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1. Introduction

Let E be a smooth Banach space and let ¢: E x E — R be a function defined
by ¢(z,y) = ||z||* — 2(x, Jy) + ||y|* for 2,y € E, where J is the normalized
duality mapping of E. Let C' be a nonempty subset of E and let T' be a mapping
of C into E. The set of fixed points of T is denoted by F(T). A mapping T is
said to be relatively nonexpansive [7,22,23] if it satisfies the following conditions:
(i) F(T) # 0; (i) ¢(u,Tx) < ¢(u,z) for all w € F(T) and z € C; (ili) F(T) =
E(T), where F(T) is the set of asymptotic fixed points of T} see [8,24].

The class of relatively nonexpansive mappings includes all resolvents of max-
imal monotone operators with zero points on a uniformly convex and uniformly
smooth Banach space and all nonexpansive mappings with fixed points in a Hilbert
space; see, for example, [23]. There are various results concerning that class: Mat-
sushita and Takahashi [22,23] discussed the problem of finding a fixed point of a
relatively nonexpansive mapping in a Banach space. Kohsaka and Takahashi [17]
proved weak convergence theorems for approximating a common asymptotic fixed
point of a finite family of relatively nonexpansive mappings; see also [4, 5].
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On the other hand, Reich [24] introduced the concept of strong nonexpansive-
ness for relatively nonexpansive mappings, which is deeply related to the strong
nonexpansiveness for nonexpansive mappings due to Bruck and Reich [6].

Censor and Reich [8] also introduced a convex combination based on Bregman
distance and obtained several results for approximating a common asymptotic
fixed point of a family of paracontractions in a finite-dimensional space. Using
the convex combination, some results on proximal-type algorithms for a maximal
monotone operator in a Banach space were obtained by Kamimura, Kohsaka, and
Takahashi [13] and Kohsaka and Takahashi [16].

In this paper, motivated by all the literature mentioned above, we introduce
the concept of a strongly relatively nonexpansive sequence in a Banach space and
investigate its properties. Then we consider an iterative sequence {z,} defined by
21 = x € C and 241 = Tz, for n € N, where {7} is a strongly relatively
nonexpansive sequence of self-mappings of C' and z is an arbitrary point in C. In
§4 we give a condition on {7} under which {z,} converges weakly or strongly
to a common fixed point of {T},}. In §5 and §6, using this result, we prove weak
and strong convergence theorems for a countable family of relatively nonexpansive
mappings.

2. Preliminaries

Throughout the present paper, E denotes a real Banach space with norm || - ||, £*
the dual of E, (x,2*) the value of 2* € E* at x € E, N the set of positive integers,
and R the set of real numbers. The norm of E* is also denoted by || - || for the sake
of convenience. Strong convergence of {z,} to € E is denoted by z, — x and
weak convergence by x, — x, where {x,} is a sequence in E. The (normalized)
duality mapping of F is denoted by J, that is, it is a set-valued mapping of E into
E* defined by
Jr={z" € B*: (z,2") = |[«|* = [[«"|*}

for x € E. It is known that ||y||? > ||z]|? + 2(y — , ) for all x,y € FE and j € Ju;
see, for example, [27]. Replacing y by (z + y)/2 in this inequality, we see that

2
T4y y—x . .
2| = el 21550 ) = i) (2.)

for all z,y € F and j € Jx.
Let Sg denote the unit sphere of E, that is, Sg = {x € E : ||z|| = 1}. The
norm || - || of E is said to be Gdteaux differentiable if the limit

t —
-z + iyl —
t—0 t

(2.2)
exists for all z,y € Sg. In this case F is said to be smooth and it is known that the
duality mapping J of E is single-valued. The norm of F is said to be uniformly
Gateaux differentiable (resp. Fréchet differentiable) if for each y € Sg (resp. for

each z € Sg) the limit (2.2) is attained uniformly for x € Sg (resp. uniformly for
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y € Sg). In this case it is known that J is uniformly norm-to-weak* continuous on
each bounded subset of F (resp. norm-to-norm continuous). A Banach space F is
said to be uniformly smooth if the limit (2.2) is attained uniformly for z,y € Sg.
In this case it is known that J is uniformly norm-to-norm continuous on each
bounded subset of F; see [27] for more details.

A Banach space FE is said to be strictly convex if x,y € Sg and x # y imply
lz + y|| < 2. A Banach space E is said to be uniformly convez if for any € > 0
there exists § > 0 such that z,y € Sg and || — y|| > € imply ||z + y||/2 < 1 —.
It is known that the duality mapping J of E is single-valued and one-to-one if
E is smooth and strictly convex; J is surjective if E is reflexive; E is reflexive
and strictly convex if F is uniformly convex; E is uniformly smooth if and only
if E* is uniformly convex; see [27] for more details. It is also known that if E is
uniformly convex, then the function |- ||? is uniformly convex on every bounded
convex subset B of F, that is, for each € > 0, there is § > 0 such that

Az + (1= Nyll* < All® + (1 = Nllyll* = A1 = X2)d

for all A € [0,1] and x,y € B with ||z — y|| > €; see, for example, [9,30]. This fact
implies the following (see [3]).

Lemma 2.1. Let {x,} and {y,} be two bounded sequences in a uniformly con-
vex Banach space E and {\,} a sequence in [0,1] such that liminf, .., A, > 0.
Suppose that

/\n”xn”2 + (1 - /\n)||ynH2 — Anzn + (1 - /\n)yn||2 — 0.
Then (1 — A\p)||xn — ynll — 0.

Let E be a smooth Banach space. We deal with a function ¢: E x E — R
defined by
$(a,y) = llz|* - 2(z, Jy) + |yl
for z,y € E. This function was studied in [1]. From the definition of ¢, it is clear
that
(Il = llyID? < d(z,y) < (2l + [lyl)? (2.3)
and
o(x,y) = ¢(x,2) + ¢(2,y) + 2(x — 2, Jz — Jy) (2.4)
for all z,y, z € E. The following result is known:

Lemma 2.2 ([14]). Let E be a uniformly convex and smooth Banach space. Let {x,,}
and {y,} be two sequences in E. If {x,} or {y,} is bounded and ¢(xy,,y,) — 0,
then ||z, — yn| — 0.

Let {z,} and {y,} be two bounded sequences in a smooth Banach space E.

It is obvious from the definition of ¢ that ¢(z,, y,) — 0 whenever ||z, — y, || — 0.

From this fact and Lemma 2.2, we deduce the following: Let {z,,} and {y,} be two

bounded sequences in a uniformly convex and uniformly smooth Banach space E.
Then

|20 —yull = 0 & [[Jzn — Jynl| = 0 & ¢(zn,yn) — 0. (2.5)
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The following lemma is used in the proof of Lemma 2.6 below.

Lemma 2.3. Let E be a uniformly convex and smooth Banach space. Let {s,} be
a convergent sequence in R and {x,} a sequence in E such that

¢((Em7xn) S |Sm - Sn|

for all m,n € N with m < n. Then {x,} is a strongly convergent sequence.
Proof. Tt is clear from (2.3) that

(lzmll = llznl)? < ¢(@m, @n) < |sm = snl

for all m,n € N with m < n. Therefore {||z,|} is a Cauchy sequence in R and
hence {z,} is bounded. Suppose that {z,} is not a Cauchy sequence. Then there
exist € > 0 and two subsequences {x,,, } and {z,,} of {x,} such that m; < n; and
|Zm; — Tn,;|| > € for every i € N. Since E is uniformly convex, ||-||? is uniformly
convex on B = {z € E : ||z|| < sup,ey|zn|/}. Thus for e there exists 6 > 0 such

that
2

T, + T, 1 5 1 9
Do DI < 2 g, |2+ = [l |2 = 6
I < D + g e,
for every i € N. Hence it follows from (2.1) that
1 1
(Tmis Tn,) < Sllm, |1 + §||mm -6

-2
and thus
0<2< ||9Emi||2 - 2<93mm an1:> + meHQ = (b(xmman) < ‘smi - 5n7|

for every i € N. This contradicts the assumption that {s,,} is convergent. Therefore
we conclude that {z,} is a Cauchy sequence. O

Let E be a strictly convex, smooth, and reflexive Banach space and C' a
nonempty closed convex subset of E. It is known that, for each = € E, there is a
unique point xg such that

¢(3’JO,IL’) = mln{¢(y,x) Ly S C}

Such a point z is denoted by IIox, and Il¢ is said to be the generalized projection
of E onto C; see [1] and [14]. The following lemma is known:

Lemma 2.4 ([1], [14] and [20]). Let E be a strictly convez, smooth, and reflez-
we Banach space. Let C be a nonempty closed conver subset of E and Il the
generalized projection of E onto C. Then the following inequalities hold:

(Iex — u, Jx — Jlcz) > 0, (2.6)
¢(U, ch) + ¢(HC$7 .’1?) < ¢(ua $), .
ez — ey, Jllgx — Jley) < ez — ey, Jor — Jy) (2.8)

forallz,y e E andu e C.

The generalized projection also has the following property.
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Lemma 2.5. Let E be a uniformly convex and uniformly smooth Banach space and
C' a nonempty closed convex subset of E. Then Il¢ is uniformly norm-to-norm
continuous on every bounded set.

Proof. Let {z,} and {y,} be two sequences in a bounded subset of E such that
|z, — ynll — 0. Note that {IIcx,} and {Ilcy,} are bounded because it follows
from (2.3) and (2.7) that

(lull = IMeznl)?* < ¢(u, Mozn) + ¢(en, zn) < ¢(u, 2n) < (|uf + [l2a]])?

for all n € N and u € C. Since F is uniformly smooth, the duality mapping J is
uniformly norm-to-norm continuous on every bounded set. It follows from (2.8)
that

0< %(¢(chn7 Heyn) + ¢(Mleyn, Howy))
= (Hex, — Uoyn, JUcx, — JUoyn)
< (Mewy — Heoyn, Jon — Jyn)
< Mezn — Heyn| [|[J2n — Jynll — 0.

Therefore ¢(Ilgxy, oy,) — 0. Hence Lemma 2.2 implies || o, — Heoyy,|| — 0.
This means that II¢ is uniformly norm-to-norm continuous on a bounded set. [

We next show the following lemma. Part (1) is a generalization of [29, Lemma
3.2]. We follow the idea in [22] for the proof of (2).

Lemma 2.6. Let E be a smooth Banach space, C' a nonempty closed convex subset
of E, and {x,} a sequence in E such that ¢(u, zp41) < ¢(u, x,) for allu € C and
n € N. Then the following hold:

(1) If E is uniformly convex, then {Ilcxzy} is strongly convergent.
(2) If the norm of E* is Fréchet differentiable and the interior of C is nonempty,
then {x,,} is strongly convergent.

Proof. We first show (1). By the definition of II¢, we see that
d(IleTpntm, Tntm) = Min{d(Y, Tnym) 1 y € C} < d(Ilexn, Tnim)
< ¢(H0xn7xn+m—l) < ¢(HC$n7xn) (29)

for all m,n € N. Therefore {¢(Ilcxy,x,)} is convergent. Further, it follows from
(2.7) and (2.9) that

¢(chn7 chn+m) S ¢(chn7 anrm) - ¢(chn+m7 iCner)
< d)(Hana xn) - ¢(HCmn+ma anrm)
for all m,n € N. Hence Lemma 2.3 implies that {Ilgxz,} is strongly convergent.

We next show (2). By assumption, there exist p € C' and ¢ > 0 such that
[Ih|| < ¢ implies that p+ h € C. Fix h € E such that ||h|| < 6. Then it follows



206 K. Aoyama, F. Kohsaka and W. Takahashi JFPTA

from (2.4) that

¢(p7 xn-i—l) = ¢(p7 l‘n) + d)(xnv xn—i—l) + 2<p — T, Jmn - Jx7z+1>
= 0P, Tn) + ¢(Tns Tng1) + 2(p + h — T, JTn — JTp1)
—2(h, Jp, — Jpi1)

=0, Tn) + 0P+ hyxny1) — d(p+ h, )
—2(h, Jxy — Jxpi1). (2.10)

By assumption, we have
o+ hyxpi1) < d(p+ h,zp). (2.11)
By (2.10) and (2.11), we obtain

2<h7 Jr, — an+1> < d)(py xn) - ¢(p7 xn+1)-
This implies that

26||Jxn — Jxpia|| =2 ”81H1p5<h, Jxy — Jxpi1) < O(p, Tn) — AP, Tntr)
hl|<

for all n € N. Thus we obtain

for all m,n € N with n < m. By the fact that {¢(p,x,)} is convergent, we know
that {Jxz,} is a Cauchy sequence in E*. Since J~! is norm-to-norm continuous,
{z,} converges strongly in E. O

Let A be a set-valued mapping of E into E*, which is often denoted by
A C E x E*. The effective domain of A is denoted by dom(A) and the range of A
by R(A), that is, dom(A) = {z € E: Az # 0} and R(A) = U, cqom(a) Az- A set-
valued mapping A C E x E* is said to be a monotone operatorif (x—y, z*—y*) > 0
for all (z,z*), (y,y*) € A. A monotone operator A C E x E* is said to be mazimal
if A= A’ whenever A’ C E x E* is a monotone operator such that A C A’. It is
known that if A is a maximal monotone operator, then A~10 is closed and convex,
where A710 = {2 € E : Ar > 0}. We know that the duality mapping J of E is
a monotone operator. We also know that if F is strictly convex, then J is strictly
monotone, that is, (x — y,z* — y*) > 0 whenever x,y € E, © # y, 2* € Jz, and
y* e Jy.

Let E be a smooth, strictly convex, and reflexive Banach space, A C E x E*
a maximal monotone operator, and r > 0. Then it is known that R(J+rA) = E*;
see [25]. Thus the single-valued mapping @, = (J +1rA)~1J of E onto dom(A) is
well defined and is called the resolvent of A. It is also known that F(Q,) = A=10
and

H(u, Qrx) + $(Qrx, ) < P(u, ) (2.12)
for all z € E and u € F(Q,), where F(Q,) is the set of fixed points of Q,;
see [12,13,16].
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Let E be a smooth Banach space, C a nonempty subset of £, and T: C' — E
a mapping. The set of fixed points of T is denoted by F(T). A point p € C is
said to be an asymptotic fized point of T [8,24] if C' contains a sequence {x,}
such that z,, — p and ||z, — Tzy| — 0. The set of asymptotic fixed points of
T is denoted by F’(T) A mapping T is said to be of type (r) if F(T) # () and
d(p, Tx) < ¢(p,x) for all z € C and p € F(T). A mapping T is said to be of
type (sr) if T is of type (r) and ¢(Tzp,x,) — 0 whenever {x,} is a bounded
sequence in C such that ¢(p,z,) — ¢(p, Tx,) — 0 for some p € F(T). We know
that if C' is a nonempty closed convex subset of a strictly convex and smooth
Banach space E and T: C — E is of type (r), then F(T') is closed and convex;
see [23, Proposition 2.4].

A mapping T: C' — F is said to be relatively nonexpansive [7,22,23] if it is of
type (r) and F(T) = F(T). A mapping T: C' — E is said to be strongly relatively
nonezpansive [5,18,24] if it is of type (sr) and F(T) = F(T) It is easy to check
that every generalized projection is strongly relatively nonexpansive. It is known
that if » > 0, then the resolvent ), of a maximal monotone operator defined in
a strictly convex and reflexive Banach space whose norm is uniformly Gateaux
differentiable is strongly relatively nonexpansive [20]; see also [12,13,22,23].

The following results are proved in [4]; see also [5,17,24].

Lemma 2.7. Let C and D be nonempty subsets of a smooth and strictly conver
Banach space E. Let S: C — E and T: D — E be mappings of type (1) such that
T(D) C C and F(S)N F(T) is nonempty. Suppose that S or T is of type (sr).
Then the following hold:
(1) F(S)NF(T) = F(ST) and ST is of type (r).
(2) If, in addition, E is uniformly convex and both S and T are of type (sr), then
ST is also of type (sr).

Lemma 2.8. Let E be a uniformly convex Banach space whose norm is uniformly
Gateauz differentiable. Let C' and D be nonempty subsets of E. Let S: C — E
and T: D — E be relatively nonexpansive mappings such that T(D) C C and
F(S)NF(T) # 0. Suppose that S or T is strongly relatively nonexpansive. Then
F(ST) = F(ST) = F(S) N F(T) and ST is relatively nonexpansive.

Lemma 2.9. Let E be a uniformly conver and uniformly smooth Banach space
and C a nonempty subset of E. Let {T1,...,T,} be a finite family of mappings of
type (1) of C into E such that F = (;_, F(T};) is nonempty, where n is a positive
integer. Let V: C' — E be a mapping defined by V = J (Ao J+> iy NMiJT;), where
{\i}iq is a finite sequence in (0,1) such that Y. \; = 1. Then F(V) = F and
V' is of type (sr).

From Lemmas 2.7 and 2.9, we obtain the following;:

Corollary 2.10. Let E be a uniformly convex and uniformly smooth Banach space,
C a nonempty subset of E, and T: C — E a mapping of type (r). Suppose that
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U: C — C is a mapping defined by U = e J L(AJ + (1 = \)JT), where A € (0,1)
is a constant. Then F(U) = F(T) and U is of type (sr).

Proof. Put V.= J~Y(AJ + (1 — N)JT). Since F(T) is nonempty, we see that
F(V) = F(T) and V is of type (sr) by Lemma 2.9. Since F(IIc)NF(V) = CnN
F(T) = F(T) # 0 and both IIc and V are of type (sr), it follows from Lemma 2.7
that F(IIcV) = F(Ilg) N F(V) = F(T) and IV is of type (sr). O

3. Strongly relatively nonexpansive sequences

Throughout this section, we assume that E is a smooth Banach space and C
is a nonempty subset of E. We introduce the concept of a strongly relatively
nonexpansive sequence and investigate its properties.

Let {T},} be a sequence of mappings of C' into E such that F =2, F(T,)
is nonempty. Then {T,,} is said to be a strongly relatively nonexpansive sequence if
each T, is of type (r) and ¢(T,zpn, ) — 0 whenever {z, } is a bounded sequence
in C and ¢(p, zp,) — &(p, Tnxy) — 0 for some point p € F.

Example 3.1. Let T: C — E be a mapping of type (sr). Put T,, = T for n € N.
Then it is clear that {T},} is a strongly relatively nonexpansive sequence.

Example 3.2. Let E be a smooth, strictly convex, and reflexive Banach space and
{T,} a sequence of mappings of C' into E with a common fixed point. Suppose
that, for each n € N,

qS(u, Tnx) + ¢(Tn$, l‘) < ¢(’LL, {,C)

for all x € C and w € F(T,). Then {T,} is a strongly relatively nonexpansive
sequence. Thus it follows from (2.7) and (2.12) that

e a sequence {II¢, } of generalized projections is a strongly relatively nonex-
pansive sequence if {C,,} is a sequence of closed convex subsets of F with a
common intersection;

e a sequence {Q,, } of resolvents of a maximal monotone operator A if A=10
is nonempty and {r,} is a sequence of positive real numbers.

The following lemma shows that every subsequence of a strongly relatively
nonexpansive sequence is also a strongly relatively nonexpansive sequence in the
appropriate setting.

Lemma 3.3. Let C be a nonempty subset of a smooth Banach space E and {T,}
a sequence of mappings of C into E such that F = (\,_, F(T,) is nonempty.
Suppose that {T,} is a strongly relatively nonexpansive sequence. If {T,,} is a
subsequence of {T,,} with F = (oo F(T},), then {T,,,} is a strongly relatively
nonexpansive sequence.

Proof. Let {u;} be a bounded sequence in C' and p € (o, F(T,,) such that
d(p,u;) — d(p, Tn,ui) — 0. Let z € F be fixed. Define a sequence {z,} in C: For
each n € N, if there is 4 € N such that n; = n, then x,, = u;; if n; # n for all i € N,
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then z, = z. Then it is clear that ¢(p,z,) — ¢(p, Tnzn) — 0 and p € F. Since
{T,} is a strongly relatively nonexpansive sequence, we have ¢(T),x,,, x,) — 0 and
hence ¢(T),,u;,u;) — 0, which completes the proof. O

The composition of two strongly relatively nonexpansive sequences is also a
strongly relatively nonexpansive sequence:

Theorem 3.4. Let C and D be two nonempty subsets of a uniformly convex and
smooth Banach space E. Let {S,} be a sequence of mappings of C into E and {T,}
a sequence of mappings of D into E such that F = (", F(S,) Ny F(T,) # 0
and T,(D) C C for every n € N. Suppose that both {S,} and {T,} are strongly
relatively nonexpansive sequences, and that S,, or T, is of type (sr) for everyn € N.
Then {S,T,} is a strongly relatively nonexpansive sequence.

Proof. It follows from Lemma 2.7 that F'(S,T,,) = F(S,) N F(T,) and S, T, is of
type (r). Thus we have

DX

ﬁ F(S.T,) = () (E(S,) N F(Ty)) = F # 0.
n=1

n=1

Let {z,,} be a bounded sequence in D and p € F such that

Since p € F C F(S,T,,) = F(S,) N F(T,,) and both S,, and T,, are of type (r), we
have

0 < ¢(p,7n) — (P, Tnn) < AP 2n) — (P, SnTnan) — 0.
Since {7} is a strongly relatively nonexpansive sequence, we obtain
O(Tpxy, xn) — 0. (3.1)

Similarly, we have

0< ¢(p7 Tnxn) - ¢(P, SnTnxn) < ¢(pa xn) - ¢(pa SnTnzn) — 0.

Since {T,z,} is bounded and {S,,} is a strongly relatively nonexpansive sequence,
we obtain

A(SnTnTn, Tnay) — 0. (3.2)
Therefore, from (2.4), (3.1), (3.2) and Lemma 2.2, we have
A(SnThnTn, )
= ¢(SpnTnxn, Tnwy) + ¢(Tnxn, n) + 2(SyTnxy — Tnxn, JThx, — Jxy,)
< O(SnTnn, Tnryn) + d(Thn, xn) + 2[SnTnxn — Tnxp ||| JThzn — J2u| — 0.

Consequently {5, T,,} is a strongly relatively nonexpansive sequence. O

The following corollary is immediately derived from Example 3.2 and Theo-
rem 3.4.
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Corollary 3.5. Let D be a nonempty closed convexr subset of a uniformly convex
and smooth Banach space E. Let {T,} be a sequence of mappings of D into E such
that F = (2, F(T,,) is nonempty. If {T,} is a strongly relatively nonexpansive
sequence, then {IIpT,} is a strongly relatively nonexpansive sequence.

A sequence {z,} in C is said to be an approximate fized point sequence of
a mapping T: C — E if ||z, — Tz,| — 0; see [10,11]. The set of all bounded
approximate fixed point sequences of T' is denoted by F(T'), that is,

F(T) = {{zn} i zp € Cfor all n € N, sup||z,|| < o0, and ||z, — Tz,| — O}.
neN

Let {T,,} be a sequence of mappings of C into E. A sequence {z,} in C is said to
be an approximate fixed point sequence of {T},} if ||z, — Tn2n|| — 0. The set of all
bounded approximate fixed point sequences of {T,} is denoted by F'({T,}), that
is,

FUT,}) = {{zn} tzp € CforallneN, sgg”an < o0, and ||z, — Thzn| — O}.

Clearly, if {T;,} has a common fixed point, then every bounded sequence in the
common fixed point set ﬂff:l F(T,) is an approximate fixed point sequence of
{Tn}.

Next we examine a relationship between strongly relatively nonexpansive
sequences and approximate fixed point sequences.

Lemma 3.6. Let E be a uniformly convexr Banach whose norm is uniformly Gateauz
differentiable. Let C and D be two nonempty subsets of E. Let {S,,} be a sequence
of mappings of C into E and {T,,} a sequence of mappings of D into E such that
F=N>_,F(S,)NN,_, F(T,) #0 and T,,(D) C C for every n € N. Suppose that
both S, and T, are of type (r) for everyn € N and that {S,} or {T,} is a strongly
relatively nonexpansive sequence. If {z,} € F({S,T,}), then {z,} € F({T,}) and
{Thzn} € F({Sn}).

Proof. Let {z,} € F({S,T,}) and p € F. Since both {z,} and {S,T}z,} are
bounded and the duality mapping J is uniformly norm-to-weak®™ continuous on a
bounded set, we have

¢(p, 2n) = G(p, SnTnzn)
= —2(p,Jzn) + ||Zn||2 + 2(p, J S Thzn) — ||SnTnZnH2
= (”Zn” + ||SnTnZn||)(||ZnH - ”SnTnZnH) - 2<p, Jzn — JSnTnZn>
< (Hznll + ||SnTnZn||)(||Zn - SnTnZn”) —2(p, Jzn — JSnTnzn> — 0.
As in the proof of Theorem 3.4, we see that

d(p,y2n) — ¢, Thzn) — 0 and  @(p, Thzn) — &(p, SnThzn) — 0. (3.3)

Note that {T},2, } is a bounded sequence in C. Now suppose that {7}, } is a strongly
relatively nonexpansive sequence. Then we obtain ¢(71, 2, 2,) — 0. In this case,
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according to Lemma 2.2, we have |z, — Ty z,|| — 0. By assumption, we have
|z — SnTnznl| — 0. These facts yield

120 — SnTnznll < | Thzn — zull + |20 — SnTnznl| — 0.

Therefore {z,} € F({T,}) and {Tyz,} € F({S,}).

On the other hand, suppose that {S,} is a strongly relatively nonexpansive
sequence. It follows from (3.3) that ¢(S,T,2n, Thz,) — 0. So, we deduce from
Lemma 2.2 that ||S,Th2, — Tnzn| — 0 and

Hence we also obtain the desired result. This completes the proof. O
As a special case of Lemma 3.6, we obtain the following:

Corollary 3.7. Let E be a uniformly conver Banach whose norm is uniformly
Gateauz differentiable. Let C' and D be two nonempty subsets of E. Let S: C' — E
be a mapping of type (r) and {T,} a sequence of mappings of D into E such that
F = F(S)NN,_, F(T,) # 0 and T,,(D) C C for every n € N. Suppose that
(T} is a strongly relatively nonexpansive sequence. If {z,} € F({ST,}), then
{zn} € F{T,}) and {Tpz,} € F(S).

The following theorem shows an easy way to construct a strongly relatively
nonexpansive sequence from an arbitrary sequence of mappings of type (r).

Theorem 3.8. Let E be a uniformly conver and uniformly smooth Banach space
and C a nonempty subset of E. Let {T,,} be a sequence of mappings of C into E
such that F = (\°_, F(T,) is nonempty. Let V,,: C — E be a mapping defined
by Voo = JX(And + (1 — \,)JTy) for n € N, where {\,} is a sequence in (0,1).
Suppose that T, is of type (1) for every n € N and inf,eny A, > 0. Then {V,,}
is a strongly relatively nonexpansive sequence. Moreover, if sup, ey An < 1, then

F({Tu}) = F({Va}).
Proof. Lemma 2.9 implies that F(V,) = F(T,) and V, is of type (r). Thus
F =2_,F(V,). Let {z,} be a bounded sequence in C such that ¢(p,z,) —

n=1

o(p, Vaxy) — 0 for some p € F. Then we have
Aall Tz + (1= X)) [T T |* = || T Ve[|
= An@(p; 2n) + (L= An)d(p, Tntin) — ¢(p, Vo)
< Ao, xn) + (1= An)o(p, 2n) — d(p, Vi)
= ¢(p,xn) — (P, Vazn) — 0.

Since E* is uniformly convex and both {Jz,} and {JT,,z,} are bounded, it follows
from Lemma 2.1 that

|Jxrn — JIVpza|| = (1 — M) Jxn — JThxn| — 0. (3.4)

Therefore, from (2.5) we conclude that ¢(V,x,,z,) — 0 and hence {V,,} is a
strongly relatively nonexpansive sequence.



212 K. Aoyama, F. Kohsaka and W. Takahashi JFPTA

Suppose that sup, ey A < 1. From (2.5) and (3.4), it is easy to check that
F{Tn}) = F({Va}). O

We can also obtain the following corollary.

Corollary 3.9. Let E be a uniformly conver and uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let {T,,} be a sequence of mappings
of C into E such that F = (), F(T,) is nonempty. Let U,,: C — C be a mapping
defined by U,, = llcJ (N J + (1 = \,)JT,) for n € N, where {\,} is a sequence
n (0,1). Suppose that T,, is of type (r) for every n € N and inf,en A, > 0. Then
{Un} is a strongly relatively nonexpansive sequence. Moreover, if sup, cx An < 1,
then F({U,}) = F({T,}).

Proof. Let V,, be a mapping of C into E defined by V,, = J=1(\,J + (1 = \,)JT3,)
for n € N. By Theorem 3.8, {V},} is a strongly relatively nonexpansive sequence,
and moreover, F({V,,}) = F({T,,}) if sup, ey An < 1.

On the other hand, Corollary 3.7 implies that F({U,}) C F({V;,}). It is easy
to see that the converse inclusion also holds. In fact, if {z,} € F({V,}), then it
follows from x,, € C and the definition of Il that

This implies that |Upz, — Vyp,| — 0. Thus {z,} € F({U,}). O

4. Convergence theorem for strongly relatively nonexpansive
sequences

In this section, we discuss a convergence theorem for a strongly relatively nonex-
pansive sequence.

Let C' be a nonempty subset of a Banach space E and {7, } a sequence of
mappings of C into E such that F =~ F(T,) is nonempty. We say that {T},}
satisfies the condition (Z) if every weak cluster point of {z,, } belongs to F' whenever
{z,} is a bounded sequence in C such that ||T;, 2, — z,| — 0.

Theorem 4.1. Let E be a uniformly convexr and smooth Banach space and C a
nonempty closed convex subset of E. Let {T,} be a sequence of self-mappings of C
such that F = (.-, F(T,) is nonempty. Suppose that {T,,} is a strongly relatively
nonezpansive sequence and satisfies the condition (Z). Let {x,} be a sequence in
C defined by x1 =z € C and xp41 = Thx,, for n € N. Then the following hold:
(1) If C is compact or the interior of F is nonempty, then {x,} converges strongly
tov € F, where v =1lim,_,, [Ipz,.
(2) If the duality mapping J is weakly sequentially continuous, then {x,} con-
verges weakly to v € F', where v =1lim,_, llpx,.

Proof. Let p € F be fixed. Since each T,, is of type (r), F(T},) is closed and convex
and

¢(p, :L'n+1) = ¢(pv Tnxn) < ¢(p7 xn) (41)
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for every n € N. Therefore F is a closed convex subset of E and it follows from (1)
in Lemma 2.6 that {IIpz,} converges strongly to some point in F. Put v =
lim,, o Hpa,. The inequality (4.1) also shows that {¢(p,z,)} is bounded and
convergent. Thus {x,} is also bounded and ¢(p, z,,) — ¢(p, Tr,xn) — 0. Since {71}, }
is a strongly relatively nonexpansive sequence, we conclude that ¢(T,z,, z,) — 0.
Hence Lemma 2.2 implies that ||T,,z, — z,| — 0.

We first show (1). Suppose that C' is compact. Then there is a subsequence
{zp,} of {x,} such that z,, — u. We claim that « = v. From the condition (Z),
we see that u € F. Thus (2.6) shows that

Mz, —u, Jr, — Jlpa,) >0 (4.2)

for every n € N. Since J is norm-to-weak continuous, {Jz,, — Jllpz,,} converges
weakly to Ju— Jv. Therefore (v —u, Ju — Jv) > 0 and hence u = v. Consequently,
we conclude that {x,} converges strongly to v.

If the interior of F' is nonempty, then (2) in Lemma 2.6 implies that {z,}
converges strongly to u. By the condition (Z), we have u € F. Taking the limit
in (4.2), we obtain

(w=—u,Ju—Jv) >0
and hence v = v. Thus we conclude that {z,} converges strongly to v.

We finally show (2). Since E is reflexive, there is a subsequence {x,,,} of {z,}
such that z,, — u. From the condition (Z), we see that u € F. Since the duality
mapping J is weakly sequentially continuous, {Jz,, — JIlpx,,} converges weakly
to Ju — Jv. Therefore (v — u, Ju — Jv) > 0 and hence u = v. Consequently, we
conclude that {z,} converges weakly to v. O

Remark 4.2. In §5, we deal with an example of a sequence of mappings which
satisfies the condition (Z).

In the remainder of this section, we consider an equivalent condition and a
sufficient condition for the condition (Z).
Let C' be a nonempty subset of a Banach space E and {7, } a sequence of
mappings of C into E such that F = (\°, F(T,) is nonempty. Then
o we say that {7} satisfies the condition (A) if p € F whenever {T,,} is a
subsequence of {T},} and {z;} is a sequence in C' such that

T, 2i — 2zl = 0 and z; — p;

e we say that {7} satisfies the condition (B) if, for any nonempty bounded
subset B of C' and for any increasing sequence {n;} in N, there exist a mapping
T: C — E and a subsequence {Tnij} of {T,,} such that

lim sup||Ty —T,, y| =0 and F(T)=F.
Jj—00 yEB J
Lemma 4.3. Let C' be a nonempty subset of a Banach space E and {T,} a se-

quence of mappings of C into E such that F = (\,—, F(T,) is nonempty. Then
the following hold:
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(1) {T.} satisfies the condition (Z) if and only if {T,,} satisfies the condition (A).
(2) If {T,.} satisfies the condition (B), then it satisfies the condition (Z).

Proof. We first show (1). It is obvious that the condition (A) implies the condi-
tion (Z). Thus we prove the inverse implication. Let {T},,} be a subsequence of
{T,} and {%} a sequence in C such that ||T,,z; — z|| = 0 and z; = p. Let u € F
be fixed. Define a sequence {z,} in C as follows:

z; if there exists ¢ € N such that n = n;,
€T =
" u if n # n; for all i € N,

for n € N. Then it is clear that {z,} is bounded, T,,z, — z, — 0, and p is a weak
cluster point of {x,,}. Thus the condition (Z) implies that p € F.

We next show that the condition (B) implies the condition (Z). Let {x,,} be
a bounded sequence in C such that ||T,,z, — z,| — 0 and p a weak cluster point
of {z,,}. Then there is an increasing sequence {n;} in N such that z,, — p. Since
{zn,} is bounded, there is a bounded subset B of C' such that {x,, : i € N} C B.
By the condition (B), for {n;} and B, there exist a mapping T: C — E and a
subsequence {Tnij} of {T},,} such that

lim sup||Ty —T,, y| =0 and F(T)=F.
j—00 yEB J

Therefore we have

+ HTMJ xnij - T‘ran
‘Tnij Yy— Ty|

Hxnw - Txmj ” < ”xn” _Tnij ‘Tnij

< ||x’ﬂ1] - Tn” xnij || + Slélg
Yy

— 0 as j — oo. Thus p € F(T) = F. This means that
{T,} satisfies the condition (Z). This completes our proof. O

and hence Hxnj — Ty,

Remark 4.4. In §6, we deal with an example of a sequence of mappings which
satisfies the condition (B).

5. W-mappings

In this section, we apply results in §3 and §4 to the problem of approximating a
common fixed point of a countable family of relatively nonexpansive mappings.
Let F be a smooth, strictly convex, and reflexive Banach space and C' a nonempty
closed convex subset of E. Let {T,,} be a sequence of mappings of C into E and
{a}} a sequence in (0,1) with n € Nand k =1,...,n. For each n € N we define
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a finite family {U}’ : k =1,...,n+ 1} of mappings as follows:

n+1 I
Ur =TeJ a4+ (1 —a™)JT,),
Up_1= HC'Jfl(O‘Z—lj + (1 —ay_)JT,1U)),

: (5.1)
Ui =ed " HapJ + (1 = af) J T U ),

Ul =TeJ ol T+ (1 —a)JTIUY),

for n € N, where I is the identity mapping on C. In this case a mapping U}
is denoted by W,, and we say that W,,: C — C is the W-mapping generated
by T, Trn-1,...,T1 and al,a?_,,...,af for n € N. Takahashi [26] discussed the
problem of approximating a common fixed point of a family of nonexpansive map-
pings by using W-mappings; see also [28], [15] and [21].

We begin with a property of the fixed point set of U] above.

Lemma 5.1. Let E be a uniformly convex and uniformly smooth Banach space and
C' a nonempty closed convex subset of E. Let {T,} be a sequence of mappings
of type (r) of C into E such that F = ﬂoo F(T,) is nonempty. Let {a}} be a
sequence in (0,1) withn e Nandk=1,...,n. Let U}: C — C be defined by (5.1)
formeNandk=1,...,n+1. Then

F(UR) = F(TWURyy) = F(Ty) NF(UR,) = ﬂ F(T (5.2)

T UL, are of type (r) and U] are of type (sr) for alln € N andk=1,...,n

Proof. Let n € N be fixed. Since T, is of type (r), we see that (5.2) holds for k =n
and U} is of type (sr) by Corollary 2.10. Assume that (5.2) holds and U}’ is of
type (sr) for some k € {2,...,n}. Since Tj_1 is of type (r), U} is of type (sr), and

F(Ty 1) NF(UP) = F(Tp_1) ﬂF = (| F(T) > F #0,
i=k i=k—1

it follows from Lemma 2.7 that

F(Ty, 1 UP) = F(Tp_1) N F(UY) ﬂ F(T,
i=k—1

and T, U]’ is of type (r). Thus Corollary 2.10 implies that (5.2) holds for k — 1
and U]’ , is of type (sr). By induction on k, we obtain the desired result. Il
Using Lemma 5.1, we can prove the following:
Lemma 5.2. Let E, C, {T,,}, F, {a}}, and {Uj} be as in Lemma 5.1. Define
Vi C — E by
Vit =J Yapd + (1= a)JTUR,) (5.3)
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forn e Nand k =1,...,n. Suppose that 0 < inf{a} : n € N, n > k} for every
k € N. Then the following hold:
(1) {U} 2, and {V"}o2 . are strongly relatively nonezpansive sequences for ev-
ery k: e N.
(2) If T, is relatively nonexpansive for every n € N and sup{a} : n € N, n >
k} <1 for every k € N, then {U'} and {V{*} satisfy the condition (Z).

Proof. We first prove (1). Let k € N be fixed. From Lemma 5.1, we see that

A rwp) = () PG - () (VF@ = () FE) 5 F 20 G
n==k n==k n=ki=k n=k

and T U}, is of type (r) for every n = k,k +1,.... Thus Theorem 3.8 implies
that {V;}>° . is a strongly relatively nonexpansive sequence and hence {U]’}°°
is also a strongly relatively nonexpansive sequence by Corollary 3.5.

We next prove (2). Let {z,,} be a bounded sequence in C with ||z, — U{*zy||
— 0 and x,, — p. Then (5.4) and the relative nonexpansiveness of each T, imply

that - - -
(N FUM = () F(T) ﬂF

Thus, to prove that {U]'} satisfies the condition (Z) it is sufficient to show that
p € o, F(T,). The proof is given by induction on n. By assumption, we have
{z,} € F({UT'}). Note that (5.4) ensures that

ﬁ F(TU3) = ﬁ F(T,) = F #0.

Then Corollary 3.9 implies that F({U7}) = F({T1U}}). Since {UZ} is a strongly
relatively nonexpansive sequence and

F(T)n (FU3) =F(T)N () F(T,) =F #0
n=2 n=2

by (5.4), Corollary 3.7 implies that F({T3U3}) ¢ F({U#}). Thus we obtain
F{UTY) = F({TU3'}) € F{U3). (5:5)

Hence we have
U3 @n — TiUs mn || < |Ug'zn — @pl| + 20 — T1UZ @8[] — 0
and
Uiy, = (Ug'n, — Tpn,) + Tn, = P.
Therefore p € F(T}). We also know that {z,,}° 5 € F{UF},).

Suppose that p € F(Tj,_1) and {x,}°°, € F{U;}22,) forsome k = 2,3,....
By (5.4), we have

o0

ﬂ (TkUgq) D F #0

n=~k
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and
F(T)n () FUr) =) F(T.,) D F #0.
n=k+1 n=k

As in the proof of (5.5), Corollaries 3.7 and 3.9 ensure that

FUUR ) = F ({ThUR 0 o) € F (U bos) -
This gives us that
||Ul?+1$n - TkUl?anH < ||Ul?+1fn = Tp || + (|77 — TkUl?+1xn” —0
and
Ul?{ilx”i = (Ul?jrlxm - xm) +Tn, =P

and hence we obtain p € F(T},). We also know that

{@n}nlps € F U k) -

Therefore we conclude that p € (02, F(T5,).

We can similarly prove that {V;"} satisfies the condition (Z). This completes
the proof. (I

Using Theorem 4.1 and Lemmas 5.1 and 5.2, we immediately get the follow-
ing:

Theorem 5.3. Let E be a uniformly convexr and uniformly smooth Banach space
and C' a nonempty closed convex subset of E. Let {T,} be a sequence of relatively
nonezpansive mappings of C into E such that F = (., F(T,) is nonempty. Let
{a}} be a sequence in (0,1) withn € N and k=1,...,n such that

O<inf{ap :neN,n>k}<sup{ap:neN,n>k} <1

for every k € N. Let W,,: C — C be the W-mapping generated by T, Ty, —1,...,T1
and o, al_q,...,af forn € N. Let {x,,} be a sequence in C defined by x1 = x € C
and xpy1 = Wyxy, forn € N.

(1) IfC is compact or the interior of F' is nonempty, then {x,} converges strongly
tov € F, where v = lim,,_, o llpx,.

(2) If the duality mapping J is weakly sequentially continuous, then {x,} con-
verges weakly to v € F, where v = lim,,_, o pz,.

Proof. 1t is clear from Lemma 5.1 that F' =, F(W,,). Lemma 5.2 shows that
{W,} is a strongly relatively nonexpansive sequence and satisfies the condition (Z).
Thus Theorem 4.1 implies the conclusion. O
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The following two results are known:

Theorem 5.4 ([4, Theorem 4.2]). Let E be a uniformly convex and smooth Banach
space and C' a nonempty closed convex subset of E. Let {T,,} be a sequence of
mappings of type (1) of C into E such that F = (\—, F(T},) is nonempty and

n=1
{T,} satisfies the condition (A). Let x € E and let {x,} be the sequence in C
defined by x1 = llex and
H,={z€C:¢(z,Thzy) < &(z,2n)},
W,={2¢€C:{(x, — 2z Jx— Jx,) >0},
Tpt1 = Upg,Aw, ()
forn € N. Then {xz,} converges strongly to Ilp(z).

Theorem 5.5 ([4, Theorem 4.4]). Let E be a uniformly convex and smooth Banach
space and C' a nonempty closed convex subset of E. Let {T,,} be a sequence of
mappings of type (r) of C into E such that F = (\,_, F(T,) is nonempty and

n=1
{T,} satisfies the condition (A). Let x € E and let {z,} be the sequence in C
defined by x1 =Ilcx € C = Cy and
Cpn={2€Cph1:0(z,They) < od(z,2,)},
Tni1 = Ic, ()

forn € N. Then {z,} converges strongly to Ilp(z).

Using Theorems 5.4 and 5.5, we also obtain the following strong convergence
theorem:

Theorem 5.6. Let E, C, {T,}, F, and {a}} be as in Theorem 5.3. Let U} be a
mapping defined by (5.1) form € Nand k = 1,...,n+ 1. Let V*: C — E be
defined by (5.3) for n € N. Let x € E and let {x,} be the sequence in E defined
by x1 =eox and

H, = {Z eC: ¢(Z, Vlnxn) < (b(zaxn)}?

W,={z€C:{x, —2zJx— Jx,) >0},

Tnt+1 = g, aw, (z)
forn € N. Let y € E and let {y,} be the sequence in E defined by y1 = ey €
C =0Cy and

C’ﬂ = {Z € On—l : ¢(Z"/1nyn) S ¢(Zvyn)}a

Ynt+1 = e, (y)
for n € N. Then {z,} and {y,} converge strongly to Ip(z) and Ip(y), respec-
tively.

Proof. Lemma 5.1 shows that F(TyUS) = (i, F(T;) and T1U% is of type (r).
Thus, by Lemma 2.9, we see that F(V*) = F(T1UJ) and V;" is of type (r) for
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every n € N, and hence

N FV) =) () F(T:) =F #0.

n=1¢=1

It follows from Lemmas 4.3 and 5.2 that {V7"} satisfies the condition (A). There-
fore, from Theorems 5.4 and 5.5, we get the conclusion. O

6. Convex combinations of relatively nonexpansive mappings

Finally, we discuss another method of approximating a common fixed point of a
countable family of relatively nonexpansive mappings.
We begin with the following lemma:

Lemma 6.1. Let E be a uniformly conver and uniformly smooth Banach space and
C a nonempty subset of E. Let {T,,} be a sequence of mappings of type (r) of C
into E such that F =\, F(T,) is nonempty. Let {\}'} be a sequence in (0, 1)
with n € N and k = 0,1,...,n such that ZZ:O)‘Z =1 for every n € N and
inf,en A > 0. For each n, let V,,: C — E be defined by

n
Vo=J71 Y ATy, (6.1)
k=0
where Ty is the identity mapping on C. Then {V,,} is a strongly relatively nonex-
pansive sequence.

Proof. By the definition of V;,, we have

AL =
Vo=J71 <2°J+ I ZAZJTk>
k=1

D D AD 27
_ 7-1( %0 120 -1 0 kg ) )
J <2J+< 5 )7 2_A8J+;2_A8Jk
For each n € N, define V!: C' — FE by

G —~ 2\}
r_ g1 20 k
Vi=J <2A8J+k§:12/\gJTk>.

Then we see that F(V,!) = (i, F(T}) and V. is of type (r) by Lemma 2.9. Thus

N FV) =) [)F(Tx) =F#0.
n=1 n=1k=1

Therefore Theorem 3.8 implies that {V,,} is a strongly relatively nonexpansive
sequence. [l

For the following result, see [19, Theorem 3.3].
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Lemma 6.2 ([19]). Let E be a uniformly convex and uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let {T,,} be a sequence of relatively
nonezpansive mappings of C into E such that F = (\,—, F(T},) is nonempty, {t,}
a sequence in (0,1) such that > - t, =1, and {a,} a sequence in (0,1). Then
the mapping U: C — E defined by

Uz =J""Y tolanJz + (1 - a,)JT,1)

n=1

for x € C is a relatively nonexpansive mapping and F(U) = F.
Using Lemma 6.2, we obtain the following;:

Lemma 6.3. Let E, C, {T,,}, and F be as in Lemma 6.2. Let Ty be the identity
mapping on C and {A\,}72, a sequence in (0,1) such that Y " A, = 1. Let
V:C — E be defined by

oo
Ve =J"> A\JTou (6.2)
n=0

forx € C. Then V is relatively nonexpansive and F(V) = F.

Proof. Let x € C be fixed. Since each T, is of type (r), it follows from (2.3)
that (||u]| — || Th2]))? < é(u, Tpx) < ¢(u,x) for all u € F and n € N. Therefore
sup,,en||JTnx|| is finite and hence Vz is well-defined. Taking into account 1 — XAy =
>0 | An, we have

-1 n 71 0
J E " NoJz+ (1= X)) JTpz) =J ( Jx 321 A+ 321 )\nJTnaU)

n=1 1- 1= )\O
=J! Z MJThx = V.
n=0
It is clear that Y7 A\, /(1—Xg) =1 and 0 < A\,/(1 — Xg) < 1 for every n € N.
Lemma 6.2 implies the conclusion. [l

By using the results above together with Theorem 4.1 and Lemma 4.3, the
following theorem is proved.

Theorem 6.4. Let E be a uniformly convexr and uniformly smooth Banach space
and C a nonempty closed convex subset of E. Let {T,,} be a sequence of relatively
nonezpansive mappings of C into E such that F = (., F(T,) is nonempty. Let
{7} be a sequence in (0,1) withn € N and k =0,1,...,n such that Y ,_o A} =1
for every n € N, inf,en A§ > 0, and >} _o|A\x — A}| — 0 as n — oo for some
sequence {\p}72, tn (0,1). Let Ty be the identity mapping on C. For each n, let
Vi C — E be defined by (6.1). Let {x,} be a sequence in C defined by x; =z € C
and xpy1 = HcVyx, forn € N.

(1) If C is compact or the interior of F is nonempty, then {x,} converges strongly
tov € F, where v =1lim, ., llpz,.
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(2) If the duality mapping J is weakly sequentially continuous, then {x,} con-
verges weakly to v € F', where v = lim,,_, o pz,.

Proof. Lemmas 2.7 and 2.9 show that F(IlcV,,) = F(Il¢) N F(V,,) = iz, F(Tk)
and hence

o0

ﬂ F(HCVn) =

n=1 n

38

- ffyrm e

Thus Lemma 6.1 and Corollary 3.5 imply that {IIcV,} is a strongly relatively
nonexpansive sequence. Let us show that {IIoV,,} satisfies the condition (B). Note
that Y, ) A = 1. Indeed, clearly we have

= Ak = AR < A S AR+ A = AR

1

so that
ST ST = A S <A D e - AR
k=0 k=0 k=0 k=0 k=0

for every n € N. Taking the limit n — oo, we obtain Z;’io A = 1. Let B be a
bounded subset of C'. Since F' is nonempty and each T, is of type (r), it follows
from (2.3) that

(lull = 1T0ylD)? < ¢(u, Tny) < é(u,y) < (lull + [lyll)?

for all y € B, u € F, and n € N. Therefore M = sup{||T,y|| : » € N,y € B} is
finite. Define a mapping V: C — E by (6.2). Then we have

|TVy = TVayll = HZ M = AR Try + Z )\kJTkyH

k=n+1
< ZlAk — M Tyl + Z Ml T Ty
= k=n-+1
(Zurka 3 )\k)
k=n-+1
Therefore lim,, . sup,egl|/Vy — JV,yl| = 0. Since E* is uniformly smooth, we

have
lim sup|J'JVy — J 1IV,y|| = 0.

n—oo yEB
By Lemma 2.5, we see that Il is uniformly norm-to-norm continuous on every
bounded set. Thus we obtain

lim sup|lIcVy — eV,y| = 0.
n—oo yeB

On the other hand, Lemma 6.3 shows that V is relatively nonexpansive and
F(V)=F.Since F(IIc)NF(V) = F # 0 and ¢ is strongly relatively nonexpan-
sive, it follows from Lemma 2.8 that F(II¢V) = F(Il¢V) = F(Ilg) N F(V) = F.
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This means that {IIcV,,} satisfies the condition (B). Therefore, by Theorem 4.1
and Lemma 4.3, we obtain the conclusion. O

A direct consequence of Theorem 6.4 is as follows; see [2].

Corollary 6.5. Let E be a uniformly convex and uniformly smooth Banach space
and C' a nonempty closed convex subset of E. Let {T,} be a sequence of relatively
nonezpansive mappings of C into E such that F = (\.—, F(T,) is nonempty. Let
{Vn} be the sequence of mappings of C into E defined by

1 1
Vi=J Y ZJ+2JT
1 (2 +2 1)7
1

1 1
Vo=Jt <2J+ ZJT1 + 4JT2>,

1 1 1 1
P _1 _ _ ... —_— —
Vo=1J <2J+4JT1+ +2nJTn1+2nJTn),

and let {x,,} be a sequence defined by x1 = x € C and xp11 = HeVyx, forn € N.

(1) If C is compact or the interior of F' is nonempty, then {x,} converges strongly
tov € F, where v = lim,,_, o lIpx,.

(2) If the duality mapping J is weakly sequentially continuous, then {x,} con-
verges weakly to v € F, where v = lim,_, o pz,.

Proof. Let {A\}'} be a sequence with n € N and k= 0,1,...,n defined by

L [12R k=0,1,...,n—1,
)\k =
/2", k=n.

Then it is clear that inf,ey A = 1/2 >0, > _, A =1 for every n € N and

n
1 " 1 1 1
Z ok +1 — k| = STESE T Rl ves sl
k=0
Thus Theorem 6.4 implies the conclusion. O

It is easy to verify that {V;,} in Theorem 6.4 also satisfies the condition (B).
Consequently, we obtain the following strong convergence theorem by using The-
orems 5.4 and 5.5 together with Lemmas 2.9 and 4.3.

Theorem 6.6. Let E, C, {T,,}, F, {\}'}, To, and {V,,} be as in Theorem 6.4. Let
x € E and let {x,} be the sequence in E defined by x1 = Uex and

H,={z€C:¢(z,Vpoz,) < &(z,2n)},
W,={2¢€C:{(x, — 2z Jx— Ja,) >0},

Tpt1 = u, ow, (2)
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forn € N. Let y € E and let {y,} be the sequence in E defined by y1 = ey €
C =Cy and

Cn = {Z S Cnfl . ¢(27Vnyn) S ¢(Zayn)}7
Yn+1 = HCn (y)

for n € N. Then {z,} and {y,} converge strongly to Up(z) and M g(y), respec-
tively.
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