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1. Introduction

Let E be a smooth Banach space and let φ : E × E → R be a function defined
by φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for x, y ∈ E, where J is the normalized
duality mapping of E. Let C be a nonempty subset of E and let T be a mapping
of C into E. The set of fixed points of T is denoted by F (T ). A mapping T is
said to be relatively nonexpansive [7,22,23] if it satisfies the following conditions:
(i) F (T ) 6= ∅; (ii) φ(u, Tx) ≤ φ(u, x) for all u ∈ F (T ) and x ∈ C; (iii) F (T ) =
F̂ (T ), where F̂ (T ) is the set of asymptotic fixed points of T ; see [8, 24].

The class of relatively nonexpansive mappings includes all resolvents of max-
imal monotone operators with zero points on a uniformly convex and uniformly
smooth Banach space and all nonexpansive mappings with fixed points in a Hilbert
space; see, for example, [23]. There are various results concerning that class: Mat-
sushita and Takahashi [22, 23] discussed the problem of finding a fixed point of a
relatively nonexpansive mapping in a Banach space. Kohsaka and Takahashi [17]
proved weak convergence theorems for approximating a common asymptotic fixed
point of a finite family of relatively nonexpansive mappings; see also [4, 5].
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On the other hand, Reich [24] introduced the concept of strong nonexpansive-
ness for relatively nonexpansive mappings, which is deeply related to the strong
nonexpansiveness for nonexpansive mappings due to Bruck and Reich [6].

Censor and Reich [8] also introduced a convex combination based on Bregman
distance and obtained several results for approximating a common asymptotic
fixed point of a family of paracontractions in a finite-dimensional space. Using
the convex combination, some results on proximal-type algorithms for a maximal
monotone operator in a Banach space were obtained by Kamimura, Kohsaka, and
Takahashi [13] and Kohsaka and Takahashi [16].

In this paper, motivated by all the literature mentioned above, we introduce
the concept of a strongly relatively nonexpansive sequence in a Banach space and
investigate its properties. Then we consider an iterative sequence {xn} defined by
x1 = x ∈ C and xn+1 = Tnxn for n ∈ N, where {Tn} is a strongly relatively
nonexpansive sequence of self-mappings of C and x is an arbitrary point in C. In
§4 we give a condition on {Tn} under which {xn} converges weakly or strongly
to a common fixed point of {Tn}. In §5 and §6, using this result, we prove weak
and strong convergence theorems for a countable family of relatively nonexpansive
mappings.

2. Preliminaries

Throughout the present paper, E denotes a real Banach space with norm ‖ · ‖, E∗
the dual of E, 〈x, x∗〉 the value of x∗ ∈ E∗ at x ∈ E, N the set of positive integers,
and R the set of real numbers. The norm of E∗ is also denoted by ‖ · ‖ for the sake
of convenience. Strong convergence of {xn} to x ∈ E is denoted by xn → x and
weak convergence by xn ⇀ x, where {xn} is a sequence in E. The (normalized)
duality mapping of E is denoted by J , that is, it is a set-valued mapping of E into
E∗ defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for x ∈ E. It is known that ‖y‖2 ≥ ‖x‖2 + 2〈y − x, j〉 for all x, y ∈ E and j ∈ Jx;
see, for example, [27]. Replacing y by (x+ y)/2 in this inequality, we see that∥∥∥∥x+ y

2

∥∥∥∥2

≥ ‖x‖2 + 2
〈
y − x

2
, j

〉
= 〈y, j〉 (2.1)

for all x, y ∈ E and j ∈ Jx.
Let SE denote the unit sphere of E, that is, SE = {x ∈ E : ‖x‖ = 1}. The

norm ‖ · ‖ of E is said to be Gâteaux differentiable if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

(2.2)

exists for all x, y ∈ SE . In this case E is said to be smooth and it is known that the
duality mapping J of E is single-valued. The norm of E is said to be uniformly
Gâteaux differentiable (resp. Fréchet differentiable) if for each y ∈ SE (resp. for
each x ∈ SE) the limit (2.2) is attained uniformly for x ∈ SE (resp. uniformly for
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y ∈ SE). In this case it is known that J is uniformly norm-to-weak∗ continuous on
each bounded subset of E (resp. norm-to-norm continuous). A Banach space E is
said to be uniformly smooth if the limit (2.2) is attained uniformly for x, y ∈ SE .
In this case it is known that J is uniformly norm-to-norm continuous on each
bounded subset of E; see [27] for more details.

A Banach space E is said to be strictly convex if x, y ∈ SE and x 6= y imply
‖x + y‖ < 2. A Banach space E is said to be uniformly convex if for any ε > 0
there exists δ > 0 such that x, y ∈ SE and ‖x − y‖ ≥ ε imply ‖x + y‖/2 ≤ 1 − δ.
It is known that the duality mapping J of E is single-valued and one-to-one if
E is smooth and strictly convex; J is surjective if E is reflexive; E is reflexive
and strictly convex if E is uniformly convex; E is uniformly smooth if and only
if E∗ is uniformly convex; see [27] for more details. It is also known that if E is
uniformly convex, then the function ‖ · ‖2 is uniformly convex on every bounded
convex subset B of E, that is, for each ε > 0, there is δ > 0 such that

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)δ

for all λ ∈ [0, 1] and x, y ∈ B with ‖x− y‖ ≥ ε; see, for example, [9, 30]. This fact
implies the following (see [3]).

Lemma 2.1. Let {xn} and {yn} be two bounded sequences in a uniformly con-
vex Banach space E and {λn} a sequence in [0, 1] such that lim infn→∞ λn > 0.
Suppose that

λn‖xn‖2 + (1− λn)‖yn‖2 − ‖λnxn + (1− λn)yn‖2 → 0.

Then (1− λn)‖xn − yn‖ → 0.

Let E be a smooth Banach space. We deal with a function φ : E × E → R
defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for x, y ∈ E. This function was studied in [1]. From the definition of φ, it is clear
that

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2 (2.3)
and

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉 (2.4)
for all x, y, z ∈ E. The following result is known:

Lemma 2.2 ([14]). Let E be a uniformly convex and smooth Banach space. Let {xn}
and {yn} be two sequences in E. If {xn} or {yn} is bounded and φ(xn, yn) → 0,
then ‖xn − yn‖ → 0.

Let {xn} and {yn} be two bounded sequences in a smooth Banach space E.
It is obvious from the definition of φ that φ(xn, yn)→ 0 whenever ‖xn− yn‖ → 0.
From this fact and Lemma 2.2, we deduce the following: Let {xn} and {yn} be two
bounded sequences in a uniformly convex and uniformly smooth Banach space E.
Then

‖xn − yn‖ → 0 ⇔ ‖Jxn − Jyn‖ → 0 ⇔ φ(xn, yn)→ 0. (2.5)
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The following lemma is used in the proof of Lemma 2.6 below.

Lemma 2.3. Let E be a uniformly convex and smooth Banach space. Let {sn} be
a convergent sequence in R and {xn} a sequence in E such that

φ(xm, xn) ≤ |sm − sn|
for all m,n ∈ N with m < n. Then {xn} is a strongly convergent sequence.

Proof. It is clear from (2.3) that

(‖xm‖ − ‖xn‖)2 ≤ φ(xm, xn) ≤ |sm − sn|
for all m,n ∈ N with m < n. Therefore {‖xn‖} is a Cauchy sequence in R and
hence {xn} is bounded. Suppose that {xn} is not a Cauchy sequence. Then there
exist ε > 0 and two subsequences {xmi

} and {xni
} of {xn} such that mi < ni and

‖xmi − xni‖ ≥ ε for every i ∈ N. Since E is uniformly convex, ‖ · ‖2 is uniformly
convex on B = {z ∈ E : ‖z‖ ≤ supn∈N‖xn‖}. Thus for ε there exists δ > 0 such
that ∥∥∥∥xmi

+ xni

2

∥∥∥∥2

≤ 1
2
‖xmi

‖2 +
1
2
‖xni
‖2 − δ

for every i ∈ N. Hence it follows from (2.1) that

〈xmi
, Jxni

〉 ≤ 1
2
‖xmi

‖2 +
1
2
‖xni
‖2 − δ

and thus

0 < 2δ ≤ ‖xmi
‖2 − 2〈xmi

, Jxni
〉+ ‖xni

‖2 = φ(xmi
, xni

) ≤ |smi
− sni

|
for every i ∈ N. This contradicts the assumption that {sn} is convergent. Therefore
we conclude that {xn} is a Cauchy sequence. �

Let E be a strictly convex, smooth, and reflexive Banach space and C a
nonempty closed convex subset of E. It is known that, for each x ∈ E, there is a
unique point x0 such that

φ(x0, x) = min{φ(y, x) : y ∈ C}.
Such a point x0 is denoted by ΠCx, and ΠC is said to be the generalized projection
of E onto C; see [1] and [14]. The following lemma is known:

Lemma 2.4 ([1], [14] and [20]). Let E be a strictly convex, smooth, and reflex-
ive Banach space. Let C be a nonempty closed convex subset of E and ΠC the
generalized projection of E onto C. Then the following inequalities hold:

〈ΠCx− u, Jx− JΠCx〉 ≥ 0, (2.6)

φ(u,ΠCx) + φ(ΠCx, x) ≤ φ(u, x), (2.7)

〈ΠCx−ΠCy, JΠCx− JΠCy〉 ≤ 〈ΠCx−ΠCy, Jx− Jy〉 (2.8)

for all x, y ∈ E and u ∈ C.

The generalized projection also has the following property.
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Lemma 2.5. Let E be a uniformly convex and uniformly smooth Banach space and
C a nonempty closed convex subset of E. Then ΠC is uniformly norm-to-norm
continuous on every bounded set.

Proof. Let {xn} and {yn} be two sequences in a bounded subset of E such that
‖xn − yn‖ → 0. Note that {ΠCxn} and {ΠCyn} are bounded because it follows
from (2.3) and (2.7) that

(‖u‖ − ‖ΠCxn‖)2 ≤ φ(u,ΠCxn) + φ(ΠCxn, xn) ≤ φ(u, xn) ≤ (‖u‖+ ‖xn‖)2

for all n ∈ N and u ∈ C. Since E is uniformly smooth, the duality mapping J is
uniformly norm-to-norm continuous on every bounded set. It follows from (2.8)
that

0 ≤ 1
2

(φ(ΠCxn,ΠCyn) + φ(ΠCyn,ΠCxn))

= 〈ΠCxn −ΠCyn, JΠCxn − JΠCyn〉
≤ 〈ΠCxn −ΠCyn, Jxn − Jyn〉
≤ ‖ΠCxn −ΠCyn‖ ‖Jxn − Jyn‖ → 0.

Therefore φ(ΠCxn,ΠCyn) → 0. Hence Lemma 2.2 implies ‖ΠCxn − ΠCyn‖ → 0.
This means that ΠC is uniformly norm-to-norm continuous on a bounded set. �

We next show the following lemma. Part (1) is a generalization of [29, Lemma
3.2]. We follow the idea in [22] for the proof of (2).

Lemma 2.6. Let E be a smooth Banach space, C a nonempty closed convex subset
of E, and {xn} a sequence in E such that φ(u, xn+1) ≤ φ(u, xn) for all u ∈ C and
n ∈ N. Then the following hold:

(1) If E is uniformly convex, then {ΠCxn} is strongly convergent.
(2) If the norm of E∗ is Fréchet differentiable and the interior of C is nonempty,

then {xn} is strongly convergent.

Proof. We first show (1). By the definition of ΠC , we see that

φ(ΠCxn+m, xn+m) = min{φ(y, xn+m) : y ∈ C} ≤ φ(ΠCxn, xn+m)

≤ φ(ΠCxn, xn+m−1) ≤ φ(ΠCxn, xn) (2.9)

for all m,n ∈ N. Therefore {φ(ΠCxn, xn)} is convergent. Further, it follows from
(2.7) and (2.9) that

φ(ΠCxn,ΠCxn+m) ≤ φ(ΠCxn, xn+m)− φ(ΠCxn+m, xn+m)

≤ φ(ΠCxn, xn)− φ(ΠCxn+m, xn+m)

for all m,n ∈ N. Hence Lemma 2.3 implies that {ΠCxn} is strongly convergent.
We next show (2). By assumption, there exist p ∈ C and δ > 0 such that

‖h‖ ≤ δ implies that p + h ∈ C. Fix h ∈ E such that ‖h‖ ≤ δ. Then it follows
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from (2.4) that

φ(p, xn+1) = φ(p, xn) + φ(xn, xn+1) + 2〈p− xn, Jxn − Jxn+1〉
= φ(p, xn) + φ(xn, xn+1) + 2〈p+ h− xn, Jxn − Jxn+1〉
− 2〈h, Jxn − Jxn+1〉

= φ(p, xn) + φ(p+ h, xn+1)− φ(p+ h, xn)

− 2〈h, Jxn − Jxn+1〉. (2.10)

By assumption, we have

φ(p+ h, xn+1) ≤ φ(p+ h, xn). (2.11)

By (2.10) and (2.11), we obtain

2〈h, Jxn − Jxn+1〉 ≤ φ(p, xn)− φ(p, xn+1).

This implies that

2δ‖Jxn − Jxn+1‖ = 2 sup
‖h‖≤δ

〈h, Jxn − Jxn+1〉 ≤ φ(p, xn)− φ(p, xn+1)

for all n ∈ N. Thus we obtain

2δ‖Jxn − Jxm‖ ≤ φ(p, xn)− φ(p, xm)

for all m,n ∈ N with n < m. By the fact that {φ(p, xn)} is convergent, we know
that {Jxn} is a Cauchy sequence in E∗. Since J−1 is norm-to-norm continuous,
{xn} converges strongly in E. �

Let A be a set-valued mapping of E into E∗, which is often denoted by
A ⊂ E ×E∗. The effective domain of A is denoted by dom(A) and the range of A
by R(A), that is, dom(A) = {x ∈ E : Ax 6= ∅} and R(A) =

⋃
x∈dom(A)Ax. A set-

valued mapping A ⊂ E×E∗ is said to be a monotone operator if 〈x−y, x∗−y∗〉 ≥ 0
for all (x, x∗), (y, y∗) ∈ A. A monotone operator A ⊂ E×E∗ is said to be maximal
if A = A′ whenever A′ ⊂ E × E∗ is a monotone operator such that A ⊂ A′. It is
known that if A is a maximal monotone operator, then A−10 is closed and convex,
where A−10 = {x ∈ E : Ax 3 0}. We know that the duality mapping J of E is
a monotone operator. We also know that if E is strictly convex, then J is strictly
monotone, that is, 〈x − y, x∗ − y∗〉 > 0 whenever x, y ∈ E, x 6= y, x∗ ∈ Jx, and
y∗ ∈ Jy.

Let E be a smooth, strictly convex, and reflexive Banach space, A ⊂ E×E∗
a maximal monotone operator, and r > 0. Then it is known that R(J + rA) = E∗;
see [25]. Thus the single-valued mapping Qr = (J + rA)−1J of E onto dom(A) is
well defined and is called the resolvent of A. It is also known that F (Qr) = A−10
and

φ(u,Qrx) + φ(Qrx, x) ≤ φ(u, x) (2.12)

for all x ∈ E and u ∈ F (Qr), where F (Qr) is the set of fixed points of Qr;
see [12,13,16].
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Let E be a smooth Banach space, C a nonempty subset of E, and T : C → E
a mapping. The set of fixed points of T is denoted by F (T ). A point p ∈ C is
said to be an asymptotic fixed point of T [8, 24] if C contains a sequence {xn}
such that xn ⇀ p and ‖xn − Txn‖ → 0. The set of asymptotic fixed points of
T is denoted by F̂ (T ). A mapping T is said to be of type (r) if F (T ) 6= ∅ and
φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ). A mapping T is said to be of
type (sr) if T is of type (r) and φ(Txn, xn) → 0 whenever {xn} is a bounded
sequence in C such that φ(p, xn) − φ(p, Txn) → 0 for some p ∈ F (T ). We know
that if C is a nonempty closed convex subset of a strictly convex and smooth
Banach space E and T : C → E is of type (r), then F (T ) is closed and convex;
see [23, Proposition 2.4].

A mapping T : C → E is said to be relatively nonexpansive [7,22,23] if it is of
type (r) and F (T ) = F̂ (T ). A mapping T : C → E is said to be strongly relatively
nonexpansive [5, 18, 24] if it is of type (sr) and F (T ) = F̂ (T ). It is easy to check
that every generalized projection is strongly relatively nonexpansive. It is known
that if r > 0, then the resolvent Qr of a maximal monotone operator defined in
a strictly convex and reflexive Banach space whose norm is uniformly Gâteaux
differentiable is strongly relatively nonexpansive [20]; see also [12,13,22,23].

The following results are proved in [4]; see also [5, 17,24].

Lemma 2.7. Let C and D be nonempty subsets of a smooth and strictly convex
Banach space E. Let S : C → E and T : D → E be mappings of type (r) such that
T (D) ⊂ C and F (S) ∩ F (T ) is nonempty. Suppose that S or T is of type (sr).
Then the following hold:

(1) F (S) ∩ F (T ) = F (ST ) and ST is of type (r).
(2) If, in addition, E is uniformly convex and both S and T are of type (sr), then

ST is also of type (sr).

Lemma 2.8. Let E be a uniformly convex Banach space whose norm is uniformly
Gâteaux differentiable. Let C and D be nonempty subsets of E. Let S : C → E
and T : D → E be relatively nonexpansive mappings such that T (D) ⊂ C and
F (S) ∩ F (T ) 6= ∅. Suppose that S or T is strongly relatively nonexpansive. Then
F̂ (ST ) = F (ST ) = F (S) ∩ F (T ) and ST is relatively nonexpansive.

Lemma 2.9. Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty subset of E. Let {T1, . . . , Tn} be a finite family of mappings of
type (r) of C into E such that F =

⋂n
i=1 F (Ti) is nonempty, where n is a positive

integer. Let V : C → E be a mapping defined by V = J−1(λ0J+
∑n
i=1 λiJTi), where

{λi}ni=0 is a finite sequence in (0, 1) such that
∑n
i=0 λi = 1. Then F (V ) = F and

V is of type (sr).

From Lemmas 2.7 and 2.9, we obtain the following:

Corollary 2.10. Let E be a uniformly convex and uniformly smooth Banach space,
C a nonempty subset of E, and T : C → E a mapping of type (r). Suppose that
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U : C → C is a mapping defined by U = ΠCJ
−1(λJ + (1−λ)JT ), where λ ∈ (0, 1)

is a constant. Then F (U) = F (T ) and U is of type (sr).

Proof. Put V = J−1(λJ + (1 − λ)JT ). Since F (T ) is nonempty, we see that
F (V ) = F (T ) and V is of type (sr) by Lemma 2.9. Since F (ΠC) ∩ F (V ) = C ∩
F (T ) = F (T ) 6= ∅ and both ΠC and V are of type (sr), it follows from Lemma 2.7
that F (ΠCV ) = F (ΠC) ∩ F (V ) = F (T ) and ΠCV is of type (sr). �

3. Strongly relatively nonexpansive sequences

Throughout this section, we assume that E is a smooth Banach space and C
is a nonempty subset of E. We introduce the concept of a strongly relatively
nonexpansive sequence and investigate its properties.

Let {Tn} be a sequence of mappings of C into E such that F =
⋂∞
n=1 F (Tn)

is nonempty. Then {Tn} is said to be a strongly relatively nonexpansive sequence if
each Tn is of type (r) and φ(Tnxn, xn)→ 0 whenever {xn} is a bounded sequence
in C and φ(p, xn)− φ(p, Tnxn)→ 0 for some point p ∈ F .

Example 3.1. Let T : C → E be a mapping of type (sr). Put Tn = T for n ∈ N.
Then it is clear that {Tn} is a strongly relatively nonexpansive sequence.

Example 3.2. Let E be a smooth, strictly convex, and reflexive Banach space and
{Tn} a sequence of mappings of C into E with a common fixed point. Suppose
that, for each n ∈ N,

φ(u, Tnx) + φ(Tnx, x) ≤ φ(u, x)

for all x ∈ C and u ∈ F (Tn). Then {Tn} is a strongly relatively nonexpansive
sequence. Thus it follows from (2.7) and (2.12) that
• a sequence {ΠCn

} of generalized projections is a strongly relatively nonex-
pansive sequence if {Cn} is a sequence of closed convex subsets of E with a
common intersection;
• a sequence {Qrn} of resolvents of a maximal monotone operator A if A−10

is nonempty and {rn} is a sequence of positive real numbers.

The following lemma shows that every subsequence of a strongly relatively
nonexpansive sequence is also a strongly relatively nonexpansive sequence in the
appropriate setting.

Lemma 3.3. Let C be a nonempty subset of a smooth Banach space E and {Tn}
a sequence of mappings of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty.

Suppose that {Tn} is a strongly relatively nonexpansive sequence. If {Tni
} is a

subsequence of {Tn} with F =
⋂∞
i=1 F (Tni

), then {Tni
} is a strongly relatively

nonexpansive sequence.

Proof. Let {ui} be a bounded sequence in C and p ∈
⋂∞
i=1 F (Tni

) such that
φ(p, ui) − φ(p, Tniui) → 0. Let z ∈ F be fixed. Define a sequence {xn} in C: For
each n ∈ N, if there is i ∈ N such that ni = n, then xn = ui; if ni 6= n for all i ∈ N,
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then xn = z. Then it is clear that φ(p, xn) − φ(p, Tnxn) → 0 and p ∈ F . Since
{Tn} is a strongly relatively nonexpansive sequence, we have φ(Tnxn, xn)→ 0 and
hence φ(Tni

ui, ui)→ 0, which completes the proof. �

The composition of two strongly relatively nonexpansive sequences is also a
strongly relatively nonexpansive sequence:

Theorem 3.4. Let C and D be two nonempty subsets of a uniformly convex and
smooth Banach space E. Let {Sn} be a sequence of mappings of C into E and {Tn}
a sequence of mappings of D into E such that F =

⋂∞
n=1 F (Sn)∩

⋂∞
n=1 F (Tn) 6= ∅

and Tn(D) ⊂ C for every n ∈ N. Suppose that both {Sn} and {Tn} are strongly
relatively nonexpansive sequences, and that Sn or Tn is of type (sr) for every n ∈ N.
Then {SnTn} is a strongly relatively nonexpansive sequence.

Proof. It follows from Lemma 2.7 that F (SnTn) = F (Sn) ∩ F (Tn) and SnTn is of
type (r). Thus we have

∞⋂
n=1

F (SnTn) =
∞⋂
n=1

(F (Sn) ∩ F (Tn)) = F 6= ∅.

Let {xn} be a bounded sequence in D and p ∈ F such that

φ(p, xn)− φ(p, SnTnxn)→ 0.

Since p ∈ F ⊂ F (SnTn) = F (Sn) ∩ F (Tn) and both Sn and Tn are of type (r), we
have

0 ≤ φ(p, xn)− φ(p, Tnxn) ≤ φ(p, xn)− φ(p, SnTnxn)→ 0.

Since {Tn} is a strongly relatively nonexpansive sequence, we obtain

φ(Tnxn, xn)→ 0. (3.1)

Similarly, we have

0 ≤ φ(p, Tnxn)− φ(p, SnTnxn) ≤ φ(p, xn)− φ(p, SnTnxn)→ 0.

Since {Tnxn} is bounded and {Sn} is a strongly relatively nonexpansive sequence,
we obtain

φ(SnTnxn, Tnxn)→ 0. (3.2)

Therefore, from (2.4), (3.1), (3.2) and Lemma 2.2, we have

φ(SnTnxn, xn)

= φ(SnTnxn, Tnxn) + φ(Tnxn, xn) + 2〈SnTnxn − Tnxn, JTnxn − Jxn〉
≤ φ(SnTnxn, Tnxn) + φ(Tnxn, xn) + 2‖SnTnxn − Tnxn‖‖JTnxn − Jxn‖ → 0.

Consequently {SnTn} is a strongly relatively nonexpansive sequence. �

The following corollary is immediately derived from Example 3.2 and Theo-
rem 3.4.
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Corollary 3.5. Let D be a nonempty closed convex subset of a uniformly convex
and smooth Banach space E. Let {Tn} be a sequence of mappings of D into E such
that F =

⋂∞
n=1 F (Tn) is nonempty. If {Tn} is a strongly relatively nonexpansive

sequence, then {ΠDTn} is a strongly relatively nonexpansive sequence.

A sequence {zn} in C is said to be an approximate fixed point sequence of
a mapping T : C → E if ‖zn − Tzn‖ → 0; see [10, 11]. The set of all bounded
approximate fixed point sequences of T is denoted by F̃ (T ), that is,

F̃ (T ) =
{
{zn} : zn ∈ C for all n ∈ N, sup

n∈N
‖zn‖ <∞, and ‖zn − Tzn‖ → 0

}
.

Let {Tn} be a sequence of mappings of C into E. A sequence {zn} in C is said to
be an approximate fixed point sequence of {Tn} if ‖zn−Tnzn‖ → 0. The set of all
bounded approximate fixed point sequences of {Tn} is denoted by F̃ ({Tn}), that
is,

F̃ ({Tn}) =
{
{zn} : zn ∈ C for all n ∈ N, sup

n∈N
‖zn‖ <∞, and ‖zn − Tnzn‖ → 0

}
.

Clearly, if {Tn} has a common fixed point, then every bounded sequence in the
common fixed point set

⋂∞
n=1 F (Tn) is an approximate fixed point sequence of

{Tn}.
Next we examine a relationship between strongly relatively nonexpansive

sequences and approximate fixed point sequences.

Lemma 3.6. Let E be a uniformly convex Banach whose norm is uniformly Gâteaux
differentiable. Let C and D be two nonempty subsets of E. Let {Sn} be a sequence
of mappings of C into E and {Tn} a sequence of mappings of D into E such that
F =

⋂∞
n=1 F (Sn)∩

⋂∞
n=1 F (Tn) 6= ∅ and Tn(D) ⊂ C for every n ∈ N. Suppose that

both Sn and Tn are of type (r) for every n ∈ N and that {Sn} or {Tn} is a strongly
relatively nonexpansive sequence. If {zn} ∈ F̃ ({SnTn}), then {zn} ∈ F̃ ({Tn}) and
{Tnzn} ∈ F̃ ({Sn}).

Proof. Let {zn} ∈ F̃ ({SnTn}) and p ∈ F . Since both {zn} and {SnTnzn} are
bounded and the duality mapping J is uniformly norm-to-weak∗ continuous on a
bounded set, we have

φ(p, zn)− φ(p, SnTnzn)

= −2〈p, Jzn〉+ ‖zn‖2 + 2〈p, JSnTnzn〉 − ‖SnTnzn‖2

= (‖zn‖+ ‖SnTnzn‖)(‖zn‖ − ‖SnTnzn‖)− 2〈p, Jzn − JSnTnzn〉
≤ (‖zn‖+ ‖SnTnzn‖)(‖zn − SnTnzn‖)− 2〈p, Jzn − JSnTnzn〉 → 0.

As in the proof of Theorem 3.4, we see that

φ(p, zn)− φ(p, Tnzn)→ 0 and φ(p, Tnzn)− φ(p, SnTnzn)→ 0. (3.3)

Note that {Tnzn} is a bounded sequence in C. Now suppose that {Tn} is a strongly
relatively nonexpansive sequence. Then we obtain φ(Tnzn, zn) → 0. In this case,
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according to Lemma 2.2, we have ‖zn − Tnzn‖ → 0. By assumption, we have
‖zn − SnTnzn‖ → 0. These facts yield

‖Tnzn − SnTnzn‖ ≤ ‖Tnzn − zn‖+ ‖zn − SnTnzn‖ → 0.

Therefore {zn} ∈ F̃ ({Tn}) and {Tnzn} ∈ F̃ ({Sn}).
On the other hand, suppose that {Sn} is a strongly relatively nonexpansive

sequence. It follows from (3.3) that φ(SnTnzn, Tnzn) → 0. So, we deduce from
Lemma 2.2 that ‖SnTnzn − Tnzn‖ → 0 and

‖zn − Tnzn‖ ≤ ‖zn − SnTnzn‖+ ‖SnTnzn − Tnzn‖ → 0.

Hence we also obtain the desired result. This completes the proof. �

As a special case of Lemma 3.6, we obtain the following:

Corollary 3.7. Let E be a uniformly convex Banach whose norm is uniformly
Gâteaux differentiable. Let C and D be two nonempty subsets of E. Let S : C → E
be a mapping of type (r) and {Tn} a sequence of mappings of D into E such that
F = F (S) ∩

⋂∞
n=1 F (Tn) 6= ∅ and Tn(D) ⊂ C for every n ∈ N. Suppose that

{Tn} is a strongly relatively nonexpansive sequence. If {zn} ∈ F̃ ({STn}), then
{zn} ∈ F̃ ({Tn}) and {Tnzn} ∈ F̃ (S).

The following theorem shows an easy way to construct a strongly relatively
nonexpansive sequence from an arbitrary sequence of mappings of type (r).

Theorem 3.8. Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty subset of E. Let {Tn} be a sequence of mappings of C into E
such that F =

⋂∞
n=1 F (Tn) is nonempty. Let Vn : C → E be a mapping defined

by Vn = J−1(λnJ + (1 − λn)JTn) for n ∈ N, where {λn} is a sequence in (0, 1).
Suppose that Tn is of type (r) for every n ∈ N and infn∈N λn > 0. Then {Vn}
is a strongly relatively nonexpansive sequence. Moreover, if supn∈N λn < 1, then
F̃ ({Tn}) = F̃ ({Vn}).

Proof. Lemma 2.9 implies that F (Vn) = F (Tn) and Vn is of type (r). Thus
F =

⋂∞
n=1 F (Vn). Let {xn} be a bounded sequence in C such that φ(p, xn) −

φ(p, Vnxn)→ 0 for some p ∈ F . Then we have

λn‖Jxn‖2 + (1− λn)‖JTnxn‖2 − ‖JVnxn‖2

= λnφ(p, xn) + (1− λn)φ(p, Tnxn)− φ(p, Vnxn)

≤ λnφ(p, xn) + (1− λn)φ(p, xn)− φ(p, Vnxn)

= φ(p, xn)− φ(p, Vnxn)→ 0.

Since E∗ is uniformly convex and both {Jxn} and {JTnxn} are bounded, it follows
from Lemma 2.1 that

‖Jxn − JVnxn‖ = (1− λn)‖Jxn − JTnxn‖ → 0. (3.4)

Therefore, from (2.5) we conclude that φ(Vnxn, xn) → 0 and hence {Vn} is a
strongly relatively nonexpansive sequence.
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Suppose that supn∈N λn < 1. From (2.5) and (3.4), it is easy to check that
F̃ ({Tn}) = F̃ ({Vn}). �

We can also obtain the following corollary.

Corollary 3.9. Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let {Tn} be a sequence of mappings
of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty. Let Un : C → C be a mapping

defined by Un = ΠCJ
−1(λnJ + (1− λn)JTn) for n ∈ N, where {λn} is a sequence

in (0, 1). Suppose that Tn is of type (r) for every n ∈ N and infn∈N λn > 0. Then
{Un} is a strongly relatively nonexpansive sequence. Moreover, if supn∈N λn < 1,
then F̃ ({Un}) = F̃ ({Tn}).

Proof. Let Vn be a mapping of C into E defined by Vn = J−1(λnJ + (1−λn)JTn)
for n ∈ N. By Theorem 3.8, {Vn} is a strongly relatively nonexpansive sequence,
and moreover, F̃ ({Vn}) = F̃ ({Tn}) if supn∈N λn < 1.

On the other hand, Corollary 3.7 implies that F̃ ({Un}) ⊂ F̃ ({Vn}). It is easy
to see that the converse inclusion also holds. In fact, if {xn} ∈ F̃ ({Vn}), then it
follows from xn ∈ C and the definition of ΠC that

φ(Unxn, Vnxn) = φ(ΠCVnxn, Vnxn) ≤ φ(xn, Vnxn)→ 0.

This implies that ‖Unxn − Vnxn‖ → 0. Thus {xn} ∈ F̃ ({Un}). �

4. Convergence theorem for strongly relatively nonexpansive
sequences

In this section, we discuss a convergence theorem for a strongly relatively nonex-
pansive sequence.

Let C be a nonempty subset of a Banach space E and {Tn} a sequence of
mappings of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty. We say that {Tn}

satisfies the condition (Z) if every weak cluster point of {xn} belongs to F whenever
{xn} is a bounded sequence in C such that ‖Tnxn − xn‖ → 0.

Theorem 4.1. Let E be a uniformly convex and smooth Banach space and C a
nonempty closed convex subset of E. Let {Tn} be a sequence of self-mappings of C
such that F =

⋂∞
n=1 F (Tn) is nonempty. Suppose that {Tn} is a strongly relatively

nonexpansive sequence and satisfies the condition (Z). Let {xn} be a sequence in
C defined by x1 = x ∈ C and xn+1 = Tnxn for n ∈ N. Then the following hold:
(1) If C is compact or the interior of F is nonempty, then {xn} converges strongly

to v ∈ F , where v = limn→∞ΠFxn.
(2) If the duality mapping J is weakly sequentially continuous, then {xn} con-

verges weakly to v ∈ F , where v = limn→∞ΠFxn.

Proof. Let p ∈ F be fixed. Since each Tn is of type (r), F (Tn) is closed and convex
and

φ(p, xn+1) = φ(p, Tnxn) ≤ φ(p, xn) (4.1)



Vol. 5 (2009) Strongly relatively nonexpansive sequences 213

for every n ∈ N. Therefore F is a closed convex subset of E and it follows from (1)
in Lemma 2.6 that {ΠFxn} converges strongly to some point in F . Put v =
limn→∞ΠFxn. The inequality (4.1) also shows that {φ(p, xn)} is bounded and
convergent. Thus {xn} is also bounded and φ(p, xn)−φ(p, Tnxn)→ 0. Since {Tn}
is a strongly relatively nonexpansive sequence, we conclude that φ(Tnxn, xn)→ 0.
Hence Lemma 2.2 implies that ‖Tnxn − xn‖ → 0.

We first show (1). Suppose that C is compact. Then there is a subsequence
{xni
} of {xn} such that xni

→ u. We claim that u = v. From the condition (Z),
we see that u ∈ F . Thus (2.6) shows that

〈ΠFxn − u, Jxn − JΠFxn〉 ≥ 0 (4.2)

for every n ∈ N. Since J is norm-to-weak continuous, {Jxni
− JΠFxni

} converges
weakly to Ju−Jv. Therefore 〈v−u, Ju−Jv〉 ≥ 0 and hence u = v. Consequently,
we conclude that {xn} converges strongly to v.

If the interior of F is nonempty, then (2) in Lemma 2.6 implies that {xn}
converges strongly to u. By the condition (Z), we have u ∈ F . Taking the limit
in (4.2), we obtain

〈v − u, Ju− Jv〉 ≥ 0
and hence u = v. Thus we conclude that {xn} converges strongly to v.

We finally show (2). Since E is reflexive, there is a subsequence {xni
} of {xn}

such that xni ⇀ u. From the condition (Z), we see that u ∈ F . Since the duality
mapping J is weakly sequentially continuous, {Jxni − JΠFxni} converges weakly
to Ju − Jv. Therefore 〈v − u, Ju − Jv〉 ≥ 0 and hence u = v. Consequently, we
conclude that {xn} converges weakly to v. �

Remark 4.2. In §5, we deal with an example of a sequence of mappings which
satisfies the condition (Z).

In the remainder of this section, we consider an equivalent condition and a
sufficient condition for the condition (Z).

Let C be a nonempty subset of a Banach space E and {Tn} a sequence of
mappings of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty. Then

• we say that {Tn} satisfies the condition (A) if p ∈ F whenever {Tni} is a
subsequence of {Tn} and {zi} is a sequence in C such that

‖Tni
zi − zi‖ → 0 and zi ⇀ p;

• we say that {Tn} satisfies the condition (B) if, for any nonempty bounded
subsetB of C and for any increasing sequence {ni} in N, there exist a mapping
T : C → E and a subsequence {Tnij

} of {Tni
} such that

lim
j→∞

sup
y∈B
‖Ty − Tnij

y‖ = 0 and F̂ (T ) = F.

Lemma 4.3. Let C be a nonempty subset of a Banach space E and {Tn} a se-
quence of mappings of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty. Then

the following hold:
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(1) {Tn} satisfies the condition (Z) if and only if {Tn} satisfies the condition (A).
(2) If {Tn} satisfies the condition (B), then it satisfies the condition (Z).

Proof. We first show (1). It is obvious that the condition (A) implies the condi-
tion (Z). Thus we prove the inverse implication. Let {Tni

} be a subsequence of
{Tn} and {zi} a sequence in C such that ‖Tni

zi − zi‖ → 0 and zi ⇀ p. Let u ∈ F
be fixed. Define a sequence {xn} in C as follows:

xn =

{
zi if there exists i ∈ N such that n = ni,
u if n 6= ni for all i ∈ N,

for n ∈ N. Then it is clear that {xn} is bounded, Tnxn − xn → 0, and p is a weak
cluster point of {xn}. Thus the condition (Z) implies that p ∈ F .

We next show that the condition (B) implies the condition (Z). Let {xn} be
a bounded sequence in C such that ‖Tnxn − xn‖ → 0 and p a weak cluster point
of {xn}. Then there is an increasing sequence {ni} in N such that xni

⇀ p. Since
{xni} is bounded, there is a bounded subset B of C such that {xni : i ∈ N} ⊂ B.
By the condition (B), for {ni} and B, there exist a mapping T : C → E and a
subsequence {Tnij

} of {Tni
} such that

lim
j→∞

sup
y∈B
‖Ty − Tnij

y‖ = 0 and F̂ (T ) = F.

Therefore we have

‖xnij
− Txnij

‖ ≤ ‖xnij
− Tnij

xnij
‖+ ‖Tnij

xnij
− Txnij

‖
≤ ‖xnij

− Tnij
xnij
‖+ sup

y∈B
‖Tnij

y − Ty‖

and hence ‖xnij
− Txnij

‖ → 0 as j → ∞. Thus p ∈ F̂ (T ) = F . This means that
{Tn} satisfies the condition (Z). This completes our proof. �

Remark 4.4. In §6, we deal with an example of a sequence of mappings which
satisfies the condition (B).

5. W-mappings

In this section, we apply results in §3 and §4 to the problem of approximating a
common fixed point of a countable family of relatively nonexpansive mappings.
Let E be a smooth, strictly convex, and reflexive Banach space and C a nonempty
closed convex subset of E. Let {Tn} be a sequence of mappings of C into E and
{αnk} a sequence in (0, 1) with n ∈ N and k = 1, . . . , n. For each n ∈ N we define
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a finite family {Unk : k = 1, . . . , n+ 1} of mappings as follows:

Unn+1 = I,

Unn = ΠCJ
−1(αnnJ + (1− αnn)JTn),

Unn−1 = ΠCJ
−1(αnn−1J + (1− αnn−1)JTn−1U

n
n ),

...
Unk = ΠCJ

−1(αnkJ + (1− αnk )JTkUnk+1),
...

Un1 = ΠCJ
−1(αn1J + (1− αn1 )JT1U

n
2 ),

(5.1)

for n ∈ N, where I is the identity mapping on C. In this case a mapping Un1
is denoted by Wn and we say that Wn : C → C is the W-mapping generated
by Tn, Tn−1, . . . , T1 and αnn, α

n
n−1, . . . , α

n
1 for n ∈ N. Takahashi [26] discussed the

problem of approximating a common fixed point of a family of nonexpansive map-
pings by using W-mappings; see also [28], [15] and [21].

We begin with a property of the fixed point set of Unk above.

Lemma 5.1. Let E be a uniformly convex and uniformly smooth Banach space and
C a nonempty closed convex subset of E. Let {Tn} be a sequence of mappings
of type (r) of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty. Let {αnk} be a

sequence in (0, 1) with n ∈ N and k = 1, . . . , n. Let Unk : C → C be defined by (5.1)
for n ∈ N and k = 1, . . . , n+ 1. Then

F (Unk ) = F (TkUnk+1) = F (Tk) ∩ F (Unk+1) =
n⋂
i=k

F (Ti), (5.2)

TkU
n
k+1 are of type (r) and Unk are of type (sr) for all n ∈ N and k = 1, . . . , n.

Proof. Let n ∈ N be fixed. Since Tn is of type (r), we see that (5.2) holds for k = n
and Unn is of type (sr) by Corollary 2.10. Assume that (5.2) holds and Unk is of
type (sr) for some k ∈ {2, . . . , n}. Since Tk−1 is of type (r), Unk is of type (sr), and

F (Tk−1) ∩ F (Unk ) = F (Tk−1) ∩
n⋂
i=k

F (Ti) =
n⋂

i=k−1

F (Ti) ⊃ F 6= ∅,

it follows from Lemma 2.7 that

F (Tk−1U
n
k ) = F (Tk−1) ∩ F (Unk ) =

n⋂
i=k−1

F (Ti)

and Tk−1U
n
k is of type (r). Thus Corollary 2.10 implies that (5.2) holds for k − 1

and Unk−1 is of type (sr). By induction on k, we obtain the desired result. �

Using Lemma 5.1, we can prove the following:

Lemma 5.2. Let E, C, {Tn}, F , {αnk}, and {Unk } be as in Lemma 5.1. Define
V nk : C → E by

V nk = J−1(αnkJ + (1− αnk )JTkUnk+1) (5.3)
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for n ∈ N and k = 1, . . . , n. Suppose that 0 < inf{αnk : n ∈ N, n ≥ k} for every
k ∈ N. Then the following hold:
(1) {Unk }∞n=k and {V nk }∞n=k are strongly relatively nonexpansive sequences for ev-

ery k ∈ N.
(2) If Tn is relatively nonexpansive for every n ∈ N and sup{αnk : n ∈ N, n ≥

k} < 1 for every k ∈ N, then {Un1 } and {V n1 } satisfy the condition (Z).

Proof. We first prove (1). Let k ∈ N be fixed. From Lemma 5.1, we see that
∞⋂
n=k

F (Unk ) =
∞⋂
n=k

F (TkUnk+1) =
∞⋂
n=k

n⋂
i=k

F (Ti) =
∞⋂
n=k

F (Tn) ⊃ F 6= ∅ (5.4)

and TkU
n
k+1 is of type (r) for every n = k, k + 1, . . . . Thus Theorem 3.8 implies

that {V nk }∞n=k is a strongly relatively nonexpansive sequence and hence {Unk }∞n=k

is also a strongly relatively nonexpansive sequence by Corollary 3.5.
We next prove (2). Let {xn} be a bounded sequence in C with ‖xn −Un1 xn‖

→ 0 and xni ⇀ p. Then (5.4) and the relative nonexpansiveness of each Tn imply
that

∞⋂
n=1

F (Un1 ) =
∞⋂
n=1

F (Tn) =
∞⋂
n=1

F̂ (Tn).

Thus, to prove that {Un1 } satisfies the condition (Z), it is sufficient to show that
p ∈

⋂∞
n=1 F̂ (Tn). The proof is given by induction on n. By assumption, we have

{xn} ∈ F̃ ({Un1 }). Note that (5.4) ensures that
∞⋂
n=1

F (T1U
n
2 ) =

∞⋂
n=1

F (Tn) = F 6= ∅.

Then Corollary 3.9 implies that F̃ ({Un1 }) = F̃ ({T1U
n
2 }). Since {Un2 } is a strongly

relatively nonexpansive sequence and

F (T1) ∩
∞⋂
n=2

F (Un2 ) = F (T1) ∩
∞⋂
n=2

F (Tn) = F 6= ∅

by (5.4), Corollary 3.7 implies that F̃ ({T1U
n
2 }) ⊂ F̃ ({Un2 }). Thus we obtain

F̃ ({Un1 }) = F̃ ({T1U
n
2 }) ⊂ F̃ ({Un2 }). (5.5)

Hence we have

‖Un2 xn − T1U
n
2 xn‖ ≤ ‖Un2 xn − xn‖+ ‖xn − T1U

n
2 xn‖ → 0

and
Uni

2 xni = (Uni
2 xni − xni) + xni ⇀ p.

Therefore p ∈ F̂ (T1). We also know that {xn}∞n=2 ∈ F̃ ({Un2 }∞n=2).
Suppose that p ∈ F̂ (Tk−1) and {xn}∞n=k ∈ F̃ ({Unk }∞n=k) for some k = 2, 3, . . . .

By (5.4), we have
∞⋂
n=k

F (TkUnk+1) ⊃ F 6= ∅
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and

F (Tk) ∩
∞⋂

n=k+1

F (Unk+1) =
∞⋂
n=k

F (Tn) ⊃ F 6= ∅.

As in the proof of (5.5), Corollaries 3.7 and 3.9 ensure that

F̃ ({Unk }∞n=k) = F̃
(
{TkUnk+1}∞n=k

)
⊂ F̃

(
{Unk+1}∞n=k

)
.

This gives us that

‖Unk+1xn − TkUnk+1xn‖ ≤ ‖Unk+1xn − xn‖+ ‖xn − TkUnk+1xn‖ → 0

and

Uni

k+1xni =
(
Uni

k+1xni − xni

)
+ xni ⇀ p

and hence we obtain p ∈ F̂ (Tk). We also know that

{xn}∞n=k+1 ∈ F̃
(
{Unk+1}∞n=k+1

)
.

Therefore we conclude that p ∈
⋂∞
n=1 F̂ (Tn).

We can similarly prove that {V n1 } satisfies the condition (Z). This completes
the proof. �

Using Theorem 4.1 and Lemmas 5.1 and 5.2, we immediately get the follow-
ing:

Theorem 5.3. Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let {Tn} be a sequence of relatively
nonexpansive mappings of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty. Let

{αnk} be a sequence in (0, 1) with n ∈ N and k = 1, . . . , n such that

0 < inf{αnk : n ∈ N, n ≥ k} ≤ sup{αnk : n ∈ N, n ≥ k} < 1

for every k ∈ N. Let Wn : C → C be the W-mapping generated by Tn, Tn−1, . . . , T1

and αnn, α
n
n−1, . . . , α

n
1 for n ∈ N. Let {xn} be a sequence in C defined by x1 = x ∈ C

and xn+1 = Wnxn for n ∈ N.

(1) If C is compact or the interior of F is nonempty, then {xn} converges strongly
to v ∈ F , where v = limn→∞ΠFxn.

(2) If the duality mapping J is weakly sequentially continuous, then {xn} con-
verges weakly to v ∈ F , where v = limn→∞ΠFxn.

Proof. It is clear from Lemma 5.1 that F =
⋂∞
n=1 F (Wn). Lemma 5.2 shows that

{Wn} is a strongly relatively nonexpansive sequence and satisfies the condition (Z).
Thus Theorem 4.1 implies the conclusion. �
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The following two results are known:

Theorem 5.4 ([4, Theorem 4.2]). Let E be a uniformly convex and smooth Banach
space and C a nonempty closed convex subset of E. Let {Tn} be a sequence of
mappings of type (r) of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty and

{Tn} satisfies the condition (A). Let x ∈ E and let {xn} be the sequence in C
defined by x1 = ΠCx and

Hn = {z ∈ C : φ(z, Tnxn) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn

(x)

for n ∈ N. Then {xn} converges strongly to ΠF (x).

Theorem 5.5 ([4, Theorem 4.4]). Let E be a uniformly convex and smooth Banach
space and C a nonempty closed convex subset of E. Let {Tn} be a sequence of
mappings of type (r) of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty and

{Tn} satisfies the condition (A). Let x ∈ E and let {xn} be the sequence in C
defined by x1 = ΠCx ∈ C = C0 and{

Cn = {z ∈ Cn−1 : φ(z, Tnxn) ≤ φ(z, xn)},
xn+1 = ΠCn

(x)

for n ∈ N. Then {xn} converges strongly to ΠF (x).

Using Theorems 5.4 and 5.5, we also obtain the following strong convergence
theorem:

Theorem 5.6. Let E, C, {Tn}, F , and {αnk} be as in Theorem 5.3. Let Unk be a
mapping defined by (5.1) for n ∈ N and k = 1, . . . , n + 1. Let V n1 : C → E be
defined by (5.3) for n ∈ N. Let x ∈ E and let {xn} be the sequence in E defined
by x1 = ΠCx and 

Hn = {z ∈ C : φ(z, V n1 xn) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn

(x)

for n ∈ N. Let y ∈ E and let {yn} be the sequence in E defined by y1 = ΠCy ∈
C = C0 and {

Cn = {z ∈ Cn−1 : φ(z, V n1 yn) ≤ φ(z, yn)},
yn+1 = ΠCn

(y)

for n ∈ N. Then {xn} and {yn} converge strongly to ΠF (x) and ΠF (y), respec-
tively.

Proof. Lemma 5.1 shows that F (T1U
n
2 ) =

⋂n
i=1 F (Ti) and T1U

n
2 is of type (r).

Thus, by Lemma 2.9, we see that F (V n1 ) = F (T1U
n
2 ) and V n1 is of type (r) for
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every n ∈ N, and hence
∞⋂
n=1

F (V n1 ) =
∞⋂
n=1

n⋂
i=1

F (Ti) = F 6= ∅.

It follows from Lemmas 4.3 and 5.2 that {V n1 } satisfies the condition (A). There-
fore, from Theorems 5.4 and 5.5, we get the conclusion. �

6. Convex combinations of relatively nonexpansive mappings

Finally, we discuss another method of approximating a common fixed point of a
countable family of relatively nonexpansive mappings.

We begin with the following lemma:

Lemma 6.1. Let E be a uniformly convex and uniformly smooth Banach space and
C a nonempty subset of E. Let {Tn} be a sequence of mappings of type (r) of C
into E such that F =

⋂∞
n=1 F (Tn) is nonempty. Let {λnk} be a sequence in (0, 1)

with n ∈ N and k = 0, 1, . . . , n such that
∑n
k=0 λ

n
k = 1 for every n ∈ N and

infn∈N λ
n
0 > 0. For each n, let Vn : C → E be defined by

Vn = J−1
n∑
k=0

λnkJTk, (6.1)

where T0 is the identity mapping on C. Then {Vn} is a strongly relatively nonex-
pansive sequence.

Proof. By the definition of Vn, we have

Vn = J−1

(
λn0
2
J +

λn0
2
J +

n∑
k=1

λnkJTk

)

= J−1

(
λn0
2
J+
(

1− λn0
2

)
JJ−1

(
λn0

2− λn0
J +

n∑
k=1

2λnk
2− λn0

JTk

))
.

For each n ∈ N, define V ′n : C → E by

V ′n = J−1

(
λn0

2− λn0
J +

n∑
k=1

2λnk
2− λn0

JTk

)
.

Then we see that F (V ′n) =
⋂n
k=1 F (Tk) and V ′n is of type (r) by Lemma 2.9. Thus

∞⋂
n=1

F (V ′n) =
∞⋂
n=1

n⋂
k=1

F (Tk) = F 6= ∅.

Therefore Theorem 3.8 implies that {Vn} is a strongly relatively nonexpansive
sequence. �

For the following result, see [19, Theorem 3.3].
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Lemma 6.2 ([19]). Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let {Tn} be a sequence of relatively
nonexpansive mappings of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty, {tn}

a sequence in (0, 1) such that
∑∞
n=1 tn = 1, and {αn} a sequence in (0, 1). Then

the mapping U : C → E defined by

Ux = J−1
∞∑
n=1

tn(αnJx+ (1− αn)JTnx)

for x ∈ C is a relatively nonexpansive mapping and F (U) = F .

Using Lemma 6.2, we obtain the following:

Lemma 6.3. Let E, C, {Tn}, and F be as in Lemma 6.2. Let T0 be the identity
mapping on C and {λn}∞n=0 a sequence in (0, 1) such that

∑∞
n=0 λn = 1. Let

V : C → E be defined by

V x = J−1
∞∑
n=0

λnJTnx (6.2)

for x ∈ C. Then V is relatively nonexpansive and F (V ) = F .

Proof. Let x ∈ C be fixed. Since each Tn is of type (r), it follows from (2.3)
that (‖u‖ − ‖Tnx‖)2 ≤ φ(u, Tnx) ≤ φ(u, x) for all u ∈ F and n ∈ N. Therefore
supn∈N‖JTnx‖ is finite and hence V x is well-defined. Taking into account 1−λ0 =∑∞
n=1 λn, we have

J−1
∞∑
n=1

λn
1− λ0

(λ0Jx+ (1− λ0)JTnx) = J−1

(
λ0

1− λ0
Jx

∞∑
n=1

λn +
∞∑
n=1

λnJTnx

)

= J−1
∞∑
n=0

λnJTnx = V x.

It is clear that
∑∞
n=1 λn/(1 − λ0) = 1 and 0 < λn/(1 − λ0) < 1 for every n ∈ N.

Lemma 6.2 implies the conclusion. �

By using the results above together with Theorem 4.1 and Lemma 4.3, the
following theorem is proved.

Theorem 6.4. Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let {Tn} be a sequence of relatively
nonexpansive mappings of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty. Let

{λnk} be a sequence in (0, 1) with n ∈ N and k = 0, 1, . . . , n such that
∑n
k=0 λ

n
k = 1

for every n ∈ N, infn∈N λ
n
0 > 0, and

∑n
k=0|λk − λnk | → 0 as n → ∞ for some

sequence {λk}∞k=0 in (0, 1). Let T0 be the identity mapping on C. For each n, let
Vn : C → E be defined by (6.1). Let {xn} be a sequence in C defined by x1 = x ∈ C
and xn+1 = ΠCVnxn for n ∈ N.
(1) If C is compact or the interior of F is nonempty, then {xn} converges strongly

to v ∈ F , where v = limn→∞ΠFxn.
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(2) If the duality mapping J is weakly sequentially continuous, then {xn} con-
verges weakly to v ∈ F , where v = limn→∞ΠFxn.

Proof. Lemmas 2.7 and 2.9 show that F (ΠCVn) = F (ΠC) ∩ F (Vn) =
⋂n
k=1 F (Tk)

and hence
∞⋂
n=1

F (ΠCVn) =
∞⋂
n=1

F (Vn) =
∞⋂
n=1

n⋂
k=1

F (Tk) = F 6= ∅.

Thus Lemma 6.1 and Corollary 3.5 imply that {ΠCVn} is a strongly relatively
nonexpansive sequence. Let us show that {ΠCVn} satisfies the condition (B). Note
that

∑∞
k=0 λk = 1. Indeed, clearly we have

λnk − |λk − λnk | ≤ λk ≤ λnk + |λk − λnk |,

so that
n∑
k=0

λnk −
n∑
k=0

|λk − λnk | ≤
n∑
k=0

λk ≤
n∑
k=0

λnk +
n∑
k=0

|λk − λnk |

for every n ∈ N. Taking the limit n → ∞, we obtain
∑∞
k=0 λk = 1. Let B be a

bounded subset of C. Since F is nonempty and each Tn is of type (r), it follows
from (2.3) that

(‖u‖ − ‖Tny‖)2 ≤ φ(u, Tny) ≤ φ(u, y) ≤ (‖u‖+ ‖y‖)2

for all y ∈ B, u ∈ F , and n ∈ N. Therefore M = sup{‖Tny‖ : n ∈ N, y ∈ B} is
finite. Define a mapping V : C → E by (6.2). Then we have

‖JV y − JVny‖ =
∥∥∥ n∑
k=0

(λk − λnk )JTky +
∞∑

k=n+1

λkJTky
∥∥∥

≤
n∑
k=0

|λk − λnk |‖JTky‖+
∞∑

k=n+1

λk‖JTky‖

≤
( n∑
k=0

|λk − λnk |+
∞∑

k=n+1

λk

)
M.

Therefore limn→∞ supy∈B‖JV y − JVny‖ = 0. Since E∗ is uniformly smooth, we
have

lim
n→∞

sup
y∈B
‖J−1JV y − J−1JVny‖ = 0.

By Lemma 2.5, we see that ΠC is uniformly norm-to-norm continuous on every
bounded set. Thus we obtain

lim
n→∞

sup
y∈B
‖ΠCV y −ΠCVny‖ = 0.

On the other hand, Lemma 6.3 shows that V is relatively nonexpansive and
F (V ) = F . Since F (ΠC)∩F (V ) = F 6= ∅ and ΠC is strongly relatively nonexpan-
sive, it follows from Lemma 2.8 that F (ΠCV ) = F̂ (ΠCV ) = F (ΠC) ∩ F (V ) = F .
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This means that {ΠCVn} satisfies the condition (B). Therefore, by Theorem 4.1
and Lemma 4.3, we obtain the conclusion. �

A direct consequence of Theorem 6.4 is as follows; see [2].

Corollary 6.5. Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let {Tn} be a sequence of relatively
nonexpansive mappings of C into E such that F =

⋂∞
n=1 F (Tn) is nonempty. Let

{Vn} be the sequence of mappings of C into E defined by

V1 = J−1

(
1
2
J +

1
2
JT1

)
,

V2 = J−1

(
1
2
J +

1
4
JT1 +

1
4
JT2

)
,

...

Vn = J−1

(
1
2
J +

1
4
JT1 + · · ·+ 1

2n
JTn−1 +

1
2n
JTn

)
,

...

and let {xn} be a sequence defined by x1 = x ∈ C and xn+1 = ΠCVnxn for n ∈ N.
(1) If C is compact or the interior of F is nonempty, then {xn} converges strongly

to v ∈ F , where v = limn→∞ΠFxn.
(2) If the duality mapping J is weakly sequentially continuous, then {xn} con-

verges weakly to v ∈ F , where v = limn→∞ΠFxn.

Proof. Let {λnk} be a sequence with n ∈ N and k = 0, 1, . . . , n defined by

λnk =

{
1/2k+1, k = 0, 1, . . . , n− 1,
1/2n, k = n.

Then it is clear that infn∈N λ
n
0 = 1/2 > 0,

∑n
k=0 λ

n
k = 1 for every n ∈ N and

n∑
k=0

∣∣∣∣ 1
2k+1

− λnk
∣∣∣∣ =

∣∣∣∣ 1
2n+1

− 1
2n

∣∣∣∣ =
1

2n+1
→ 0.

Thus Theorem 6.4 implies the conclusion. �

It is easy to verify that {Vn} in Theorem 6.4 also satisfies the condition (B).
Consequently, we obtain the following strong convergence theorem by using The-
orems 5.4 and 5.5 together with Lemmas 2.9 and 4.3.

Theorem 6.6. Let E, C, {Tn}, F , {λnk}, T0, and {Vn} be as in Theorem 6.4. Let
x ∈ E and let {xn} be the sequence in E defined by x1 = ΠCx and

Hn = {z ∈ C : φ(z, Vnxn) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx− Jxn〉 ≥ 0},
xn+1 = ΠHn∩Wn(x)
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for n ∈ N. Let y ∈ E and let {yn} be the sequence in E defined by y1 = ΠCy ∈
C = C0 and {

Cn = {z ∈ Cn−1 : φ(z, Vnyn) ≤ φ(z, yn)},
yn+1 = ΠCn(y)

for n ∈ N. Then {xn} and {yn} converge strongly to ΠF (x) and ΠF (y), respec-
tively.

Acknowledgements

The authors would like to thank the editor and the anonymous referee for their
valuable comments and suggestions.

References

[1] Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties
and applications. In: Theory and Applications of Nonlinear Operators of Accretive
and Monotone Type, Lecture Notes in Pure Appl. Math. 178, Dekker, New York,
1996, 15–50.

[2] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Approximation of common
fixed points of a countable family of nonexpansive mappings in a Banach space.
Nonlinear Anal. 67 (2007), 2350–2360.

[3] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Strongly nonexpansive se-
quences and their applications in Banach spaces. In: Fixed Point Theory and its
Applications, Yokohama Publ., Yokohama, 2008, 1–18.

[4] K. Aoyama, F. Kohsaka, and W. Takahashi, Strong convergence theorems by shrink-
ing and hybrid projection methods for relatively nonexpansive mappings in Banach
spaces. In: Nonlinear Analysis and Convex Analysis, Yokohama Publ., Yokohama,
2009, 7–26.

[5] K. Aoyama and W. Takahashi, Strong convergence theorems for a family of relatively
nonexpansive mappings in Banach spaces. Fixed Point Theory 8 (2007), 143–160.

[6] R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive op-
erators in Banach spaces. Houston J. Math. 3 (1977), 459–470.

[7] D. Butnariu, S. Reich, and A. J. Zaslavski, Asymptotic behavior of relatively nonex-
pansive operators in Banach spaces. J. Appl. Anal. 7 (2001), 151–174.

[8] Y. Censor and S. Reich, Iterations of paracontractions and firmly nonexpansive op-
erators with applications to feasibility and optimization. Optimization 37 (1996),
323–339.

[9] J. Diestel, Geometry of Banach Spaces—Selected Topics. Lecture Notes in Math.
485, Springer, Berlin, 1975.

[10] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory. Cambridge Stud.
Adv. Math. 28, Cambridge Univ. Press, Cambridge, 1990.

[11] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive
Mappings. Monogr. Textbooks Pure Appl. Math. 83, Dekker, New York, 1984.

[12] S. Kamimura, The proximal point algorithm in a Banach space. In: Nonlinear Anal-
ysis and Convex Analysis, Yokohama Publ., Yokohama, 2004, 143–148.



224 K. Aoyama, F. Kohsaka and W. Takahashi JFPTA

[13] S. Kamimura, F. Kohsaka, and W. Takahashi, Weak and strong convergence theorems
for maximal monotone operators in a Banach space. Set-Valued Anal. 12 (2004),
417–429.

[14] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in
a Banach space. SIAM J. Optim. 13 (2002), 938–945.

[15] Y. Kimura and W. Takahashi, Weak convergence to common fixed points of countable
nonexpansive mappings and its applications. J. Korean Math. Soc. 38 (2001), 1275–
1284.

[16] F. Kohsaka and W. Takahashi, Strong convergence of an iterative sequence for max-
imal monotone operators in a Banach space. Abstr. Appl. Anal. 2004, 239–249.

[17] F. Kohsaka and W. Takahashi, Block iterative methods for a finite family of relatively
nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2007, art. ID
21972, 18 pp.

[18] F. Kohsaka and W. Takahashi, Approximating common fixed points of countable
families of strongly nonexpansive mappings. Nonlinear Stud. 14 (2007), 219–234.

[19] F. Kohsaka and W. Takahashi, The set of common fixed points of an infinite family
of relatively nonexpansive mappings. In: Banach and Function Spaces II, Yokohama
Publ., Yokohama, 2008, 361–373.

[20] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly
nonexpansive-type mappings in Banach spaces. SIAM J. Optim. 19 (2008), 824–835.

[21] P. K. F. Kuhfittig, Common fixed points of nonexpansive mappings by iteration.
Pacific J. Math. 97 (1981), 137–139.

[22] S. Matsushita and W. Takahashi, Weak and strong convergence theorems for rel-
atively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2004,
37–47.

[23] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively non-
expansive mappings in a Banach space. J. Approx. Theory 134 (2005), 257–266.

[24] S. Reich, A weak convergence theorem for the alternating method with Bregman
distances. In: Theory and Applications of Nonlinear Operators of Accretive and
Monotone Type, Lecture Notes in Pure Appl. Math. 178, Dekker, New York, 1996,
313–318.

[25] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators.
Trans. Amer. Math. Soc. 149 (1970), 75–88.

[26] W. Takahashi, Weak and strong convergence theorems for families of nonexpansive
mappings and their applications. In: Proceedings of Workshop on Fixed Point Theory
(Kazimierz Dolny, 1997), Ann. Univ. Mariae Curie-Sk lodowska Sect. A 51 (1997),
277–292.

[27] W. Takahashi, Nonlinear Functional Analysis. Yokohama Publ., Yokohama, 2000.

[28] W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings
and feasibility problems. Math. Comput. Modelling 32 (2000), 1463–1471.

[29] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive map-
pings and monotone mappings. J. Optim. Theory Appl. 118 (2003), 417–428.
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