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1. Introduction
Pucci extremal equations [3, 8, 4] are one of the fundamental objects in the theory
of fully nonlinear uniformly elliptic partial differential equations. For the ellipticity
constants 0 < λ < Λ, the Pucci extremal operators P± : Sn → R, where Sn is the
set of n× n symmetric matrices, are defined in the following way:

P+(X) = max{−trace(AX) | A ∈ Sn, λI ≤ A ≤ ΛI},
and P−(X) = −P+(−X). In this paper we obtain existence of Lp-strong solutions
of Dirichlet boundary value problems for Pucci extremal equations with superlinear
growth in Du and unbounded coefficients of the form

P±(D2u)± γ(x)|Du| ± µ(x)|Du|m = f(x) in Ω, u = φ on ∂Ω, (1.1)

where Ω ⊂ Rn is a bounded domain with boundary ∂Ω ∈ C1,1, µ ∈ Lq(Ω), γ ∈
Lq1(Ω), f ∈ Lp(Ω), and m > 1, under some conditions on p, q, q1. The result is
proved with the help of the standard Schauder fixed point theorem and the recent
global W 2,p-estimates for solutions of fully nonlinear equations [16]. The global
W 2,p-estimates of [16] are extensions of the interior W 2,p-estimates of Caffarelli
[2, 3] to the boundary. Our proof is very simple and gives existence of solutions of
(1.1) in W 2,p(Ω); however, it comes at a price of assuming that ∂Ω is of class C1,1
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and ψ ∈ W 2,p(Ω). The existence of strong solutions of (1.1) is key in establishing
the weak Harnack inequality for Lp-viscosity solutions of equations with superlin-
ear growth in Du, which in turn implies the global Cα-continuity of Lp-viscosity
solutions of such equations. This opens up the possibility of other existence results
for (1.1) and general equations (2.1) which we do not pursue in this paper.

There exist several results on existence of Lp-viscosity and Lp-strong solutions
of (1.1) and its more general versions. The precise meaning of these notions of
solutions is explained in the next section. Here we just mention that throughout
the paper we will always assume that

p > p0(n,Λ/λ) ∈ [n/2, n),

where p0 is the constant which gives the range of exponents for which an Aleksan-
drov–Bakelman–Pucci type maximum principle holds for (1.1) with γ ≡ µ ≡ 0
(see [5, 6]). If γ, µ ∈ L∞(Ω) and ‖µ‖∞‖f‖p is small, existence of Lp-viscosity
solutions of (1.1) can be deduced from Theorem 5.1 of [9], and if γ ∈ Lq(Ω),
q > n, µ ∈ L∞(Ω) and ‖µ‖∞‖f‖n is small, existence of Ln-viscosity solutions of
(1.1) follows from Theorem 1 of [14]. For µ ≡ 0, existence of Lp-strong solutions of
(1.1) has been established in [4] if γ ∈ L∞(Ω), and in [7] if γ ∈ L2n(Ω). In [11] it
was shown that Lp-strong solutions of (1.1) with µ ≡ 0 exist if γ ∈ Lq(Ω), q > n.
In this paper we consider the case m > 1, p > p0, and q, q1 > n.

As regards the Harnack inequality, the case of bounded coefficients (i.e. γ, µ ∈
L∞(Ω)) and m = 2 was handled in [15] and, by a different method, in [12] if 1 <
m < 2. If µ ≡ 0 and γ ∈ Lq(Ω), q > n, the weak Harnack inequality was established
in [11]. Finally, global Cα-continuity estimates for Ln-viscosity solutions of (1.1)
if m = 2, µ ∈ L∞(Ω) and γ ∈ Lq(Ω), q > n, have been obtained in [14]. Our weak
Harnack inequality, Theorem 4.2, is restricted to 1 < m < 2.

The paper is organized as follows. In Section 2, we introduce the notation
and present some preliminary results. Section 3 is devoted to the strong solvability
of (1.1) via the Schauder fixed point argument. In Section 4 we show the weak
Harnack inequality for (1.1) and prove Hölder continuity of Lp-viscosity solutions
of general PDE.

2. Preliminaries

Throughout this paper, in order to avoid keeping track of the dependence on the
size of Ω, (unless specified otherwise) we will always assume that

Ω ⊂ B1,

where Br = {x ∈ Rn | |x| < r} for r > 0, and Br(y) = y + Br for y ∈ Rn. It is
standard to track the dependence on Ω by scaling.

For 1 ≤ p ≤ ∞ we will often write ‖·‖p, respectively ‖·‖1,p, ‖·‖2,p, for ‖·‖Lp(Ω),
respectively ‖ · ‖W 1,p(Ω), ‖ · ‖W 2,p(Ω), if there is no possibility of confusion. We will
denote by Lp+(Ω) the set of nonnegative functions in Lp(Ω).
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Consider the equation

F (x, u(x), Du(x), D2u(x)) = f(x) in Ω, (2.1)

where F : Ω× R× Rn × Sn → R and f : Ω → R are given measurable functions,
F (x, ·, ·, ·) is continuous for a.e. x ∈ Ω. Here are the definitions of Lp-strong and
Lp-viscosity solutions. Recall that we assume n/2 ≤ p0 < p <∞.

Definition 2.1. A function u ∈ C(Ω) is called an Lp-strong subsolution (resp.,
supersolution) of (2.1) if u ∈W 2,p

loc (Ω), and

F (x, u(x), Du(x), D2u(x)) ≤ f(x) (resp., ≥ f(x)) a.e. in Ω.

We call u ∈ C(Ω) an Lp-strong solution of (2.1) if it is both an Lp-strong sub- and
supersolution of (2.1).

Definition 2.2. A function u ∈ C(Ω) is called an Lp-viscosity subsolution (resp.,
supersolution) of (2.1) if

ess lim inf
y→x

(F (y, u(y), Dφ(y), D2φ(y))− f(y)) ≤ 0

(resp., ess lim sup
y→x

(F (y, u(y), Dφ(y), D2φ(y))− f(y)) ≥ 0)

whenever u − φ attains its local maximum (resp., minimum) at x ∈ Ω for some
φ ∈W 2,p

loc (Ω).
We call u ∈ C(Ω) an Lp-viscosity solution of (2.1) if it is both an Lp-viscosity

sub- and supersolution of (2.1).

Regarding the constant p0 introduced earlier, the following result is true
[10, 11]. It is not stated in the most general form but it will be sufficient for our
purposes here.

Theorem 2.3. Let Ω ⊂ B1, p0 < p ≤ q1, q1 > n, f ∈ Lp+(Ω), γ ∈ Lq1+ (Ω). If
u ∈ C(Ω) is an Lp-viscosity subsolution (respectively, supersolution) of

P−(D2u)− γ(x)|Du| = f(x) in Ω (2.2)

(resp., P+(D2u) + γ(x)|Du| = −f(x) in Ω), (2.3)

then

sup
Ω
u ≤ sup

∂Ω
u+ C(n, p, q1, λ,Λ, ‖γ‖q1)‖f‖p (2.4)

(resp., inf
Ω
u ≥ inf

∂Ω
u− C(n, p, q1, λ,Λ, ‖γ‖q1)‖f‖p). (2.5)

We point out that by [11], Lp-strong sub- and supersolutions considered in
this paper are also Lp-viscosity sub- and supersolutions.

Recently, Winter [16] established global up to the boundary W 2,p-estimates
for solutions of fully nonlinear uniformly elliptic equations. The theorem below
uses these estimates to show strong solvability of (1.1) in W 2,p(Ω) when µ ≡ 0.
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Proposition 2.4. Let ∂Ω ∈ C1,1. Let p0 < p ≤ q1, q1 > n. For every f ∈ Lp(Ω),
γ ∈ Lq1(Ω) and ψ ∈W 2,p(Ω), there exists a unique (among strong and Lp-viscosity
solutions) Lp-strong solution u ∈W 2,p(Ω) of

P±(D2u)± γ(x)|Du| = f(x) in Ω, u = ψ on ∂Ω (2.6)

such that
‖u‖∞ ≤ ‖ψ‖L∞(∂Ω) + C‖f‖p (2.7)

and
‖u‖W 2,p(Ω) ≤ C̄(‖ψ‖W 2,p(Ω) + ‖f‖p), (2.8)

where C is from Theorem 2.3 and C̄ = C̄(n, λ,Λ, p, q1, ‖γ‖q1 ,Ω) > 0.

Proof. We will only show the conclusion for the upper extremal equation. It follows
from [11, Theorem 7.1] that there exists a unique strong solution u ∈ C(Ω) ∩
W 2,p

loc (Ω) of (2.6) such that (2.7) holds. If γ is bounded then u ∈ W 2,p(Ω) by
Theorem 4.3 of [16]. If we can show (2.8) for each bounded γ then the result can be
obtained by a typical approximation argument and maximum principle estimates
of Theorem 2.3. Therefore we can assume from the beginning that u ∈ W 2,p(Ω).
Estimate (2.8) will follow from a standard covering argument once we can show
local W 2,p-estimates in a neighborhood of every point x0 ∈ Ω.

First we notice that v = u− ψ satisfies the equation

P+(D2v) + γ(x)|Dv| = g(x) in Ω, v = 0 on ∂Ω,

where

g(x) = f(x)+P+(D2(u−ψ)(x))+γ(x)|D(u−ψ)(x)|−P+(D2u(x))−γ(x)|Du(x)|,
and hence ‖g‖p ≤ C(n, p, λ,Λ, ‖γ‖q1 ,Ω)‖ψ‖2,p + ‖f‖p.

We will be using the notation from [16]. Let x0 ∈ ∂Ω. Since ∂Ω ∈ C1,1 there
exists a neighborhood U(x0) of x0 and a C1,1-diffeomorphism Ψ : U(x0)→ B1(0)
such that Ψ(x0) = 0 and Ψ(Ω ∩ U(x0)) = B+

1 , where B+
ρ = {x ∈ Bρ(0) |xn > 0}

for ρ > 0. It is easy to see that the function ṽ = v ◦ Ψ−1 ∈ W 2,p(B+
1 ) is an

Lp-strong solution of the equation

F̃ (x,Dṽ,D2ṽ) = g̃(x) in B+
1 ,

where

F̃ (x, p,X) = P+
(
DΨT ◦Ψ−1(x)XDΨ ◦Ψ−1(x) + (p∂i,jΨ ◦Ψ−1(x))1≤i,j≤n

)
+ γ̃(x)|pDΨ ◦Ψ−1(x)| = g̃(x),

γ̃ = γ ◦Ψ−1, and g̃ = g ◦Ψ−1. Moreover ṽ = 0 on {xn = 0}.
Let now R > 0 and r ∈ (0, R). Choose φ ∈ C∞0 (Bρ), where ρ = (R + r)/2,

such that

0 ≤ φ ≤ 1 in Bρ, φ = 1 on Br, |Dkφ| ≤ C

(R− r)k
in Bρ (k = 1, 2).

Since Ψ is a C1,1-diffeomorphism, by [16, Theorem 4.2],

‖D2ṽ‖Lp(B+
r ) ≤ ‖D

2(φṽ)‖p ≤ C(n, p, λ,Λ,Ω)(‖F̃ (x, 0, D2(φṽ)(x))‖p + ‖ṽ‖∞).
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We now notice that

‖F̃ (x, 0, D2(φṽ)(x))‖p ≤ ‖φF̃ (x, 0, D2ṽ(x))‖p +
C1

(R− r)2
‖ṽ‖Lp(B+

ρ )

+
C1

R− r
‖Dṽ‖Lp(B+

ρ )

and

‖φF̃ (x, 0, D2ṽ(x))‖p ≤ ‖g̃‖p +
C1

R− r
‖γ̄‖p‖ṽ‖∞ + C1‖γ̄D(φṽ)‖p

for some constant C1 = C1(n, p, λ,Λ,Ω), where γ̄(x) = γ̃(x) + 1 We need to
estimate the last term ‖γ̄D(φṽ)‖p.

We consider three cases: (i) p > n, (ii) n > p > p0, and (iii) n = p.

(i) p > n: In this case ‖γ̄D(φṽ)‖p ≤ ‖D(φṽ)‖∞‖γ̄‖p ≤ C2‖D2(φṽ)‖p′‖γ‖p for any
p′ ∈ (n, p). Therefore, by the Hölder inequality, we have

‖γD(φṽ)‖p ≤ C2R
n(p−p′)
pp′ ‖γ̄‖q1‖D2(φv)‖p.

Thus, for small R = R(n, p, q1, λ,Λ, ‖γ‖q1 ,Ω) > 0, setting

Φj = sup
0<r<R

(R− r)j‖Djv‖Lp(B+
r ),

we obtain Φ2 ≤ C3(‖g̃‖p+‖ṽ‖∞+Φ0 +Φ1). By a standard interpolation argument
(see [8, p. 237]) we obtain

Φ2 ≤ C4(‖g̃‖p + ‖ṽ‖∞). (2.9)

(ii) p0 < p < n: Since ‖γ̄D(φv)‖p ≤ ‖γ̄‖n‖D(φv)‖p∗ ≤ C‖γ̄‖n‖D2(φv)‖2,p, where
p∗ = np/(n− p), we have ‖γ̄D(φv)‖p ≤ C‖γ̄‖q1‖D2(φv)‖pR(q1−n)n/q1 . If R > 0 is
small we can follow the argument in (i) to obtain (2.9).

(iii) p = n: This case can be treated as in (ii) because q1 > n and W 2,n ↪→ W 1,q′

for any q′ > 1.

Therefore, using (2.7) and ‖g̃‖p ≤ C‖g‖p, we have shown that there exists
R = R(n, p, q1, λ,Λ, ‖γ‖q1 ,Ω) > 0 such that for every x0 ∈ ∂Ω,

‖D2u‖Lp(Ψ−1(B+
R/2)) ≤ C(n, p, q1, λ,Λ, ‖γ‖q1 ,Ω)(‖f‖p + ‖ψ‖2,p).

Similar and in fact easier arguments give us local estimates when x0 ∈ Ω. Therefore
(2.8) follows. �

We recall that in particular if ∂Ω ∈ C1,1 then the embedding ofW 2,p(Ω) into
W 1,r(Ω) is compact for r < p∗ = np/(n− p) (n∗ = +∞) if p ≤ n and for r = +∞
if p > n, and

‖u‖1,r ≤ D‖u‖2,p (2.10)

for some constant D = D(n, p, r,Ω).
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3. Existence of strong solutions of PDE with superlinear growth
terms

In this section, we are concerned with the existence of Lp-strong solutions of (1.1)
for m > 1.

Theorem 3.1. Let ∂Ω ∈ C1,1, p0 < p ≤ q1, q1 > n, f ∈ Lp(Ω), γ ∈ Lq1(Ω) and
ψ ∈W 2,p(Ω). Assume that one of the following conditions holds: (i) q =∞, p0 < p, n > m(n− p),

(ii) n < p ≤ q <∞,
(iii) p0 < p ≤ n < q <∞, mq(n− p) < n(q − p).

(3.1)

Let 
r = pm for (i),
r =∞ for (ii) with p = q,
r = mpq

q−p for (ii) with p < q or (iii).
(3.2)

Set ε1 = (2C̄D)−m > 0, where C̄ is from Proposition 2.4 and D is from (2.10). If

‖µ‖q(‖f‖p + ‖ψ‖2,p)m−1 < ε1, (3.3)

then there exist Lp-strong solutions u ∈W 2,p(Ω) of{
P±(D2u)± γ(x)|Du| ± µ(x)|Du|m = f(x) in Ω,
u = ψ on ∂Ω. (3.4)

Moreover
‖u‖W 2,p(Ω) ≤ Ĉ(‖f‖p + ‖ψ‖2,p) (3.5)

for some Ĉ = Ĉ(n, λ,Λ, p, q1, q,m, ‖γ‖q1 ,Ω) > 0.

Remark 3.2. We note that under (i) of (3.1), the last inequality n > m(n − p) is
always true for p ≥ n.

Proof. We will only show the result for the upper extremal equation. It is easy
to see from (3.2) that in each of the cases of (3.1), if g ∈ Lr(Ω), then µgm ∈
Lp(Ω). Moreover the embedding of W 2,p(Ω) into W 1,r(Ω) is compact. Thanks
to Proposition 2.4, we can define the mapping T : W 1,r(Ω) → W 2,p(Ω) in the
following manner: for v ∈ W 1,r(Ω), we denote by u = Tv the (unique) Lp-strong
solution of {

P+(D2u) + γ(x)|Du| = f(x)− µ(x)|Dv(x)|m in Ω,
u = ψ on ∂Ω.

It follows from Proposition 2.4, (3.2) and the Hölder inequality that

‖Tv‖∞ ≤ ‖ψ‖L∞(∂Ω) + C(‖f‖p + ‖µ‖q‖Dv‖mr ), (3.6)

and
‖u‖W 2,p(Ω) ≤ C̄(‖ψ‖2,p + ‖f‖p + ‖µ‖q‖Dv‖mr ). (3.7)

We will prove that T has a fixed point by applying the standard Schauder
fixed point theorem. To do this it is enough to show that T is continuous in
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W 1,r(Ω), and that for some R > 0, T (BR) is a precompact subset of BR, where
BR := {v ∈W 1,r(Ω) : ‖v‖W 1,r(Ω) ≤ R}.

Continuity of T : Let vk → v in W 1,r(Ω) as k → ∞. Define uk = Tvk. By (3.7)
we get ‖Tvk‖2,p ≤ C1 for k = 1, 2, . . . and so Tvk ⇀ u in W 2,p(Ω) for some
u ∈ W 2,p(Ω), and thus, using compactness of Sobolev embeddings, Tvk → u in
W 1,r(Ω). Moreover, setting gk(x) = f(x) − µ(x)|Dvk(x)|m and g(x) = f(x) −
µ(x)|Dv(x)|m, we have

‖gk − g‖p ≤ ‖µ(|Dvk|m − |Dv|m)‖p
≤ C2‖µ|D(vk − v)|(|Dvk|m−1 + |Dv|m−1)‖p
≤ C2‖µ‖q‖D(vk − v2)‖r(‖Dv1‖m−1

r + ‖Dv2‖m−1
r )

in each case, which implies by the maximum principle (Theorem 2.3) that Tvk →
Tv in C(Ω). Therefore we must have Tv = u.

T : BR → BR for some R > 0: Let ‖v‖W 1,r(Ω) ≤ R. By (2.10) and (3.7) we have

‖Tv‖1,r ≤ D‖Tv‖2,p ≤ DC̄(‖f‖p + ‖ψ‖2,p + ‖µ|Dv|m‖p)
≤ DC̄(‖f‖p + ‖ψ‖2,p + ‖µ‖qRm)

Set R = α(‖f‖p + ‖ψ‖2,p), where α = 2DC̄ > 0. Then

‖Tv‖1,r ≤
α

2
(‖f‖p + ‖ψ‖2,p)(1 + ‖µ‖qαm(‖f‖p + ‖ψ‖2,p)m−1).

Thus, if (3.3) is satisfied, then ‖Tv‖1,r ≤ R.
Finally, (3.7) ensures that T (BR) is precompact in W 1,r(Ω) and this implies

that T : BR → BR has a fixed point which is an Lp-strong solution of (3.4).
Estimates (3.6) and (3.7), together with (3.3), yield (3.5) for some constant Ĉ. �

Using Theorem 3.1 we can obtain another proof of the Aleksandrov–Bakel-
man–Pucci maximum principle for Pucci extremal equations with superlinear
growth in Du.

Theorem 3.3. Let p0 < p ≤ q1, q1 > n, and let one of (3.1) hold. Let ε1

be from Theorem 3.4 for Ω = B1 and r as in (3.2). Then there exists C =
C(n, λ,Λ, p, q1, q,m, ‖γ‖q1) such that if γ ∈ Lq1+ (Ω), µ ∈ Lq+(Ω) and f ∈ Lp+(Ω)
satisfy

‖µ‖q(2‖f‖p)m−1 < ε1, (3.8)

and if u ∈ C(Ω) is an Lp-viscosity subsolution (resp., supersolution) of

P−(D2u)− γ(x)|Du| − µ(x)|Du|m ≤ f(x) in Ω+ = {x ∈ Ω : u(x) > max
∂Ω

u}

(resp., P+(D2u) + γ(x)|Du|+ µ(x)|Du|m ≥ −f(x)
in Ω− = {x ∈ Ω : −u(x) > max

∂Ω
(−u)}),
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then

max
Ω

u ≤ max
∂Ω

u+ C‖f‖Lp(Ω+) (3.9)

(resp., max
Ω

(−u) ≤ max
∂Ω

(−u) + C‖f‖Lp(Ω−)). (3.10)

Remark 3.4. We point out that condition (3.8) and estimate (3.9) are in fact
equivalent to those in Theorem 2.6 of [11] and Theorems 3.4 and 3.5 of [13].

Proof. In view of Theorem 3.1, if δ > 0 is such that 2m−1‖µ‖q(‖f‖p+ δ)m−1 < ε1,
we can find an Lp-strong solution vδ ∈W 2,p(B1) of{
P+(D2vδ)+γ(x)|Dvδ|+2m−1µ(x)χΩ+(x)|Dvδ|m = −f(x)χΩ+(x)−δ in B1,
vδ = 0 on ∂B1.

Estimate (3.5) in particular implies that

‖vδ‖∞ ≤ C(‖f‖Lp(Ω+) + δ) (3.11)

for some C = C(n, λ,Λ, p, q1, q,m, ‖γ‖q1) > 0. Setting w := u+vδ, we easily verify
that w is an Lp-viscosity subsolution of

P−(D2w)− γ(x)|Dw| − 2m−1µ(x)|Dw|m ≤ −δ in Ω+.

Hence, from the definition of viscosity solution, we have

max
Ω

+
w = max

∂Ω+
w,

which, together with (3.11), concludes the proof after we send δ → 0. �

4. Weak Harnack inequality
In this section, as an application of the existence of Lp-strong solutions of extremal
PDE, we obtain the weak Harnack inequality for Lp-viscosity supersolutions of
(1.1). We denote by QR the closed cube with side-length R > 0 and center at 0.
We set QR(x) = x+QR for x ∈ Rn.

We will first construct an auxiliary function, which was explicitly given by
Caffarelli [2] if µ ≡ 0, and by Koike–Takahashi [12] if µ ∈ L∞(Ω). However,
since we need to solve Pucci extremal equations with unbounded µ, we follow the
argument of [11].

We choose and fix two domains U, V ⊂ Rn with smooth boundaries such that

Q1/2 ⊂ U ⊂ Q3/4, Q3 ⊂ V ⊂ Q4.

The constants in Lemma 4.1 and Theorems 4.2 and 4.3 may depend on the choice
of U and V , but we omit this dependence since the sets are fixed.

Lemma 4.1. Assume that one of (3.1) holds. Set p̃ = n+ 1 in case (i), and p̃ = q
in cases (ii) and (iii) of (3.1). There exists ε2 = ε2(n, p, q, λ,Λ,m) > 0 such that
if µ ∈ Lq+(V ) satisfies

‖µ‖Lq(V ) < ε2,
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then there exist φ ∈W 2,p̃(V ) and ξ ∈ Lp̃(V ) such that

(i) P−(D2φ)− µ(x)|Dφ|m = ξ(x) in V,
(ii) φ = 0 on ∂V,

(iii) φ ≤ −2 in Q3,
(iv) ξ = 0 in V \ U,
(v) ‖ξ‖p̃ ≤ C̃(n, p, q, λ,Λ,m).

Proof. Let ε1 be from Theorem 3.4 for Ω = V \U , γ = 0 and r as in (3.2). We choose
ζ ∈ C2(V \U) such that ζ = 0 on ∂V and ζ = −1 on ∂U . Set C1 = ‖ζ‖W 2,p̃(V \U).
Then if µ̃ ∈ Lq+(V ) with ‖µ̃‖q < C1−m

1 ε1, by Theorem 3.1 we can find an Lp̃-strong
solution φ0 ∈W 2,p̃(V \ U) of{

P−(D2φ0)− µ̃(x)|Dφ0|m = 0 in V \ U,
φ0 = ζ on ∂V ∪ ∂U. (4.1)

We claim that there exists σ > 0 such that if ‖µ̃‖q is sufficiently small then
φ ≤ −σ on Q3 \ U . If not then there exist µ̃k ∈ Lq(V ) with ‖µ̃k‖q → 0 and
supQ3

φk → 0, where φk are solutions of (4.1) with µ̃ replaced by µ̃k. Since φk are
also Lp̃-viscosity solutions [11] and ‖φk‖2,p̃ ≤ C we find (see the appendix of [11])
that φk → φ̄ in C(V \ U), where φ is an Lp̃-viscosity solution of (4.1) with µ̃ = 0
and supQ3\U φ̄ = 0. This is however impossible by the strong maximum principle.
Therefore there must exist ε̃2 ≤ C1−m

1 ε1 small enough so that the claim holds for
some σ > 0 if ‖µ̃‖q ≤ ε̃2.

We now extend φ0 onto the whole V as a W 2,p̃ function φ so that (iii) is
preserved. Since by (3.5), ‖φ0‖W 2,p̃(V \U) ≤ Ĉ‖ζ‖2,p̃, (i) and (v) will be satisfied
for φ0 with some ξ1 and constant C̃.

We now set φ = 2φ0/σ. This function satisfies the equation

P−(D2φ)− σm−1

2m−1
µ̃(x)|Dφ|m =

2
σ
ξ1(x) in V

and therefore it is enough to set µ̃(x) = 2m−1µ(x)/σm−1, ξ(x) = 2ξ1(x)/σ and
take ε2 = σm−1ε̃2/2m−1. �

We can now establish the weak Harnack inequality for (1.1).

Theorem 4.2. Assume one of (3.1), and

2− n/q > m > 1. (4.2)

LetM ≥ 0, f ∈ Lp+(V ) and µ ∈ Lq+(V ). Then there exists ε3 = ε3(n, p, λ,Λ,m,M)
> 0, C = C(n, λ,Λ, p, q,m) > 0 and r = r(n, λ,Λ, p, q,m) > 0 such that if

‖µ‖q(1 + ‖f‖m−1
p ) < ε3, (4.3)

and u ∈ C(V ) is an Lp-viscosity supersolution of

P+(D2u) + µ(x)|Du|m ≥ −f(x) in V
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satisfying 0 ≤ u ≤M in V , then(∫
Q1

ur dx

)1/r

≤ C(inf
Q1
u+ ‖f‖Lp(V )).

Proof. We first reduce the proof to the case f ≡ 0. Let ε1 = ε1(n, p, λ,Λ,m) be
from Theorem 3.1 for V . If ‖µ‖q(4‖f‖p)m−1 < ε1, due to Theorem 3.1, we can
find v ∈W 2,p(V ) such that

P−(D2v)− 2m−1µ(x)|Dv|m = f(x) in V,

and v = 0 on ∂V . By Theorem 3.3, we have

0 ≤ v ≤ C‖f‖p in V. (4.4)

We notice that w := u+ v is an Lp-viscosity supersolution of

P+(D2w) + 2m−1µ(x)|Dw|m ≥ 0 in V.

If the assertion holds for f ≡ 0, then we have(∫
Q1

wr dx

)1/r

≤ C inf
Q1
w.

Hence, due to (4.4), we obtain the result.
Therefore we can assume that f ≡ 0. Let ε2 be from Lemma 4.1. Set v =

u/(m0 + ε), where m0 = infQ1 u and ε > 0. We need to show that if infQ1 v ≤ 1,
then (

∫
Q1
vrdx)1/r ≤ C. The function v is an Lp-viscosity supersolution of

P+(D2v) + µ(x)(m0 + ε)m−1|Dv|m ≥ 0 in V.

Suppose that ‖µ‖qMm−1 < ε2. Let φ be the function from Lemma 4.1 applied
with µ := (m0 +ε)m−1µ for ε sufficiently small. Then w := v+φ is an Lp-viscosity
supersolution of

P+(D2w) + 2m−1(m0 + ε)m−1µ(x)|Dw|m ≥ ξ(x) in V,

where ξ is from Lemma 4.1. Define Cn = ‖ξ‖n.
We impose the last restriction that ‖µ‖q(4MCn)m−1 < ε1(n, n, λ,Λ,m),

where ε1 is from Theorem 3.1 for V and p = n. Then, for small ε > 0, we de-
duce from Theorem 3.3 that

sup
V

(−w) ≤ C‖ξ‖Ln(Q+
1 ),

where Q+
1 = {x ∈ Q1 | w(x) ≤ 0}. (The three restrictions we imposed on ‖f‖p and

‖µ‖q provide us with condition (4.3) for some ε3 > 0.) On the other hand, since
1 ≤ 2− infQ1 v ≤ 2− infQ3 v ≤ supQ3

(−w) ≤ supV (−w), we have

1 ≤ C|Q+
1 |p̃/(p̃−n)‖ξ‖p̃,

where p̃ is from Lemma 4.1. This implies that there exists θ = θ(n, p, q, λ,Λ,m) ∈
(0, 1) such that

|{x ∈ Q1 | v(x) > K}| ≤ θ, (4.5)
where K = maxV (−φ) > 1.
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To prove the claim it is enough to show that

|{x ∈ Q1 | v(x) > Kj}| ≤ θj (j = 1, 2, . . .).

To this end, assuming |B| ≤ θj−1 for j ≥ 2, where B := {x ∈ Q1 | v(x) > Kj−1},
we will show that

|A| ≤ θ|B|, (4.6)
where A = {x ∈ Q1 | v(x) > Kj}. Following the argument in [12] (cf. Lemma 4.2
in [3]), by (4.2), we divide Q1 into cubes with length 2−`, where ` ∈ N satisfies

2`(2−m−n/q) ≥ K(j−1)(m−1), (4.7)

such that Q1 =
⋃2`n

i=1Q2−`(xi) with xi ∈ Q1. To get (4.6), it is enough to show

|A ∩Q2−`(xi)| ≤ θ|B ∩Q2−`(xi)| for i = 1, 2, . . . , 2`n.

We fix i ∈ {1, 2, . . . , 2`n}. By translation, we may suppose that xi = 0. Thus, by
Lemma 4.2 in [3], it is sufficient to prove that for any dyadic cubeQ := Q2−`−i(x̂) ⊂
Q2−` for i ∈ N and x̂ ∈ Q2−` , if

|A ∩Q| > θ|Q| = θ

2n(`+i)
, (4.8)

then Q̃ ⊂ B, where Q̃ is the predecessor of Q.
Again, we will assume that x̂ = 0 for simplicity of notation. Suppose that

there exists x̃ ∈ Q̃ such that v(x̃) ≤ Kj−1. We set ζ(x) = K1−jv(2−`−ix). It is
easy to see that ζ is an Lp-viscosity supersolution of

P+(D2ζ) + µ̂(x)|Dζ|m ≥ 0,

where

µ̂(x) =
K(j−1)(m−1)µ(2−`−ix)

2(`+i)(2−m)
.

We notice that (4.7) yields
‖µ̂‖Lq(V ) ≤ ‖µ‖q.

Remembering that we only needed infQ3 v ≤ 1 to get (4.5), we obtain

|{x ∈ Q1 | ζ(x) > K}| ≤ θ,
which implies

|{x ∈ Q | v(x) > Kj}| ≤ θ

2n(`+i)
.

This contradicts (4.8) and therefore the proof is complete. �

It is standard to extend the weak Harnack inequality to the boundary ∂Ω.
Therefore we omit the proof of it referring to [11] for the details.

Theorem 4.3. Let 0 ∈ ∂Ω. Assume one of (3.1), and (4.2). Let ε3 be from Theorem
4.2. Let M ≥ 0. There exist C = C(n, λ,Λ, p, q,m) > 0 and r = r(n, λ,Λ, p, q,m)
> 0 such that if f ∈ Lp+(Ω) and µ ∈ Lq+(Ω) satisfy (4.3), and u ∈ C(Ω) is an
Lp-viscosity supersolution of

P+(D2u) + µ(x)|Du|m ≥ −f(x) in Ω
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such that 0 ≤ u ≤M in Ω, then(∫
Q1

urmdx

)1/r

≤ C(inf
Q1
um + ‖f‖Lp(V ∩Ω)),

where m = infV ∩∂Ω u, and

um(x) =
{

min{u(x),m} for x ∈ V ∩ Ω,
m for x ∈ V \ Ω.

Remark 4.4. By using a different version of Lemma 4.1 or by scaling and applying
a covering argument of Cabré [1], we may replace V in Theorems 4.2 and 4.3 by
QR for any R > 1.

A consequence of Theorems 4.2 and 4.3 is the Hölder continuity of Lp-
viscosity solutions of general fully nonlinear PDE

F (x, u,Du,D2u) = f(x) in Ω. (4.9)

We will just state the result and make a few comments about its proof referring
for the details to [11].

We assume that F : Ω × R × Rn × Sn → R is measurable, F (x, ·, ·, ·) is
continuous for a.e. x ∈ Ω,

f ∈ Lp(Ω), (4.10)

P−(X − Y ) ≤ F (x, r, ξ,X)− F (x, r, ξ, Y ) ≤ P+(X − Y ) (4.11)

for x ∈ Ω, ξ ∈ Rn, X,Y ∈ Sn,

F (x, 0, 0, O) = 0 for x ∈ Ω, (4.12)
|F (x, r, ξ, O)| ≤ f0(x)|r|+ µ(x)|ξ|m for x ∈ Ω, r ∈ R, ξ ∈ Rn, (4.13)

where f0 ∈ Lp+(Ω) and µ ∈ Lq+(Ω) and m > 1. We also assume that there exist
Θ > 0 and t0 > 0, such that

|Qt(x) \ Ω| ≥ Θtn for x ∈ ∂Ω and 0 < t ≤ t0. (4.14)

Theorem 4.5. Assume that (3.1), (4.2), (4.10), (4.11), (4.12), (4.13), (4.14) hold.
For M ≥ 1, σ ∈ (0, 1) and g ∈ Cσ(∂Ω), there exist α = α(n, λ,Λ, p, q,m, σ,Θ) ∈
(0, 1) and C̃ = C̃(n, λ,Λ, p, q,m,M, ‖f0‖p, ‖f‖p, ‖µ‖q,diam(Ω),Θ, t0) > 0 such
that if u ∈ C(Ω) is an Lp-viscosity solution of (4.9) such that |u(x)| ≤ M for
x ∈ Ω, and u = g on ∂Ω, then

|u(x)− u(y)| ≤ C̃|x− y|α for x, y ∈ Ω.

Remark 4.6. When f0 ≡ 0 (i.e. when F does not depend on u), a bound on ‖u‖∞
for Lp-viscosity solutions of (4.9) is provided by Theorem 2.11 if ‖µ‖q‖f‖m−1

p is
small enough.
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Proof. We first observe that ±u are Lp-viscosity supersolutions of

P+(D2u) + µ(x)|Du|m ≥ −|f(x)| − f0(x)|u| in Ω.

Suppose that Q4r ⊂ Ω. Setting v(x) = u(rx) for x ∈ Q4, we observe that v is an
Lp-viscosity supersolution of

P+(D2v) + µ̂(x)|Dv|m ≥ −g(x) in Q4,

where µ̂(x) = r2−mµ(rx) and g(x) = r2(|f(rx)| + f0(rx)M). Using (4.2) and
p > p0 > n/2 it is easy to verify that ‖µ̂‖Lq(Q4) and ‖g‖Lp(Q4) go to 0 as r → 0
and so we can find r0 > 0 such that (4.3) is satisfied for r < r0. Hence we may
repeat the arguments of the proof of Theorem 6.2 of [11], together with Theorems
4.2 and 4.3, to conclude the proof. �

Acknowledgments
S. Koike was supported by Grant-in-Aid for Scientific Research (No. 20340026)
of Japan Society for the Promotion of Science. A. Święch was supported by NSF
grant DMS 0500270.

References
[1] X. Cabré, On the Alexandroff–Bakelman–Pucci estimate and the reversed Hölder

inequality for solutions of elliptic and parabolic equations. Comm. Pure Appl. Math.
48 (1995), 539–570.

[2] L. A. Caffarelli, Interior a priori estimates for solutions of fully non-linear equations
Ann. of Math. 130 (1989), 189–213.

[3] L. A. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations. Amer. Math. Soc.,
Providence, 1995.

[4] L. A. Caffarelli, M. G. Crandall, M. Kocan, and A. Święch, On viscosity solutions of
fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49
(1996), 365–397.

[5] L. Escauriaza, W 2,n a priori estimates for solutions to fully non-linear equations.
Indiana Univ. Math. J. 42 (1993), 413–423.

[6] E. B. Fabes and D. W. Stroock, The Lp-integrability of Green’s functions and fun-
damental solutions for elliptic and parabolic equations. Duke Math. J. 51 (1984),
997–1016.

[7] P. Fok, Some maximum principles and continuity estimates for fully nonlinear elliptic
equations of second order. Ph.D. Thesis, UCSB, 1996.

[8] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second
Order. Reprint of the 1998 edition, Classics Math., Springer, Berlin, 2001.

[9] S. Koike and A. Święch, Maximum principle and existence of Lp-viscosity solutions
for fully nonlinear uniformly elliptic equations with measurable and quadratic terms.
Nonlinear Differential Equations Appl. 11 (2004), 491–509.

[10] S. Koike and A. Święch, Maximum principle for fully nonlinear equations via the
iterated comparison function method. Math. Ann. 339 (2007), 461–484.



304 S. Koike and A. Święch JFPTA

[11] S. Koike and A. Święch, Weak Harnack inequality for fully nonlinear uniformly el-
liptic PDE with unbounded ingredients. J. Math. Soc. Japan, to appear.

[12] S. Koike and T. Takahashi, Remarks on regularity of viscosity solutions for fully non-
linear uniformly elliptic PDEs with measurable ingredients. Adv. Differential Equa-
tions 7 (2002), 493–512.

[13] K. Nakagawa, Maximum principle for Lp-viscosity solutions of fully nonlinear equa-
tions with unbounded ingredients and superlinear growth terms. Adv. Math. Sci.
Appl., to appear.

[14] B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE. Arch. Ration. Mech.
Anal., to appear.

[15] N. S. Trudinger, Comparison principles and pointwise estimates for viscosity solu-
tions of nonlinear elliptic equations. Rev. Mat. Iberoamer. 4 (1988), 453–468.

[16] N. Winter, W 2,p and W 1,p-estimates at the boundary for solutions of fully nonlinear,
uniformly elliptic equations. Z. Anal. Anwend. 28 (2009), 129–164.

Shigeaki Koike
Department of Mathematics
Saitama University
Sakura, Saitama 338-8570, Japan
e-mail: skoike@rimath.saitama-u.ac.jp

Andrzej Święch
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.
e-mail: swiech@math.gatech.edu

To access this journal online:
www.birkhauser.ch/jfpta


