J. fixed point theory appl. 5 (2009), 201–225 © 2009 Birkhäuser Verlag Basel/Switzerland 1661-7738/020201-25, *published online* 17.7.2009 DOI 10.1007/s11784-009-0108-7

Journal of Fixed Point Theory and Applications

Strongly relatively nonexpansive sequences in Banach spaces and applications

Koji Aoyama, Fumiaki Kohsaka and Wataru Takahashi

Abstract. We introduce the concept of a strongly relatively nonexpansive sequence in a Banach space and investigate its properties. Then we apply our results to the problem of approximating a common fixed point of a countable family of relatively nonexpansive mappings in a uniformly convex and uniformly smooth Banach space.

Mathematics Subject Classification (2000). 47H09, 47H10, 41A65.

Keywords. Strongly relatively nonexpansive sequence, common fixed point, weak convergence theorem.

1. Introduction

Let *E* be a smooth Banach space and let $\phi: E \times E \to \mathbb{R}$ be a function defined by $\phi(x, y) = ||x||^2 - 2\langle x, Jy \rangle + ||y||^2$ for $x, y \in E$, where *J* is the normalized duality mapping of *E*. Let *C* be a nonempty subset of *E* and let *T* be a mapping of *C* into *E*. The set of fixed points of *T* is denoted by F(T). A mapping *T* is said to be relatively nonexpansive [7,22,23] if it satisfies the following conditions: (i) $F(T) \neq \emptyset$; (ii) $\phi(u, Tx) \leq \phi(u, x)$ for all $u \in F(T)$ and $x \in C$; (iii) $F(T) = \hat{F}(T)$, where $\hat{F}(T)$ is the set of asymptotic fixed points of *T*; see [8,24].

The class of relatively nonexpansive mappings includes all resolvents of maximal monotone operators with zero points on a uniformly convex and uniformly smooth Banach space and all nonexpansive mappings with fixed points in a Hilbert space; see, for example, [23]. There are various results concerning that class: Matsushita and Takahashi [22, 23] discussed the problem of finding a fixed point of a relatively nonexpansive mapping in a Banach space. Kohsaka and Takahashi [17] proved weak convergence theorems for approximating a common asymptotic fixed point of a finite family of relatively nonexpansive mappings; see also [4, 5]. On the other hand, Reich [24] introduced the concept of strong nonexpansiveness for relatively nonexpansive mappings, which is deeply related to the strong nonexpansiveness for nonexpansive mappings due to Bruck and Reich [6].

Censor and Reich [8] also introduced a convex combination based on Bregman distance and obtained several results for approximating a common asymptotic fixed point of a family of paracontractions in a finite-dimensional space. Using the convex combination, some results on proximal-type algorithms for a maximal monotone operator in a Banach space were obtained by Kamimura, Kohsaka, and Takahashi [13] and Kohsaka and Takahashi [16].

In this paper, motivated by all the literature mentioned above, we introduce the concept of a strongly relatively nonexpansive sequence in a Banach space and investigate its properties. Then we consider an iterative sequence $\{x_n\}$ defined by $x_1 = x \in C$ and $x_{n+1} = T_n x_n$ for $n \in \mathbb{N}$, where $\{T_n\}$ is a strongly relatively nonexpansive sequence of self-mappings of C and x is an arbitrary point in C. In §4 we give a condition on $\{T_n\}$ under which $\{x_n\}$ converges weakly or strongly to a common fixed point of $\{T_n\}$. In §5 and §6, using this result, we prove weak and strong convergence theorems for a countable family of relatively nonexpansive mappings.

2. Preliminaries

Throughout the present paper, E denotes a real Banach space with norm $\|\cdot\|$, E^* the dual of E, $\langle x, x^* \rangle$ the value of $x^* \in E^*$ at $x \in E$, \mathbb{N} the set of positive integers, and \mathbb{R} the set of real numbers. The norm of E^* is also denoted by $\|\cdot\|$ for the sake of convenience. Strong convergence of $\{x_n\}$ to $x \in E$ is denoted by $x_n \to x$ and weak convergence by $x_n \to x$, where $\{x_n\}$ is a sequence in E. The (normalized) duality mapping of E is denoted by J, that is, it is a set-valued mapping of E into E^* defined by

$$Jx = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}$$

for $x \in E$. It is known that $||y||^2 \ge ||x||^2 + 2\langle y - x, j \rangle$ for all $x, y \in E$ and $j \in Jx$; see, for example, [27]. Replacing y by (x + y)/2 in this inequality, we see that

$$\left\|\frac{x+y}{2}\right\|^2 \ge \|x\|^2 + 2\left\langle\frac{y-x}{2}, j\right\rangle = \langle y, j\rangle \tag{2.1}$$

for all $x, y \in E$ and $j \in Jx$.

Let S_E denote the unit sphere of E, that is, $S_E = \{x \in E : ||x|| = 1\}$. The norm $|| \cdot ||$ of E is said to be *Gâteaux differentiable* if the limit

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} \tag{2.2}$$

exists for all $x, y \in S_E$. In this case E is said to be *smooth* and it is known that the duality mapping J of E is single-valued. The norm of E is said to be *uniformly* Gâteaux differentiable (resp. Fréchet differentiable) if for each $y \in S_E$ (resp. for each $x \in S_E$) the limit (2.2) is attained uniformly for $x \in S_E$ (resp. uniformly for

 $y \in S_E$). In this case it is known that J is uniformly norm-to-weak^{*} continuous on each bounded subset of E (resp. norm-to-norm continuous). A Banach space E is said to be *uniformly smooth* if the limit (2.2) is attained uniformly for $x, y \in S_E$. In this case it is known that J is uniformly norm-to-norm continuous on each bounded subset of E; see [27] for more details.

A Banach space E is said to be *strictly convex* if $x, y \in S_E$ and $x \neq y$ imply ||x + y|| < 2. A Banach space E is said to be *uniformly convex* if for any $\epsilon > 0$ there exists $\delta > 0$ such that $x, y \in S_E$ and $||x - y|| \ge \epsilon$ imply $||x + y||/2 \le 1 - \delta$. It is known that the duality mapping J of E is single-valued and one-to-one if E is smooth and strictly convex; J is surjective if E is reflexive; E is reflexive and strictly convex; see [27] for more details. It is also known that if E is uniformly convex, then the function $|| \cdot ||^2$ is uniformly convex on every bounded convex subset B of E, that is, for each $\epsilon > 0$, there is $\delta > 0$ such that

$$\|\lambda x + (1-\lambda)y\|^2 \le \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\delta$$

for all $\lambda \in [0, 1]$ and $x, y \in B$ with $||x - y|| \ge \epsilon$; see, for example, [9, 30]. This fact implies the following (see [3]).

Lemma 2.1. Let $\{x_n\}$ and $\{y_n\}$ be two bounded sequences in a uniformly convex Banach space E and $\{\lambda_n\}$ a sequence in [0,1] such that $\liminf_{n\to\infty} \lambda_n > 0$. Suppose that

$$\lambda_n \|x_n\|^2 + (1 - \lambda_n) \|y_n\|^2 - \|\lambda_n x_n + (1 - \lambda_n) y_n\|^2 \to 0.$$

Then $(1 - \lambda_n) \|x_n - y_n\| \to 0.$

Let E be a smooth Banach space. We deal with a function $\phi \colon E \times E \to \mathbb{R}$ defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2$$

for $x, y \in E$. This function was studied in [1]. From the definition of ϕ , it is clear that

$$(\|x\| - \|y\|)^2 \le \phi(x, y) \le (\|x\| + \|y\|)^2$$
(2.3)

and

$$\phi(x,y) = \phi(x,z) + \phi(z,y) + 2\langle x-z, Jz - Jy \rangle$$
(2.4)

for all $x, y, z \in E$. The following result is known:

Lemma 2.2 ([14]). Let E be a uniformly convex and smooth Banach space. Let $\{x_n\}$ and $\{y_n\}$ be two sequences in E. If $\{x_n\}$ or $\{y_n\}$ is bounded and $\phi(x_n, y_n) \to 0$, then $||x_n - y_n|| \to 0$.

Let $\{x_n\}$ and $\{y_n\}$ be two bounded sequences in a smooth Banach space E. It is obvious from the definition of ϕ that $\phi(x_n, y_n) \to 0$ whenever $||x_n - y_n|| \to 0$. From this fact and Lemma 2.2, we deduce the following: Let $\{x_n\}$ and $\{y_n\}$ be two bounded sequences in a uniformly convex and uniformly smooth Banach space E. Then

$$||x_n - y_n|| \to 0 \iff ||Jx_n - Jy_n|| \to 0 \iff \phi(x_n, y_n) \to 0.$$
(2.5)

Vol. 5 (2009)

The following lemma is used in the proof of Lemma 2.6 below.

Lemma 2.3. Let E be a uniformly convex and smooth Banach space. Let $\{s_n\}$ be a convergent sequence in \mathbb{R} and $\{x_n\}$ a sequence in E such that

$$\phi(x_m, x_n) \le |s_m - s_n|$$

for all $m, n \in \mathbb{N}$ with m < n. Then $\{x_n\}$ is a strongly convergent sequence.

Proof. It is clear from (2.3) that

$$(||x_m|| - ||x_n||)^2 \le \phi(x_m, x_n) \le |s_m - s_n|$$

for all $m, n \in \mathbb{N}$ with m < n. Therefore $\{||x_n||\}$ is a Cauchy sequence in \mathbb{R} and hence $\{x_n\}$ is bounded. Suppose that $\{x_n\}$ is not a Cauchy sequence. Then there exist $\epsilon > 0$ and two subsequences $\{x_{m_i}\}$ and $\{x_{n_i}\}$ of $\{x_n\}$ such that $m_i < n_i$ and $||x_{m_i} - x_{n_i}|| \ge \epsilon$ for every $i \in \mathbb{N}$. Since E is uniformly convex, $|| \cdot ||^2$ is uniformly convex on $B = \{z \in E : ||z|| \le \sup_{n \in \mathbb{N}} ||x_n||\}$. Thus for ϵ there exists $\delta > 0$ such that

$$\left\|\frac{x_{m_i} + x_{n_i}}{2}\right\|^2 \le \frac{1}{2} \|x_{m_i}\|^2 + \frac{1}{2} \|x_{n_i}\|^2 - \delta$$

for every $i \in \mathbb{N}$. Hence it follows from (2.1) that

$$\langle x_{m_i}, Jx_{n_i} \rangle \le \frac{1}{2} \|x_{m_i}\|^2 + \frac{1}{2} \|x_{n_i}\|^2 - \delta$$

and thus

$$0 < 2\delta \le ||x_{m_i}||^2 - 2\langle x_{m_i}, Jx_{n_i} \rangle + ||x_{n_i}||^2 = \phi(x_{m_i}, x_{n_i}) \le |s_{m_i} - s_{n_i}|$$

for every $i \in \mathbb{N}$. This contradicts the assumption that $\{s_n\}$ is convergent. Therefore we conclude that $\{x_n\}$ is a Cauchy sequence.

Let E be a strictly convex, smooth, and reflexive Banach space and C a nonempty closed convex subset of E. It is known that, for each $x \in E$, there is a unique point x_0 such that

$$\phi(x_0, x) = \min\{\phi(y, x) : y \in C\}.$$

Such a point x_0 is denoted by $\Pi_C x$, and Π_C is said to be the *generalized projection* of E onto C; see [1] and [14]. The following lemma is known:

Lemma 2.4 ([1], [14] and [20]). Let E be a strictly convex, smooth, and reflexive Banach space. Let C be a nonempty closed convex subset of E and Π_C the generalized projection of E onto C. Then the following inequalities hold:

$$\langle \Pi_C x - u, Jx - J\Pi_C x \rangle \ge 0,$$
 (2.6)

$$\phi(u, \Pi_C x) + \phi(\Pi_C x, x) \le \phi(u, x), \tag{2.7}$$

$$\langle \Pi_C x - \Pi_C y, J \Pi_C x - J \Pi_C y \rangle \le \langle \Pi_C x - \Pi_C y, J x - J y \rangle$$
(2.8)

for all $x, y \in E$ and $u \in C$.

The generalized projection also has the following property.

Lemma 2.5. Let E be a uniformly convex and uniformly smooth Banach space and C a nonempty closed convex subset of E. Then Π_C is uniformly norm-to-norm continuous on every bounded set.

Proof. Let $\{x_n\}$ and $\{y_n\}$ be two sequences in a bounded subset of E such that $||x_n - y_n|| \to 0$. Note that $\{\Pi_C x_n\}$ and $\{\Pi_C y_n\}$ are bounded because it follows from (2.3) and (2.7) that

$$(\|u\| - \|\Pi_C x_n\|)^2 \le \phi(u, \Pi_C x_n) + \phi(\Pi_C x_n, x_n) \le \phi(u, x_n) \le (\|u\| + \|x_n\|)^2$$

for all $n \in \mathbb{N}$ and $u \in C$. Since E is uniformly smooth, the duality mapping J is uniformly norm-to-norm continuous on every bounded set. It follows from (2.8) that

$$0 \leq \frac{1}{2} (\phi(\Pi_C x_n, \Pi_C y_n) + \phi(\Pi_C y_n, \Pi_C x_n))$$

= $\langle \Pi_C x_n - \Pi_C y_n, J \Pi_C x_n - J \Pi_C y_n \rangle$
 $\leq \langle \Pi_C x_n - \Pi_C y_n, J x_n - J y_n \rangle$
 $\leq \|\Pi_C x_n - \Pi_C y_n\| \|J x_n - J y_n\| \to 0.$

Therefore $\phi(\Pi_C x_n, \Pi_C y_n) \to 0$. Hence Lemma 2.2 implies $\|\Pi_C x_n - \Pi_C y_n\| \to 0$. This means that Π_C is uniformly norm-to-norm continuous on a bounded set. \Box

We next show the following lemma. Part (1) is a generalization of [29, Lemma 3.2]. We follow the idea in [22] for the proof of (2).

Lemma 2.6. Let *E* be a smooth Banach space, *C* a nonempty closed convex subset of *E*, and $\{x_n\}$ a sequence in *E* such that $\phi(u, x_{n+1}) \leq \phi(u, x_n)$ for all $u \in C$ and $n \in \mathbb{N}$. Then the following hold:

- (1) If E is uniformly convex, then $\{\Pi_C x_n\}$ is strongly convergent.
- (2) If the norm of E^* is Fréchet differentiable and the interior of C is nonempty, then $\{x_n\}$ is strongly convergent.

Proof. We first show (1). By the definition of Π_C , we see that

$$\phi(\Pi_C x_{n+m}, x_{n+m}) = \min\{\phi(y, x_{n+m}) : y \in C\} \le \phi(\Pi_C x_n, x_{n+m})$$

$$\le \phi(\Pi_C x_n, x_{n+m-1}) \le \phi(\Pi_C x_n, x_n)$$
(2.9)

for all $m, n \in \mathbb{N}$. Therefore $\{\phi(\Pi_C x_n, x_n)\}$ is convergent. Further, it follows from (2.7) and (2.9) that

$$\phi(\Pi_C x_n, \Pi_C x_{n+m}) \le \phi(\Pi_C x_n, x_{n+m}) - \phi(\Pi_C x_{n+m}, x_{n+m})$$
$$\le \phi(\Pi_C x_n, x_n) - \phi(\Pi_C x_{n+m}, x_{n+m})$$

for all $m, n \in \mathbb{N}$. Hence Lemma 2.3 implies that $\{\Pi_C x_n\}$ is strongly convergent.

We next show (2). By assumption, there exist $p \in C$ and $\delta > 0$ such that $||h|| \leq \delta$ implies that $p + h \in C$. Fix $h \in E$ such that $||h|| \leq \delta$. Then it follows

from (2.4) that

$$\phi(p, x_{n+1}) = \phi(p, x_n) + \phi(x_n, x_{n+1}) + 2\langle p - x_n, Jx_n - Jx_{n+1} \rangle$$

$$= \phi(p, x_n) + \phi(x_n, x_{n+1}) + 2\langle p + h - x_n, Jx_n - Jx_{n+1} \rangle$$

$$- 2\langle h, Jx_n - Jx_{n+1} \rangle$$

$$= \phi(p, x_n) + \phi(p + h, x_{n+1}) - \phi(p + h, x_n)$$

$$- 2\langle h, Jx_n - Jx_{n+1} \rangle.$$
(2.10)

By assumption, we have

$$\phi(p+h, x_{n+1}) \le \phi(p+h, x_n).$$
(2.11)

JFPTA

By (2.10) and (2.11), we obtain

$$2\langle h, Jx_n - Jx_{n+1} \rangle \le \phi(p, x_n) - \phi(p, x_{n+1}).$$

This implies that

$$2\delta \|Jx_n - Jx_{n+1}\| = 2 \sup_{\|h\| \le \delta} \langle h, Jx_n - Jx_{n+1} \rangle \le \phi(p, x_n) - \phi(p, x_{n+1})$$

for all $n \in \mathbb{N}$. Thus we obtain

$$2\delta \|Jx_n - Jx_m\| \le \phi(p, x_n) - \phi(p, x_m)$$

for all $m, n \in \mathbb{N}$ with n < m. By the fact that $\{\phi(p, x_n)\}$ is convergent, we know that $\{Jx_n\}$ is a Cauchy sequence in E^* . Since J^{-1} is norm-to-norm continuous, $\{x_n\}$ converges strongly in E.

Let A be a set-valued mapping of E into E^* , which is often denoted by $A \subset E \times E^*$. The effective domain of A is denoted by dom(A) and the range of A by R(A), that is, dom(A) = $\{x \in E : Ax \neq \emptyset\}$ and $R(A) = \bigcup_{x \in \text{dom}(A)} Ax$. A set-valued mapping $A \subset E \times E^*$ is said to be a monotone operator if $\langle x - y, x^* - y^* \rangle \ge 0$ for all $(x, x^*), (y, y^*) \in A$. A monotone operator $A \subset E \times E^*$ is said to be maximal if A = A' whenever $A' \subset E \times E^*$ is a monotone operator, then $A^{-1}0$ is closed and convex, where $A^{-1}0 = \{x \in E : Ax \ni 0\}$. We know that the duality mapping J of E is a monotone operator. We also know that if E is strictly convex, then J is strictly monotone, that is, $\langle x - y, x^* - y^* \rangle > 0$ whenever $x, y \in E, x \neq y, x^* \in Jx$, and $y^* \in Jy$.

Let E be a smooth, strictly convex, and reflexive Banach space, $A \subset E \times E^*$ a maximal monotone operator, and r > 0. Then it is known that $R(J+rA) = E^*$; see [25]. Thus the single-valued mapping $Q_r = (J+rA)^{-1}J$ of E onto dom(A) is well defined and is called the *resolvent* of A. It is also known that $F(Q_r) = A^{-1}0$ and

$$\phi(u, Q_r x) + \phi(Q_r x, x) \le \phi(u, x) \tag{2.12}$$

for all $x \in E$ and $u \in F(Q_r)$, where $F(Q_r)$ is the set of fixed points of Q_r ; see [12, 13, 16].

Let E be a smooth Banach space, C a nonempty subset of E, and $T: C \to E$ a mapping. The set of fixed points of T is denoted by F(T). A point $p \in C$ is said to be an *asymptotic fixed point* of T [8, 24] if C contains a sequence $\{x_n\}$ such that $x_n \to p$ and $||x_n - Tx_n|| \to 0$. The set of asymptotic fixed points of T is denoted by $\hat{F}(T)$. A mapping T is said to be of type (r) if $F(T) \neq \emptyset$ and $\phi(p, Tx) \leq \phi(p, x)$ for all $x \in C$ and $p \in F(T)$. A mapping T is said to be of type (sr) if T is of type (r) and $\phi(Tx_n, x_n) \to 0$ whenever $\{x_n\}$ is a bounded sequence in C such that $\phi(p, x_n) - \phi(p, Tx_n) \to 0$ for some $p \in F(T)$. We know that if C is a nonempty closed convex subset of a strictly convex and smooth Banach space E and $T: C \to E$ is of type (r), then F(T) is closed and convex; see [23, Proposition 2.4].

A mapping $T: C \to E$ is said to be relatively nonexpansive [7,22,23] if it is of type (r) and $F(T) = \hat{F}(T)$. A mapping $T: C \to E$ is said to be strongly relatively nonexpansive [5,18,24] if it is of type (sr) and $F(T) = \hat{F}(T)$. It is easy to check that every generalized projection is strongly relatively nonexpansive. It is known that if r > 0, then the resolvent Q_r of a maximal monotone operator defined in a strictly convex and reflexive Banach space whose norm is uniformly Gâteaux differentiable is strongly relatively nonexpansive [20]; see also [12, 13, 22, 23].

The following results are proved in [4]; see also [5, 17, 24].

Lemma 2.7. Let C and D be nonempty subsets of a smooth and strictly convex Banach space E. Let $S: C \to E$ and $T: D \to E$ be mappings of type (r) such that $T(D) \subset C$ and $F(S) \cap F(T)$ is nonempty. Suppose that S or T is of type (sr). Then the following hold:

- (1) $F(S) \cap F(T) = F(ST)$ and ST is of type (r).
- (2) If, in addition, E is uniformly convex and both S and T are of type (sr), then ST is also of type (sr).

Lemma 2.8. Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux differentiable. Let C and D be nonempty subsets of E. Let $S: C \to E$ and $T: D \to E$ be relatively nonexpansive mappings such that $T(D) \subset C$ and $F(S) \cap F(T) \neq \emptyset$. Suppose that S or T is strongly relatively nonexpansive. Then $\hat{F}(ST) = F(ST) = F(S) \cap F(T)$ and ST is relatively nonexpansive.

Lemma 2.9. Let *E* be a uniformly convex and uniformly smooth Banach space and *C* a nonempty subset of *E*. Let $\{T_1, \ldots, T_n\}$ be a finite family of mappings of type (r) of *C* into *E* such that $F = \bigcap_{i=1}^n F(T_i)$ is nonempty, where *n* is a positive integer. Let $V: C \to E$ be a mapping defined by $V = J^{-1}(\lambda_0 J + \sum_{i=1}^n \lambda_i J T_i)$, where $\{\lambda_i\}_{i=0}^n$ is a finite sequence in (0,1) such that $\sum_{i=0}^n \lambda_i = 1$. Then F(V) = F and *V* is of type (sr).

From Lemmas 2.7 and 2.9, we obtain the following:

Corollary 2.10. Let E be a uniformly convex and uniformly smooth Banach space, C a nonempty subset of E, and $T: C \to E$ a mapping of type (r). Suppose that

 $U: C \to C$ is a mapping defined by $U = \prod_C J^{-1}(\lambda J + (1 - \lambda)JT)$, where $\lambda \in (0, 1)$ is a constant. Then F(U) = F(T) and U is of type (sr).

Proof. Put $V = J^{-1}(\lambda J + (1 - \lambda)JT)$. Since F(T) is nonempty, we see that F(V) = F(T) and V is of type (sr) by Lemma 2.9. Since $F(\Pi_C) \cap F(V) = C \cap F(T) = F(T) \neq \emptyset$ and both Π_C and V are of type (sr), it follows from Lemma 2.7 that $F(\Pi_C V) = F(\Pi_C) \cap F(V) = F(T)$ and $\Pi_C V$ is of type (sr).

3. Strongly relatively nonexpansive sequences

Throughout this section, we assume that E is a smooth Banach space and C is a nonempty subset of E. We introduce the concept of a strongly relatively nonexpansive sequence and investigate its properties.

Let $\{T_n\}$ be a sequence of mappings of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Then $\{T_n\}$ is said to be a *strongly relatively nonexpansive sequence* if each T_n is of type (r) and $\phi(T_n x_n, x_n) \to 0$ whenever $\{x_n\}$ is a bounded sequence in C and $\phi(p, x_n) - \phi(p, T_n x_n) \to 0$ for some point $p \in F$.

Example 3.1. Let $T: C \to E$ be a mapping of type (sr). Put $T_n = T$ for $n \in \mathbb{N}$. Then it is clear that $\{T_n\}$ is a strongly relatively nonexpansive sequence.

Example 3.2. Let E be a smooth, strictly convex, and reflexive Banach space and $\{T_n\}$ a sequence of mappings of C into E with a common fixed point. Suppose that, for each $n \in \mathbb{N}$,

$$\phi(u, T_n x) + \phi(T_n x, x) \le \phi(u, x)$$

for all $x \in C$ and $u \in F(T_n)$. Then $\{T_n\}$ is a strongly relatively nonexpansive sequence. Thus it follows from (2.7) and (2.12) that

- a sequence $\{\Pi_{C_n}\}$ of generalized projections is a strongly relatively nonexpansive sequence if $\{C_n\}$ is a sequence of closed convex subsets of E with a common intersection;
- a sequence $\{Q_{r_n}\}$ of resolvents of a maximal monotone operator A if $A^{-1}0$ is nonempty and $\{r_n\}$ is a sequence of positive real numbers.

The following lemma shows that every subsequence of a strongly relatively nonexpansive sequence is also a strongly relatively nonexpansive sequence in the appropriate setting.

Lemma 3.3. Let C be a nonempty subset of a smooth Banach space E and $\{T_n\}$ a sequence of mappings of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Suppose that $\{T_n\}$ is a strongly relatively nonexpansive sequence. If $\{T_{n_i}\}$ is a subsequence of $\{T_n\}$ with $F = \bigcap_{i=1}^{\infty} F(T_{n_i})$, then $\{T_{n_i}\}$ is a strongly relatively nonexpansive sequence.

Proof. Let $\{u_i\}$ be a bounded sequence in C and $p \in \bigcap_{i=1}^{\infty} F(T_{n_i})$ such that $\phi(p, u_i) - \phi(p, T_{n_i} u_i) \to 0$. Let $z \in F$ be fixed. Define a sequence $\{x_n\}$ in C: For each $n \in \mathbb{N}$, if there is $i \in \mathbb{N}$ such that $n_i = n$, then $x_n = u_i$; if $n_i \neq n$ for all $i \in \mathbb{N}$,

then $x_n = z$. Then it is clear that $\phi(p, x_n) - \phi(p, T_n x_n) \to 0$ and $p \in F$. Since $\{T_n\}$ is a strongly relatively nonexpansive sequence, we have $\phi(T_n x_n, x_n) \to 0$ and hence $\phi(T_{n_i} u_i, u_i) \to 0$, which completes the proof. \Box

The composition of two strongly relatively nonexpansive sequences is also a strongly relatively nonexpansive sequence:

Theorem 3.4. Let C and D be two nonempty subsets of a uniformly convex and smooth Banach space E. Let $\{S_n\}$ be a sequence of mappings of C into E and $\{T_n\}$ a sequence of mappings of D into E such that $F = \bigcap_{n=1}^{\infty} F(S_n) \cap \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ and $T_n(D) \subset C$ for every $n \in \mathbb{N}$. Suppose that both $\{S_n\}$ and $\{T_n\}$ are strongly relatively nonexpansive sequences, and that S_n or T_n is of type (sr) for every $n \in \mathbb{N}$. Then $\{S_nT_n\}$ is a strongly relatively nonexpansive sequence.

Proof. It follows from Lemma 2.7 that $F(S_nT_n) = F(S_n) \cap F(T_n)$ and S_nT_n is of type (r). Thus we have

$$\bigcap_{n=1}^{\infty} F(S_n T_n) = \bigcap_{n=1}^{\infty} (F(S_n) \cap F(T_n)) = F \neq \emptyset.$$

Let $\{x_n\}$ be a bounded sequence in D and $p \in F$ such that

$$\phi(p, x_n) - \phi(p, S_n T_n x_n) \to 0.$$

Since $p \in F \subset F(S_nT_n) = F(S_n) \cap F(T_n)$ and both S_n and T_n are of type (r), we have

$$0 \le \phi(p, x_n) - \phi(p, T_n x_n) \le \phi(p, x_n) - \phi(p, S_n T_n x_n) \to 0.$$

Since $\{T_n\}$ is a strongly relatively nonexpansive sequence, we obtain

$$\phi(T_n x_n, x_n) \to 0. \tag{3.1}$$

Similarly, we have

$$0 \le \phi(p, T_n x_n) - \phi(p, S_n T_n x_n) \le \phi(p, x_n) - \phi(p, S_n T_n x_n) \to 0.$$

Since $\{T_n x_n\}$ is bounded and $\{S_n\}$ is a strongly relatively nonexpansive sequence, we obtain

$$\phi(S_n T_n x_n, T_n x_n) \to 0. \tag{3.2}$$

Therefore, from (2.4), (3.1), (3.2) and Lemma 2.2, we have

$$\begin{aligned} \phi(S_n T_n x_n, x_n) \\ &= \phi(S_n T_n x_n, T_n x_n) + \phi(T_n x_n, x_n) + 2\langle S_n T_n x_n - T_n x_n, J T_n x_n - J x_n \rangle \\ &\leq \phi(S_n T_n x_n, T_n x_n) + \phi(T_n x_n, x_n) + 2 \|S_n T_n x_n - T_n x_n\| \|J T_n x_n - J x_n\| \to 0. \end{aligned}$$

Consequently $\{S_n T_n\}$ is a strongly relatively nonexpansive sequence.

The following corollary is immediately derived from Example 3.2 and Theorem 3.4.

Corollary 3.5. Let D be a nonempty closed convex subset of a uniformly convex and smooth Banach space E. Let $\{T_n\}$ be a sequence of mappings of D into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. If $\{T_n\}$ is a strongly relatively nonexpansive sequence, then $\{\Pi_D T_n\}$ is a strongly relatively nonexpansive sequence.

A sequence $\{z_n\}$ in C is said to be an approximate fixed point sequence of a mapping $T: C \to E$ if $||z_n - Tz_n|| \to 0$; see [10, 11]. The set of all bounded approximate fixed point sequences of T is denoted by $\tilde{F}(T)$, that is,

$$\tilde{F}(T) = \Big\{ \{z_n\} : z_n \in C \text{ for all } n \in \mathbb{N}, \sup_{n \in \mathbb{N}} ||z_n|| < \infty, \text{ and } ||z_n - Tz_n|| \to 0 \Big\}.$$

Let $\{T_n\}$ be a sequence of mappings of C into E. A sequence $\{z_n\}$ in C is said to be an approximate fixed point sequence of $\{T_n\}$ if $||z_n - T_n z_n|| \to 0$. The set of all bounded approximate fixed point sequences of $\{T_n\}$ is denoted by $\tilde{F}(\{T_n\})$, that is,

$$\tilde{F}(\{T_n\}) = \Big\{\{z_n\} : z_n \in C \text{ for all } n \in \mathbb{N}, \sup_{n \in \mathbb{N}} ||z_n|| < \infty, \text{ and } ||z_n - T_n z_n|| \to 0\Big\}.$$

Clearly, if $\{T_n\}$ has a common fixed point, then every bounded sequence in the common fixed point set $\bigcap_{n=1}^{\infty} F(T_n)$ is an approximate fixed point sequence of $\{T_n\}$.

Next we examine a relationship between strongly relatively nonexpansive sequences and approximate fixed point sequences.

Lemma 3.6. Let E be a uniformly convex Banach whose norm is uniformly Gâteaux differentiable. Let C and D be two nonempty subsets of E. Let $\{S_n\}$ be a sequence of mappings of C into E and $\{T_n\}$ a sequence of mappings of D into E such that $F = \bigcap_{n=1}^{\infty} F(S_n) \cap \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ and $T_n(D) \subset C$ for every $n \in \mathbb{N}$. Suppose that both S_n and T_n are of type (r) for every $n \in \mathbb{N}$ and that $\{S_n\}$ or $\{T_n\}$ is a strongly relatively nonexpansive sequence. If $\{z_n\} \in \tilde{F}(\{S_nT_n\})$, then $\{z_n\} \in \tilde{F}(\{T_n\})$ and $\{T_nz_n\} \in \tilde{F}(\{S_n\})$.

Proof. Let $\{z_n\} \in F(\{S_nT_n\})$ and $p \in F$. Since both $\{z_n\}$ and $\{S_nT_nz_n\}$ are bounded and the duality mapping J is uniformly norm-to-weak^{*} continuous on a bounded set, we have

$$\begin{split} \phi(p,z_n) &- \phi(p,S_nT_nz_n) \\ &= -2\langle p,Jz_n \rangle + \|z_n\|^2 + 2\langle p,JS_nT_nz_n \rangle - \|S_nT_nz_n\|^2 \\ &= (\|z_n\| + \|S_nT_nz_n\|)(\|z_n\| - \|S_nT_nz_n\|) - 2\langle p,Jz_n - JS_nT_nz_n \rangle \\ &\leq (\|z_n\| + \|S_nT_nz_n\|)(\|z_n - S_nT_nz_n\|) - 2\langle p,Jz_n - JS_nT_nz_n \rangle \to 0. \end{split}$$

As in the proof of Theorem 3.4, we see that

$$\phi(p, z_n) - \phi(p, T_n z_n) \to 0 \quad \text{and} \quad \phi(p, T_n z_n) - \phi(p, S_n T_n z_n) \to 0.$$
 (3.3)

Note that $\{T_n z_n\}$ is a bounded sequence in C. Now suppose that $\{T_n\}$ is a strongly relatively nonexpansive sequence. Then we obtain $\phi(T_n z_n, z_n) \to 0$. In this case,

according to Lemma 2.2, we have $||z_n - T_n z_n|| \to 0$. By assumption, we have $||z_n - S_n T_n z_n|| \to 0$. These facts yield

$$||T_n z_n - S_n T_n z_n|| \le ||T_n z_n - z_n|| + ||z_n - S_n T_n z_n|| \to 0.$$

Therefore $\{z_n\} \in \tilde{F}(\{T_n\})$ and $\{T_n z_n\} \in \tilde{F}(\{S_n\})$.

On the other hand, suppose that $\{S_n\}$ is a strongly relatively nonexpansive sequence. It follows from (3.3) that $\phi(S_nT_nz_n,T_nz_n) \to 0$. So, we deduce from Lemma 2.2 that $||S_nT_nz_n - T_nz_n|| \to 0$ and

$$||z_n - T_n z_n|| \le ||z_n - S_n T_n z_n|| + ||S_n T_n z_n - T_n z_n|| \to 0.$$

Hence we also obtain the desired result. This completes the proof.

As a special case of Lemma 3.6, we obtain the following:

Corollary 3.7. Let E be a uniformly convex Banach whose norm is uniformly Gâteaux differentiable. Let C and D be two nonempty subsets of E. Let $S: C \to E$ be a mapping of type (r) and $\{T_n\}$ a sequence of mappings of D into E such that $F = F(S) \cap \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ and $T_n(D) \subset C$ for every $n \in \mathbb{N}$. Suppose that $\{T_n\}$ is a strongly relatively nonexpansive sequence. If $\{z_n\} \in \tilde{F}(\{ST_n\})$, then $\{z_n\} \in \tilde{F}(\{T_n\})$ and $\{T_n z_n\} \in \tilde{F}(S)$.

The following theorem shows an easy way to construct a strongly relatively nonexpansive sequence from an arbitrary sequence of mappings of type (r).

Theorem 3.8. Let E be a uniformly convex and uniformly smooth Banach space and C a nonempty subset of E. Let $\{T_n\}$ be a sequence of mappings of C into Esuch that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Let $V_n \colon C \to E$ be a mapping defined by $V_n = J^{-1}(\lambda_n J + (1 - \lambda_n)JT_n)$ for $n \in \mathbb{N}$, where $\{\lambda_n\}$ is a sequence in (0, 1). Suppose that T_n is of type (r) for every $n \in \mathbb{N}$ and $\inf_{n \in \mathbb{N}} \lambda_n > 0$. Then $\{V_n\}$ is a strongly relatively nonexpansive sequence. Moreover, if $\sup_{n \in \mathbb{N}} \lambda_n < 1$, then $\tilde{F}(\{T_n\}) = \tilde{F}(\{V_n\})$.

Proof. Lemma 2.9 implies that $F(V_n) = F(T_n)$ and V_n is of type (r). Thus $F = \bigcap_{n=1}^{\infty} F(V_n)$. Let $\{x_n\}$ be a bounded sequence in C such that $\phi(p, x_n) - \phi(p, V_n x_n) \to 0$ for some $p \in F$. Then we have

$$\begin{split} \lambda_n \|Jx_n\|^2 + (1 - \lambda_n) \|JT_n x_n\|^2 &- \|JV_n x_n\|^2 \\ &= \lambda_n \phi(p, x_n) + (1 - \lambda_n) \phi(p, T_n x_n) - \phi(p, V_n x_n) \\ &\leq \lambda_n \phi(p, x_n) + (1 - \lambda_n) \phi(p, x_n) - \phi(p, V_n x_n) \\ &= \phi(p, x_n) - \phi(p, V_n x_n) \to 0. \end{split}$$

Since E^* is uniformly convex and both $\{Jx_n\}$ and $\{JT_nx_n\}$ are bounded, it follows from Lemma 2.1 that

$$||Jx_n - JV_n x_n|| = (1 - \lambda_n) ||Jx_n - JT_n x_n|| \to 0.$$
(3.4)

Therefore, from (2.5) we conclude that $\phi(V_n x_n, x_n) \to 0$ and hence $\{V_n\}$ is a strongly relatively nonexpansive sequence.

Suppose that $\sup_{n \in \mathbb{N}} \lambda_n < 1$. From (2.5) and (3.4), it is easy to check that $\tilde{F}(\{T_n\}) = \tilde{F}(\{V_n\})$.

We can also obtain the following corollary.

Corollary 3.9. Let E be a uniformly convex and uniformly smooth Banach space and C a nonempty closed convex subset of E. Let $\{T_n\}$ be a sequence of mappings of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Let $U_n : C \to C$ be a mapping defined by $U_n = \prod_C J^{-1}(\lambda_n J + (1 - \lambda_n)JT_n)$ for $n \in \mathbb{N}$, where $\{\lambda_n\}$ is a sequence in (0, 1). Suppose that T_n is of type (r) for every $n \in \mathbb{N}$ and $\inf_{n \in \mathbb{N}} \lambda_n > 0$. Then $\{U_n\}$ is a strongly relatively nonexpansive sequence. Moreover, if $\sup_{n \in \mathbb{N}} \lambda_n < 1$, then $\tilde{F}(\{U_n\}) = \tilde{F}(\{T_n\})$.

Proof. Let V_n be a mapping of C into E defined by $V_n = J^{-1}(\lambda_n J + (1 - \lambda_n)JT_n)$ for $n \in \mathbb{N}$. By Theorem 3.8, $\{V_n\}$ is a strongly relatively nonexpansive sequence, and moreover, $\tilde{F}(\{V_n\}) = \tilde{F}(\{T_n\})$ if $\sup_{n \in \mathbb{N}} \lambda_n < 1$.

On the other hand, Corollary 3.7 implies that $\tilde{F}(\{U_n\}) \subset \tilde{F}(\{V_n\})$. It is easy to see that the converse inclusion also holds. In fact, if $\{x_n\} \in \tilde{F}(\{V_n\})$, then it follows from $x_n \in C$ and the definition of Π_C that

$$\phi(U_n x_n, V_n x_n) = \phi(\Pi_C V_n x_n, V_n x_n) \le \phi(x_n, V_n x_n) \to 0.$$

This implies that $||U_n x_n - V_n x_n|| \to 0$. Thus $\{x_n\} \in \tilde{F}(\{U_n\})$.

4. Convergence theorem for strongly relatively nonexpansive sequences

In this section, we discuss a convergence theorem for a strongly relatively nonexpansive sequence.

Let C be a nonempty subset of a Banach space E and $\{T_n\}$ a sequence of mappings of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. We say that $\{T_n\}$ satisfies the *condition* (Z) if every weak cluster point of $\{x_n\}$ belongs to F whenever $\{x_n\}$ is a bounded sequence in C such that $||T_n x_n - x_n|| \to 0$.

Theorem 4.1. Let E be a uniformly convex and smooth Banach space and C a nonempty closed convex subset of E. Let $\{T_n\}$ be a sequence of self-mappings of Csuch that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Suppose that $\{T_n\}$ is a strongly relatively nonexpansive sequence and satisfies the condition (Z). Let $\{x_n\}$ be a sequence in C defined by $x_1 = x \in C$ and $x_{n+1} = T_n x_n$ for $n \in \mathbb{N}$. Then the following hold:

- (1) If C is compact or the interior of F is nonempty, then $\{x_n\}$ converges strongly to $v \in F$, where $v = \lim_{n \to \infty} \prod_F x_n$.
- (2) If the duality mapping J is weakly sequentially continuous, then $\{x_n\}$ converges weakly to $v \in F$, where $v = \lim_{n \to \infty} \prod_F x_n$.

Proof. Let $p \in F$ be fixed. Since each T_n is of type (r), $F(T_n)$ is closed and convex and

$$\phi(p, x_{n+1}) = \phi(p, T_n x_n) \le \phi(p, x_n) \tag{4.1}$$

212

for every $n \in \mathbb{N}$. Therefore F is a closed convex subset of E and it follows from (1) in Lemma 2.6 that $\{\Pi_F x_n\}$ converges strongly to some point in F. Put $v = \lim_{n\to\infty} \Pi_F x_n$. The inequality (4.1) also shows that $\{\phi(p, x_n)\}$ is bounded and convergent. Thus $\{x_n\}$ is also bounded and $\phi(p, x_n) - \phi(p, T_n x_n) \to 0$. Since $\{T_n\}$ is a strongly relatively nonexpansive sequence, we conclude that $\phi(T_n x_n, x_n) \to 0$. Hence Lemma 2.2 implies that $\|T_n x_n - x_n\| \to 0$.

We first show (1). Suppose that C is compact. Then there is a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to u$. We claim that u = v. From the condition (Z), we see that $u \in F$. Thus (2.6) shows that

$$\langle \Pi_F x_n - u, J x_n - J \Pi_F x_n \rangle \ge 0 \tag{4.2}$$

for every $n \in \mathbb{N}$. Since J is norm-to-weak continuous, $\{Jx_{n_i} - J\Pi_F x_{n_i}\}$ converges weakly to Ju - Jv. Therefore $\langle v - u, Ju - Jv \rangle \geq 0$ and hence u = v. Consequently, we conclude that $\{x_n\}$ converges strongly to v.

If the interior of F is nonempty, then (2) in Lemma 2.6 implies that $\{x_n\}$ converges strongly to u. By the condition (Z), we have $u \in F$. Taking the limit in (4.2), we obtain

$$\langle v - u, Ju - Jv \rangle \ge 0$$

and hence u = v. Thus we conclude that $\{x_n\}$ converges strongly to v.

We finally show (2). Since E is reflexive, there is a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \rightharpoonup u$. From the condition (Z), we see that $u \in F$. Since the duality mapping J is weakly sequentially continuous, $\{Jx_{n_i} - J\prod_F x_{n_i}\}$ converges weakly to Ju - Jv. Therefore $\langle v - u, Ju - Jv \rangle \ge 0$ and hence u = v. Consequently, we conclude that $\{x_n\}$ converges weakly to v.

Remark 4.2. In $\S5$, we deal with an example of a sequence of mappings which satisfies the condition (Z).

In the remainder of this section, we consider an equivalent condition and a sufficient condition for the condition (Z).

Let C be a nonempty subset of a Banach space E and $\{T_n\}$ a sequence of mappings of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Then

• we say that $\{T_n\}$ satisfies the *condition* (A) if $p \in F$ whenever $\{T_{n_i}\}$ is a subsequence of $\{T_n\}$ and $\{z_i\}$ is a sequence in C such that

$$||T_{n_i}z_i - z_i|| \to 0 \text{ and } z_i \rightharpoonup p;$$

• we say that $\{T_n\}$ satisfies the *condition* (B) if, for any nonempty bounded subset B of C and for any increasing sequence $\{n_i\}$ in \mathbb{N} , there exist a mapping $T: C \to E$ and a subsequence $\{T_{n_{i_i}}\}$ of $\{T_{n_i}\}$ such that

$$\lim_{j \to \infty} \sup_{y \in B} ||Ty - T_{n_{i_j}}y|| = 0 \quad \text{and} \quad \hat{F}(T) = F.$$

Lemma 4.3. Let C be a nonempty subset of a Banach space E and $\{T_n\}$ a sequence of mappings of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Then the following hold:

(2) If $\{T_n\}$ satisfies the condition (B), then it satisfies the condition (Z).

Proof. We first show (1). It is obvious that the condition (A) implies the condition (Z). Thus we prove the inverse implication. Let $\{T_{n_i}\}$ be a subsequence of $\{T_n\}$ and $\{z_i\}$ a sequence in C such that $||T_{n_i}z_i - z_i|| \to 0$ and $z_i \to p$. Let $u \in F$ be fixed. Define a sequence $\{x_n\}$ in C as follows:

$$x_n = \begin{cases} z_i & \text{if there exists } i \in \mathbb{N} \text{ such that } n = n_i, \\ u & \text{if } n \neq n_i \text{ for all } i \in \mathbb{N}, \end{cases}$$

for $n \in \mathbb{N}$. Then it is clear that $\{x_n\}$ is bounded, $T_n x_n - x_n \to 0$, and p is a weak cluster point of $\{x_n\}$. Thus the condition (Z) implies that $p \in F$.

We next show that the condition (B) implies the condition (Z). Let $\{x_n\}$ be a bounded sequence in C such that $||T_nx_n - x_n|| \to 0$ and p a weak cluster point of $\{x_n\}$. Then there is an increasing sequence $\{n_i\}$ in \mathbb{N} such that $x_{n_i} \rightharpoonup p$. Since $\{x_{n_i}\}$ is bounded, there is a bounded subset B of C such that $\{x_{n_i} : i \in \mathbb{N}\} \subset B$. By the condition (B), for $\{n_i\}$ and B, there exist a mapping $T: C \to E$ and a subsequence $\{T_{n_i}\}$ of $\{T_{n_i}\}$ such that

$$\lim_{j \to \infty} \sup_{y \in B} \|Ty - T_{n_{i_j}}y\| = 0 \quad \text{and} \quad \hat{F}(T) = F.$$

Therefore we have

$$\begin{aligned} \|x_{n_{i_j}} - Tx_{n_{i_j}}\| &\leq \|x_{n_{i_j}} - T_{n_{i_j}}x_{n_{i_j}}\| + \|T_{n_{i_j}}x_{n_{i_j}} - Tx_{n_{i_j}}\| \\ &\leq \|x_{n_{i_j}} - T_{n_{i_j}}x_{n_{i_j}}\| + \sup_{y \in B} \|T_{n_{i_j}}y - Ty\| \end{aligned}$$

and hence $||x_{n_{i_j}} - Tx_{n_{i_j}}|| \to 0$ as $j \to \infty$. Thus $p \in \hat{F}(T) = F$. This means that $\{T_n\}$ satisfies the condition (Z). This completes our proof.

Remark 4.4. In $\S6$, we deal with an example of a sequence of mappings which satisfies the condition (B).

5. W-mappings

In this section, we apply results in §3 and §4 to the problem of approximating a common fixed point of a countable family of relatively nonexpansive mappings. Let E be a smooth, strictly convex, and reflexive Banach space and C a nonempty closed convex subset of E. Let $\{T_n\}$ be a sequence of mappings of C into E and $\{\alpha_k^n\}$ a sequence in (0, 1) with $n \in \mathbb{N}$ and $k = 1, \ldots, n$. For each $n \in \mathbb{N}$ we define

a finite family $\{U_k^n : k = 1, ..., n+1\}$ of mappings as follows:

$$U_{n+1}^{n} = I,$$

$$U_{n}^{n} = \Pi_{C} J^{-1} (\alpha_{n}^{n} J + (1 - \alpha_{n}^{n}) JT_{n}),$$

$$U_{n-1}^{n} = \Pi_{C} J^{-1} (\alpha_{n-1}^{n} J + (1 - \alpha_{n-1}^{n}) JT_{n-1} U_{n}^{n}),$$

$$\vdots$$

$$U_{k}^{n} = \Pi_{C} J^{-1} (\alpha_{k}^{n} J + (1 - \alpha_{k}^{n}) JT_{k} U_{k+1}^{n}),$$

$$\vdots$$

$$U_{1}^{n} = \Pi_{C} J^{-1} (\alpha_{1}^{n} J + (1 - \alpha_{1}^{n}) JT_{1} U_{2}^{n}),$$
(5.1)

for $n \in \mathbb{N}$, where *I* is the identity mapping on *C*. In this case a mapping U_1^n is denoted by W_n and we say that $W_n: C \to C$ is the *W*-mapping generated by $T_n, T_{n-1}, \ldots, T_1$ and $\alpha_n^n, \alpha_{n-1}^n, \ldots, \alpha_1^n$ for $n \in \mathbb{N}$. Takahashi [26] discussed the problem of approximating a common fixed point of a family of nonexpansive mappings by using W-mappings; see also [28], [15] and [21].

We begin with a property of the fixed point set of U_k^n above.

Lemma 5.1. Let *E* be a uniformly convex and uniformly smooth Banach space and *C* a nonempty closed convex subset of *E*. Let $\{T_n\}$ be a sequence of mappings of type (*r*) of *C* into *E* such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Let $\{\alpha_k^n\}$ be a sequence in (0,1) with $n \in \mathbb{N}$ and $k = 1, \ldots, n$. Let $U_k^n : C \to C$ be defined by (5.1) for $n \in \mathbb{N}$ and $k = 1, \ldots, n+1$. Then

$$F(U_k^n) = F(T_k U_{k+1}^n) = F(T_k) \cap F(U_{k+1}^n) = \bigcap_{i=k}^n F(T_i),$$
(5.2)

 $T_k U_{k+1}^n$ are of type (r) and U_k^n are of type (sr) for all $n \in \mathbb{N}$ and $k = 1, \ldots, n$.

Proof. Let $n \in \mathbb{N}$ be fixed. Since T_n is of type (r), we see that (5.2) holds for k = n and U_n^n is of type (sr) by Corollary 2.10. Assume that (5.2) holds and U_k^n is of type (sr) for some $k \in \{2, \ldots, n\}$. Since T_{k-1} is of type (r), U_k^n is of type (sr), and

$$F(T_{k-1}) \cap F(U_k^n) = F(T_{k-1}) \cap \bigcap_{i=k}^n F(T_i) = \bigcap_{i=k-1}^n F(T_i) \supset F \neq \emptyset,$$

it follows from Lemma 2.7 that

$$F(T_{k-1}U_k^n) = F(T_{k-1}) \cap F(U_k^n) = \bigcap_{i=k-1}^n F(T_i)$$

and $T_{k-1}U_k^n$ is of type (r). Thus Corollary 2.10 implies that (5.2) holds for k-1 and U_{k-1}^n is of type (sr). By induction on k, we obtain the desired result.

Using Lemma 5.1, we can prove the following:

Lemma 5.2. Let E, C, $\{T_n\}$, F, $\{\alpha_k^n\}$, and $\{U_k^n\}$ be as in Lemma 5.1. Define $V_k^n : C \to E$ by

$$V_k^n = J^{-1}(\alpha_k^n J + (1 - \alpha_k^n) J T_k U_{k+1}^n)$$
(5.3)

for $n \in \mathbb{N}$ and k = 1, ..., n. Suppose that $0 < \inf\{\alpha_k^n : n \in \mathbb{N}, n \ge k\}$ for every $k \in \mathbb{N}$. Then the following hold:

- (1) $\{U_k^n\}_{n=k}^{\infty}$ and $\{V_k^n\}_{n=k}^{\infty}$ are strongly relatively nonexpansive sequences for every $k \in \mathbb{N}$.
- (2) If T_n is relatively nonexpansive for every $n \in \mathbb{N}$ and $\sup\{\alpha_k^n : n \in \mathbb{N}, n \geq 0\}$ $k \} < 1$ for every $k \in \mathbb{N}$, then $\{U_1^n\}$ and $\{V_1^n\}$ satisfy the condition (Z).

Proof. We first prove (1). Let $k \in \mathbb{N}$ be fixed. From Lemma 5.1, we see that

$$\bigcap_{n=k}^{\infty} F(U_k^n) = \bigcap_{n=k}^{\infty} F(T_k U_{k+1}^n) = \bigcap_{n=k}^{\infty} \bigcap_{i=k}^n F(T_i) = \bigcap_{n=k}^{\infty} F(T_n) \supset F \neq \emptyset$$
(5.4)

and $T_k U_{k+1}^n$ is of type (r) for every $n = k, k+1, \ldots$ Thus Theorem 3.8 implies that $\{V_k^n\}_{n=k}^{\infty}$ is a strongly relatively nonexpansive sequence and hence $\{U_k^n\}_{n=k}^{\infty}$ is also a strongly relatively nonexpansive sequence by Corollary 3.5.

We next prove (2). Let $\{x_n\}$ be a bounded sequence in C with $||x_n - U_1^n x_n||$ $\rightarrow 0$ and $x_{n_i} \rightarrow p$. Then (5.4) and the relative nonexpansiveness of each T_n imply that

$$\bigcap_{n=1}^{\infty} F(U_1^n) = \bigcap_{n=1}^{\infty} F(T_n) = \bigcap_{n=1}^{\infty} \hat{F}(T_n).$$

Thus, to prove that $\{U_1^n\}$ satisfies the condition (Z), it is sufficient to show that $p \in \bigcap_{n=1}^{\infty} \hat{F}(T_n)$. The proof is given by induction on n. By assumption, we have $\{x_n\} \in F(\{U_1^n\})$. Note that (5.4) ensures that

$$\bigcap_{n=1}^{\infty} F(T_1 U_2^n) = \bigcap_{n=1}^{\infty} F(T_n) = F \neq \emptyset.$$

Then Corollary 3.9 implies that $\tilde{F}(\{U_1^n\}) = \tilde{F}(\{T_1U_2^n\})$. Since $\{U_2^n\}$ is a strongly relatively nonexpansive sequence and

$$F(T_1) \cap \bigcap_{n=2}^{\infty} F(U_2^n) = F(T_1) \cap \bigcap_{n=2}^{\infty} F(T_n) = F \neq \emptyset$$

by (5.4), Corollary 3.7 implies that $\tilde{F}(\{T_1U_2^n\}) \subset \tilde{F}(\{U_2^n\})$. Thus we obtain

$$\tilde{F}(\{U_1^n\}) = \tilde{F}(\{T_1U_2^n\}) \subset \tilde{F}(\{U_2^n\}).$$
(5.5)

Hence we have

$$||U_2^n x_n - T_1 U_2^n x_n|| \le ||U_2^n x_n - x_n|| + ||x_n - T_1 U_2^n x_n|| \to 0$$

and

$$U_2^{n_i} x_{n_i} = (U_2^{n_i} x_{n_i} - x_{n_i}) + x_{n_i} \rightharpoonup p.$$

Therefore $p \in \hat{F}(T_1)$. We also know that $\{x_n\}_{n=2}^{\infty} \in \tilde{F}(\{U_2^n\}_{n=2}^{\infty})$. Suppose that $p \in \hat{F}(T_{k-1})$ and $\{x_n\}_{n=k}^{\infty} \in \tilde{F}(\{U_k^n\}_{n=k}^{\infty})$ for some $k = 2, 3, \ldots$. By (5.4), we have ∞

$$\bigcap_{n=k} F(T_k U_{k+1}^n) \supset F \neq \emptyset$$

and

$$F(T_k) \cap \bigcap_{n=k+1}^{\infty} F(U_{k+1}^n) = \bigcap_{n=k}^{\infty} F(T_n) \supset F \neq \emptyset.$$

As in the proof of (5.5), Corollaries 3.7 and 3.9 ensure that

$$\tilde{F}(\{U_k^n\}_{n=k}^\infty) = \tilde{F}\left(\{T_k U_{k+1}^n\}_{n=k}^\infty\right) \subset \tilde{F}\left(\{U_{k+1}^n\}_{n=k}^\infty\right).$$

This gives us that

$$||U_{k+1}^n x_n - T_k U_{k+1}^n x_n|| \le ||U_{k+1}^n x_n - x_n|| + ||x_n - T_k U_{k+1}^n x_n|| \to 0$$

and

$$U_{k+1}^{n_i} x_{n_i} = \left(U_{k+1}^{n_i} x_{n_i} - x_{n_i} \right) + x_{n_i} \rightharpoonup p$$

and hence we obtain $p \in \hat{F}(T_k)$. We also know that

$$\{x_n\}_{n=k+1}^{\infty} \in \tilde{F}\left(\{U_{k+1}^n\}_{n=k+1}^{\infty}\right)$$

Therefore we conclude that $p \in \bigcap_{n=1}^{\infty} \hat{F}(T_n)$.

We can similarly prove that $\{V_1^n\}$ satisfies the condition (Z). This completes the proof. $\hfill \Box$

Using Theorem 4.1 and Lemmas 5.1 and 5.2, we immediately get the following:

Theorem 5.3. Let E be a uniformly convex and uniformly smooth Banach space and C a nonempty closed convex subset of E. Let $\{T_n\}$ be a sequence of relatively nonexpansive mappings of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Let $\{\alpha_k^n\}$ be a sequence in (0,1) with $n \in \mathbb{N}$ and $k = 1, \ldots, n$ such that

$$0 < \inf\{\alpha_k^n : n \in \mathbb{N}, n \ge k\} \le \sup\{\alpha_k^n : n \in \mathbb{N}, n \ge k\} < 1$$

for every $k \in \mathbb{N}$. Let $W_n \colon C \to C$ be the W-mapping generated by $T_n, T_{n-1}, \ldots, T_1$ and $\alpha_n^n, \alpha_{n-1}^n, \ldots, \alpha_1^n$ for $n \in \mathbb{N}$. Let $\{x_n\}$ be a sequence in C defined by $x_1 = x \in C$ and $x_{n+1} = W_n x_n$ for $n \in \mathbb{N}$.

- (1) If C is compact or the interior of F is nonempty, then $\{x_n\}$ converges strongly to $v \in F$, where $v = \lim_{n \to \infty} \prod_F x_n$.
- (2) If the duality mapping J is weakly sequentially continuous, then $\{x_n\}$ converges weakly to $v \in F$, where $v = \lim_{n \to \infty} \prod_F x_n$.

Proof. It is clear from Lemma 5.1 that $F = \bigcap_{n=1}^{\infty} F(W_n)$. Lemma 5.2 shows that $\{W_n\}$ is a strongly relatively nonexpansive sequence and satisfies the condition (Z). Thus Theorem 4.1 implies the conclusion.

The following two results are known:

Theorem 5.4 ([4, Theorem 4.2]). Let E be a uniformly convex and smooth Banach space and C a nonempty closed convex subset of E. Let $\{T_n\}$ be a sequence of mappings of type (r) of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty and $\{T_n\}$ satisfies the condition (A). Let $x \in E$ and let $\{x_n\}$ be the sequence in Cdefined by $x_1 = \prod_C x$ and

$$\begin{cases} H_n = \{ z \in C : \phi(z, T_n x_n) \le \phi(z, x_n) \}, \\ W_n = \{ z \in C : \langle x_n - z, Jx - Jx_n \rangle \ge 0 \}, \\ x_{n+1} = \Pi_{H_n \cap W_n}(x) \end{cases}$$

for $n \in \mathbb{N}$. Then $\{x_n\}$ converges strongly to $\Pi_F(x)$.

Theorem 5.5 ([4, Theorem 4.4]). Let E be a uniformly convex and smooth Banach space and C a nonempty closed convex subset of E. Let $\{T_n\}$ be a sequence of mappings of type (r) of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty and $\{T_n\}$ satisfies the condition (A). Let $x \in E$ and let $\{x_n\}$ be the sequence in Cdefined by $x_1 = \prod_C x \in C = C_0$ and

$$\begin{cases} C_n = \{ z \in C_{n-1} : \phi(z, T_n x_n) \le \phi(z, x_n) \}, \\ x_{n+1} = \prod_{C_n} (x) \end{cases}$$

for $n \in \mathbb{N}$. Then $\{x_n\}$ converges strongly to $\Pi_F(x)$.

Using Theorems 5.4 and 5.5, we also obtain the following strong convergence theorem:

Theorem 5.6. Let $E, C, \{T_n\}, F, and \{\alpha_k^n\}$ be as in Theorem 5.3. Let U_k^n be a mapping defined by (5.1) for $n \in \mathbb{N}$ and $k = 1, \ldots, n + 1$. Let $V_1^n : C \to E$ be defined by (5.3) for $n \in \mathbb{N}$. Let $x \in E$ and let $\{x_n\}$ be the sequence in E defined by $x_1 = \prod_C x$ and

$$\begin{cases} H_n = \{ z \in C : \phi(z, V_1^n x_n) \le \phi(z, x_n) \}, \\ W_n = \{ z \in C : \langle x_n - z, Jx - Jx_n \rangle \ge 0 \}, \\ x_{n+1} = \Pi_{H_n \cap W_n}(x) \end{cases}$$

for $n \in \mathbb{N}$. Let $y \in E$ and let $\{y_n\}$ be the sequence in E defined by $y_1 = \prod_C y \in C = C_0$ and

$$\begin{cases} C_n = \{ z \in C_{n-1} : \phi(z, V_1^n y_n) \le \phi(z, y_n) \}, \\ y_{n+1} = \Pi_{C_n}(y) \end{cases}$$

for $n \in \mathbb{N}$. Then $\{x_n\}$ and $\{y_n\}$ converge strongly to $\Pi_F(x)$ and $\Pi_F(y)$, respectively.

Proof. Lemma 5.1 shows that $F(T_1U_2^n) = \bigcap_{i=1}^n F(T_i)$ and $T_1U_2^n$ is of type (r). Thus, by Lemma 2.9, we see that $F(V_1^n) = F(T_1U_2^n)$ and V_1^n is of type (r) for

218

every $n \in \mathbb{N}$, and hence

$$\bigcap_{n=1}^{\infty} F(V_1^n) = \bigcap_{n=1}^{\infty} \bigcap_{i=1}^n F(T_i) = F \neq \emptyset.$$

It follows from Lemmas 4.3 and 5.2 that $\{V_1^n\}$ satisfies the condition (A). Therefore, from Theorems 5.4 and 5.5, we get the conclusion.

6. Convex combinations of relatively nonexpansive mappings

Finally, we discuss another method of approximating a common fixed point of a countable family of relatively nonexpansive mappings.

We begin with the following lemma:

Lemma 6.1. Let *E* be a uniformly convex and uniformly smooth Banach space and *C* a nonempty subset of *E*. Let $\{T_n\}$ be a sequence of mappings of type (r) of *C* into *E* such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Let $\{\lambda_k^n\}$ be a sequence in (0,1) with $n \in \mathbb{N}$ and $k = 0, 1, \ldots, n$ such that $\sum_{k=0}^{n} \lambda_k^n = 1$ for every $n \in \mathbb{N}$ and $\inf_{n \in \mathbb{N}} \lambda_0^n > 0$. For each n, let $V_n : C \to E$ be defined by

$$V_n = J^{-1} \sum_{k=0}^n \lambda_k^n J T_k,$$
 (6.1)

where T_0 is the identity mapping on C. Then $\{V_n\}$ is a strongly relatively nonexpansive sequence.

Proof. By the definition of V_n , we have

$$V_{n} = J^{-1} \left(\frac{\lambda_{0}^{n}}{2} J + \frac{\lambda_{0}^{n}}{2} J + \sum_{k=1}^{n} \lambda_{k}^{n} J T_{k} \right)$$

= $J^{-1} \left(\frac{\lambda_{0}^{n}}{2} J + \left(1 - \frac{\lambda_{0}^{n}}{2} \right) J J^{-1} \left(\frac{\lambda_{0}^{n}}{2 - \lambda_{0}^{n}} J + \sum_{k=1}^{n} \frac{2\lambda_{k}^{n}}{2 - \lambda_{0}^{n}} J T_{k} \right) \right)$

For each $n \in \mathbb{N}$, define $V'_n \colon C \to E$ by

$$V'_{n} = J^{-1} \left(\frac{\lambda_{0}^{n}}{2 - \lambda_{0}^{n}} J + \sum_{k=1}^{n} \frac{2\lambda_{k}^{n}}{2 - \lambda_{0}^{n}} JT_{k} \right).$$

Then we see that $F(V'_n) = \bigcap_{k=1}^n F(T_k)$ and V'_n is of type (r) by Lemma 2.9. Thus

$$\bigcap_{n=1}^{\infty} F(V'_n) = \bigcap_{n=1}^{\infty} \bigcap_{k=1}^{n} F(T_k) = F \neq \emptyset.$$

Therefore Theorem 3.8 implies that $\{V_n\}$ is a strongly relatively nonexpansive sequence.

For the following result, see [19, Theorem 3.3].

Lemma 6.2 ([19]). Let E be a uniformly convex and uniformly smooth Banach space and C a nonempty closed convex subset of E. Let $\{T_n\}$ be a sequence of relatively nonexpansive mappings of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty, $\{t_n\}$ a sequence in (0,1) such that $\sum_{n=1}^{\infty} t_n = 1$, and $\{\alpha_n\}$ a sequence in (0,1). Then the mapping $U: C \to E$ defined by

$$Ux = J^{-1} \sum_{n=1}^{\infty} t_n (\alpha_n Jx + (1 - \alpha_n) JT_n x)$$

for $x \in C$ is a relatively nonexpansive mapping and F(U) = F.

Using Lemma 6.2, we obtain the following:

Lemma 6.3. Let $E, C, \{T_n\}$, and F be as in Lemma 6.2. Let T_0 be the identity mapping on C and $\{\lambda_n\}_{n=0}^{\infty}$ a sequence in (0,1) such that $\sum_{n=0}^{\infty} \lambda_n = 1$. Let $V: C \to E$ be defined by

$$Vx = J^{-1} \sum_{n=0}^{\infty} \lambda_n J T_n x \tag{6.2}$$

for $x \in C$. Then V is relatively nonexpansive and F(V) = F.

Proof. Let $x \in C$ be fixed. Since each T_n is of type (r), it follows from (2.3) that $(||u|| - ||T_n x||)^2 \leq \phi(u, T_n x) \leq \phi(u, x)$ for all $u \in F$ and $n \in \mathbb{N}$. Therefore $\sup_{n \in \mathbb{N}} ||JT_n x||$ is finite and hence Vx is well-defined. Taking into account $1 - \lambda_0 = \sum_{n=1}^{\infty} \lambda_n$, we have

$$J^{-1}\sum_{n=1}^{\infty} \frac{\lambda_n}{1-\lambda_0} (\lambda_0 Jx + (1-\lambda_0) JT_n x) = J^{-1} \left(\frac{\lambda_0}{1-\lambda_0} Jx \sum_{n=1}^{\infty} \lambda_n + \sum_{n=1}^{\infty} \lambda_n JT_n x \right)$$
$$= J^{-1} \sum_{n=0}^{\infty} \lambda_n JT_n x = Vx.$$

It is clear that $\sum_{n=1}^{\infty} \lambda_n / (1 - \lambda_0) = 1$ and $0 < \lambda_n / (1 - \lambda_0) < 1$ for every $n \in \mathbb{N}$. Lemma 6.2 implies the conclusion.

By using the results above together with Theorem 4.1 and Lemma 4.3, the following theorem is proved.

Theorem 6.4. Let *E* be a uniformly convex and uniformly smooth Banach space and *C* a nonempty closed convex subset of *E*. Let $\{T_n\}$ be a sequence of relatively nonexpansive mappings of *C* into *E* such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Let $\{\lambda_k^n\}$ be a sequence in (0,1) with $n \in \mathbb{N}$ and $k = 0, 1, \ldots, n$ such that $\sum_{k=0}^n \lambda_k^n = 1$ for every $n \in \mathbb{N}$, $\inf_{n \in \mathbb{N}} \lambda_0^n > 0$, and $\sum_{k=0}^n |\lambda_k - \lambda_k^n| \to 0$ as $n \to \infty$ for some sequence $\{\lambda_k\}_{k=0}^{\infty}$ in (0,1). Let T_0 be the identity mapping on *C*. For each *n*, let $V_n: C \to E$ be defined by (6.1). Let $\{x_n\}$ be a sequence in *C* defined by $x_1 = x \in C$ and $x_{n+1} = \prod_C V_n x_n$ for $n \in \mathbb{N}$.

(1) If C is compact or the interior of F is nonempty, then $\{x_n\}$ converges strongly to $v \in F$, where $v = \lim_{n \to \infty} \prod_F x_n$.

(2) If the duality mapping J is weakly sequentially continuous, then $\{x_n\}$ converges weakly to $v \in F$, where $v = \lim_{n \to \infty} \prod_F x_n$.

Proof. Lemmas 2.7 and 2.9 show that $F(\Pi_C V_n) = F(\Pi_C) \cap F(V_n) = \bigcap_{k=1}^n F(T_k)$ and hence

$$\bigcap_{n=1}^{\infty} F(\Pi_C V_n) = \bigcap_{n=1}^{\infty} F(V_n) = \bigcap_{n=1}^{\infty} \bigcap_{k=1}^{n} F(T_k) = F \neq \emptyset.$$

Thus Lemma 6.1 and Corollary 3.5 imply that $\{\Pi_C V_n\}$ is a strongly relatively nonexpansive sequence. Let us show that $\{\Pi_C V_n\}$ satisfies the condition (B). Note that $\sum_{k=0}^{\infty} \lambda_k = 1$. Indeed, clearly we have

$$\lambda_k^n - |\lambda_k - \lambda_k^n| \le \lambda_k \le \lambda_k^n + |\lambda_k - \lambda_k^n|,$$

so that

$$\sum_{k=0}^{n} \lambda_k^n - \sum_{k=0}^{n} |\lambda_k - \lambda_k^n| \le \sum_{k=0}^{n} \lambda_k \le \sum_{k=0}^{n} \lambda_k^n + \sum_{k=0}^{n} |\lambda_k - \lambda_k^n|$$

for every $n \in \mathbb{N}$. Taking the limit $n \to \infty$, we obtain $\sum_{k=0}^{\infty} \lambda_k = 1$. Let B be a bounded subset of C. Since F is nonempty and each T_n is of type (r), it follows from (2.3) that

$$(\|u\| - \|T_n y\|)^2 \le \phi(u, T_n y) \le \phi(u, y) \le (\|u\| + \|y\|)^2$$

for all $y \in B$, $u \in F$, and $n \in \mathbb{N}$. Therefore $M = \sup\{||T_n y|| : n \in \mathbb{N}, y \in B\}$ is finite. Define a mapping $V: C \to E$ by (6.2). Then we have

$$\|JVy - JV_ny\| = \left\|\sum_{k=0}^n (\lambda_k - \lambda_k^n) JT_ky + \sum_{k=n+1}^\infty \lambda_k JT_ky\right\|$$
$$\leq \sum_{k=0}^n |\lambda_k - \lambda_k^n| \|JT_ky\| + \sum_{k=n+1}^\infty \lambda_k \|JT_ky\|$$
$$\leq \left(\sum_{k=0}^n |\lambda_k - \lambda_k^n| + \sum_{k=n+1}^\infty \lambda_k\right) M.$$

Therefore $\lim_{n\to\infty}\sup_{y\in B}\|JVy-JV_ny\|=0.$ Since E^* is uniformly smooth, we have

$$\lim_{n \to \infty} \sup_{y \in B} \|J^{-1}JVy - J^{-1}JV_ny\| = 0.$$

By Lemma 2.5, we see that Π_C is uniformly norm-to-norm continuous on every bounded set. Thus we obtain

$$\lim_{n \to \infty} \sup_{y \in B} \left\| \Pi_C V y - \Pi_C V_n y \right\| = 0.$$

On the other hand, Lemma 6.3 shows that V is relatively nonexpansive and F(V) = F. Since $F(\Pi_C) \cap F(V) = F \neq \emptyset$ and Π_C is strongly relatively nonexpansive, it follows from Lemma 2.8 that $F(\Pi_C V) = \hat{F}(\Pi_C V) = F(\Pi_C) \cap F(V) = F$.

This means that $\{\Pi_C V_n\}$ satisfies the condition (B). Therefore, by Theorem 4.1 and Lemma 4.3, we obtain the conclusion.

A direct consequence of Theorem 6.4 is as follows; see [2].

Corollary 6.5. Let E be a uniformly convex and uniformly smooth Banach space and C a nonempty closed convex subset of E. Let $\{T_n\}$ be a sequence of relatively nonexpansive mappings of C into E such that $F = \bigcap_{n=1}^{\infty} F(T_n)$ is nonempty. Let $\{V_n\}$ be the sequence of mappings of C into E defined by

$$V_{1} = J^{-1} \left(\frac{1}{2} J + \frac{1}{2} J T_{1} \right),$$

$$V_{2} = J^{-1} \left(\frac{1}{2} J + \frac{1}{4} J T_{1} + \frac{1}{4} J T_{2} \right),$$

$$\vdots$$

$$V_{n} = J^{-1} \left(\frac{1}{2} J + \frac{1}{4} J T_{1} + \dots + \frac{1}{2^{n}} J T_{n-1} + \frac{1}{2^{n}} J T_{n} \right),$$

$$\vdots$$

and let $\{x_n\}$ be a sequence defined by $x_1 = x \in C$ and $x_{n+1} = \prod_C V_n x_n$ for $n \in \mathbb{N}$.

- (1) If C is compact or the interior of F is nonempty, then $\{x_n\}$ converges strongly to $v \in F$, where $v = \lim_{n \to \infty} \prod_F x_n$.
- (2) If the duality mapping J is weakly sequentially continuous, then $\{x_n\}$ converges weakly to $v \in F$, where $v = \lim_{n \to \infty} \prod_F x_n$.

Proof. Let $\{\lambda_k^n\}$ be a sequence with $n \in \mathbb{N}$ and $k = 0, 1, \dots, n$ defined by

$$\lambda_k^n = \begin{cases} 1/2^{k+1}, & k = 0, 1, \dots, n-1, \\ 1/2^n, & k = n. \end{cases}$$

Then it is clear that $\inf_{n\in\mathbb{N}}\lambda_0^n = 1/2 > 0$, $\sum_{k=0}^n \lambda_k^n = 1$ for every $n\in\mathbb{N}$ and

$$\sum_{k=0}^{n} \left| \frac{1}{2^{k+1}} - \lambda_k^n \right| = \left| \frac{1}{2^{n+1}} - \frac{1}{2^n} \right| = \frac{1}{2^{n+1}} \to 0.$$

Thus Theorem 6.4 implies the conclusion.

It is easy to verify that $\{V_n\}$ in Theorem 6.4 also satisfies the condition (B). Consequently, we obtain the following strong convergence theorem by using Theorems 5.4 and 5.5 together with Lemmas 2.9 and 4.3.

Theorem 6.6. Let $E, C, \{T_n\}, F, \{\lambda_k^n\}, T_0, and \{V_n\}$ be as in Theorem 6.4. Let $x \in E$ and let $\{x_n\}$ be the sequence in E defined by $x_1 = \prod_C x$ and

$$\begin{cases} H_n = \{z \in C : \phi(z, V_n x_n) \le \phi(z, x_n)\},\\ W_n = \{z \in C : \langle x_n - z, Jx - Jx_n \rangle \ge 0\},\\ x_{n+1} = \Pi_{H_n \cap W_n}(x) \end{cases}$$

222

JFPTA

for $n \in \mathbb{N}$. Let $y \in E$ and let $\{y_n\}$ be the sequence in E defined by $y_1 = \prod_C y \in C = C_0$ and

$$\begin{cases} C_n = \{ z \in C_{n-1} : \phi(z, V_n y_n) \le \phi(z, y_n) \}, \\ y_{n+1} = \prod_{C_n} (y) \end{cases}$$

for $n \in \mathbb{N}$. Then $\{x_n\}$ and $\{y_n\}$ converge strongly to $\Pi_F(x)$ and $\Pi_F(y)$, respectively.

Acknowledgements

The authors would like to thank the editor and the anonymous referee for their valuable comments and suggestions.

References

- Y. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure Appl. Math. 178, Dekker, New York, 1996, 15–50.
- [2] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67 (2007), 2350–2360.
- [3] K. Aoyama, Y. Kimura, W. Takahashi, and M. Toyoda, Strongly nonexpansive sequences and their applications in Banach spaces. In: Fixed Point Theory and its Applications, Yokohama Publ., Yokohama, 2008, 1–18.
- [4] K. Aoyama, F. Kohsaka, and W. Takahashi, Strong convergence theorems by shrinking and hybrid projection methods for relatively nonexpansive mappings in Banach spaces. In: Nonlinear Analysis and Convex Analysis, Yokohama Publ., Yokohama, 2009, 7–26.
- [5] K. Aoyama and W. Takahashi, Strong convergence theorems for a family of relatively nonexpansive mappings in Banach spaces. Fixed Point Theory 8 (2007), 143–160.
- [6] R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3 (1977), 459–470.
- [7] D. Butnariu, S. Reich, and A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces. J. Appl. Anal. 7 (2001), 151–174.
- [8] Y. Censor and S. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. Optimization 37 (1996), 323–339.
- [9] J. Diestel, Geometry of Banach Spaces—Selected Topics. Lecture Notes in Math. 485, Springer, Berlin, 1975.
- [10] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*. Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, Cambridge, 1990.
- [11] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Monogr. Textbooks Pure Appl. Math. 83, Dekker, New York, 1984.
- [12] S. Kamimura, The proximal point algorithm in a Banach space. In: Nonlinear Analysis and Convex Analysis, Yokohama Publ., Yokohama, 2004, 143–148.

- [13] S. Kamimura, F. Kohsaka, and W. Takahashi, Weak and strong convergence theorems for maximal monotone operators in a Banach space. Set-Valued Anal. 12 (2004), 417–429.
- [14] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13 (2002), 938–945.
- [15] Y. Kimura and W. Takahashi, Weak convergence to common fixed points of countable nonexpansive mappings and its applications. J. Korean Math. Soc. 38 (2001), 1275– 1284.
- [16] F. Kohsaka and W. Takahashi, Strong convergence of an iterative sequence for maximal monotone operators in a Banach space. Abstr. Appl. Anal. 2004, 239–249.
- [17] F. Kohsaka and W. Takahashi, Block iterative methods for a finite family of relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2007, art. ID 21972, 18 pp.
- [18] F. Kohsaka and W. Takahashi, Approximating common fixed points of countable families of strongly nonexpansive mappings. Nonlinear Stud. 14 (2007), 219–234.
- [19] F. Kohsaka and W. Takahashi, The set of common fixed points of an infinite family of relatively nonexpansive mappings. In: Banach and Function Spaces II, Yokohama Publ., Yokohama, 2008, 361–373.
- [20] F. Kohsaka and W. Takahashi, Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces. SIAM J. Optim. 19 (2008), 824–835.
- [21] P. K. F. Kuhfittig, Common fixed points of nonexpansive mappings by iteration. Pacific J. Math. 97 (1981), 137–139.
- [22] S. Matsushita and W. Takahashi, Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2004, 37–47.
- [23] S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space. J. Approx. Theory 134 (2005), 257–266.
- [24] S. Reich, A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure Appl. Math. 178, Dekker, New York, 1996, 313–318.
- [25] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149 (1970), 75–88.
- [26] W. Takahashi, Weak and strong convergence theorems for families of nonexpansive mappings and their applications. In: Proceedings of Workshop on Fixed Point Theory (Kazimierz Dolny, 1997), Ann. Univ. Mariae Curie-Skłodowska Sect. A 51 (1997), 277–292.
- [27] W. Takahashi, Nonlinear Functional Analysis. Yokohama Publ., Yokohama, 2000.
- [28] W. Takahashi and K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems. Math. Comput. Modelling 32 (2000), 1463–1471.
- [29] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118 (2003), 417–428.
- [30] C. Zălinescu, On uniformly convex functions. J. Math. Anal. Appl. 95 (1983), 344– 374.

Koji Aoyama Department of Economics Chiba University Yayoi-cho, Inage-ku, Chiba-shi Chiba 263-8522, Japan e-mail: aoyama@le.chiba-u.ac.jp

Fumiaki Kohsaka Department of Computer Science and Intelligent Systems Oita University Dannoharu, Oita-shi Oita 870-1192, Japan e-mail: f-kohsaka@csis.oita-u.ac.jp

Wataru Takahashi Department of Mathematical and Computing Sciences Tokyo Institute of Technology Ookayama, Meguro-ku Tokyo 152-8552, Japan e-mail: wataru@is.titech.ac.jp

> To access this journal online: www.birkhauser.ch/jfpta