖ ‖Df(x)−1

|TxSndiag(
√
di)‖ =

√
n
‖f‖
‖f‖W

µ̃norm(f, x)

(we note µ̃norm(f, x) ≤ µnorm(f, x) ≤
√
n µ̃norm(f, x)). The next result shows that

the κ(f) thus defined is closely related to κ̃(f).

Proposition 3.3.
κ̃(f)√
n
≤ κ(f) ≤

√
2n κ̃(f).

Proof. Let x ∈ Sn. We observe that since ‖f‖2W µ̃norm(f, x)−2 + ‖f(x)‖22 ≥
‖f‖2W µ̃norm(f, x)−2, we have κ̃(f, x) ≤ µ̃norm(f, x) ≤ µnorm(f, x). Similarly, using
‖f‖W ≤

√
n ‖f‖ and ‖f(x)‖2 ≥ ‖f(x)‖∞, we have κ̃(f, x) ≤

√
n ‖f‖/‖f(x)‖∞.

Therefore

κ̃(f, x) ≤
√
nmin

{
µnorm(f, x),

‖f‖
‖f(x)‖∞

}
,

which implies

κ̃(f) = max
x∈Sn

κ̃(f, x) ≤
√
n max
x∈Sn

min
{
µnorm(f, x),

‖f‖
‖f(x)‖∞

}
=
√
nκ(f).

To prove the other inequality note that, for any x ∈ Sn,

min
{
‖f‖2‖Df(x)−1

|TxSndiag(
√
di)‖2,

‖f‖2

‖f(x)‖22

}
≤ 2‖f‖2

‖Df(x)−1
|TxSndiag(

√
di)‖−2 + ‖f(x)‖22

≤ 2‖f‖2W
‖f‖2W µ̃norm(f, x)−2 + ‖f(x)‖22

= 2κ̃(f, x)2,

and ‖f(x)‖2 ≤
√
n ‖f(x)‖∞. Therefore,

min
{
µnorm(f, x),

‖f‖
‖f(x)‖∞

}
≤
√

2n κ̃(f, x).

This implies κ(f) ≤
√

2n κ̃(f). �
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Math. 109, Birkhäuser, 1993, 267–285.

[22] D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms. In: Proc. Int.
Congress Math. (Beijing, 2002), Volume I, 2002, 597–606.

[23] S. Smale, On the efficiency of algorithms of analysis. Bull. Amer. Math. Soc. 13
(1985), 87–121.

[24] S. Smale, Complexity theory and numerical analysis. In: A. Iserles (ed.), Acta Numer.
6, Cambridge Univ. Press, 1997, 523–551.
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