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Abstract. Roughly speaking a solitary wave is a solution of a field equation
whose energy travels as a localized packet and which preserves this localization
in time. This paper is an introduction to the study of solitary waves relative
to the nonlinear wave equation and to the Abelian gauge theories. Abelian
gauge theories consist of a class of field equations obtained by coupling in a
suitable way the nonlinear wave equation with the Maxwell equations. They
provide a model for the interaction of matter with the electromagnetic field.
One of the motivations of this study lies in the fact that the nonlinear wave
equation and the Abelian gauge theories are the simplest equations which
satisfy the basic principles of modern physics.
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1. Introduction

By solitary wave we mean a solution of a field equation whose energy travels as a
localized packet; by soliton, we mean a solitary wave which exhibits some form of
stability. In this respect solitary waves and solitons have a particle-like behavior
and they occur in many questions of mathematical physics, such as classical and
quantum field theory, nonlinear optics, fluid mechanics, plasma physics (see e.g.
[21], [16]).

This paper is a short introduction to the study of solitary waves and solitons
for the basic equations of modern physics. By basic equations, we do not mean
equations which model some basic physical theory, but the simplest equations
which satisfy the fundamental principles of modern physics, namely:
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A-1. The equations are variational.
A-2. The equations are invariant for the Poincaré group.
A-3. The equations are invariant for a gauge group.

These three principles are shared by every fundamental theory in physics. We are
not interested in any particular physical theory. Our point is the investigation
of the consequences of these three principles for the existence and properties of
solitary waves related to the equations satisfying A-1, A-2, A-3.

2. The basic principles

2.1. Variational principles

Assumption A-1 states that the fundamental equations of physics are the Euler–
Lagrange equations of a suitable functional. This fact is quite surprising. There is
no logical reason for this. It is just an empirical fact: all the fundamental equa-
tions which have been discovered until now derive from a variational principle. If
the creator of the universe were a mathematician, he would work in variational
calculus!

For example, the equations of motion of k particles whose positions at time
t are given by xj(t), xj ∈ R3, j = 1, . . . , k, are obtained as the Euler–Lagrange
equations relative to the functional

S =

∫
(

∑

j

mj

2
|ẋj |2 − V (t, x1, . . . , xk)

)

dt (1)

where mj is the mass of the j-th particle and V is the potential energy of the
system.

Also the dynamics of fields can be determined by variational principles. The
basic fields of physics can be regarded as a modification of an entity which in the
nineteenth century was called “ether” and which is now called “vacuum”. From
the mathematical point of view a field is a function

ψ : R
3+1 → R

k, ψ = (ψ1, . . . , ψk),

where R3+1 is the space-time continuum and Rk is called the internal parameter
space. The space and time coordinates will be denoted by x = (x1, x2, x3) and t
respectively. The function ψ(t, x) describes the internal state of the ether (or
vacuum) at the point x and at time t.

From the mathematical point of view, assumption A-1 states that the field
equations are obtained by the variation of the action functional defined as follows:

S =

∫ ∫

L (t, x, ψ,∇ψ, ∂tψ) dx dt. (2)

The function L is called a Lagrangian density function, but in the following for
simplicity we will call it just a Lagrangian.
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2.2. The Poincaré invariance

An equation

F (u) = 0, u ∈ V,

is called invariant for a representation Tg of a Lie group if, given any solution u,
Tgu is also a solution. If this equation is variational, i.e. F (u) = dJ(u), then it is
invariant for Tg if J is invariant, i.e. J(Tgu) = J(u). In particular, if J has the
form (2), it is sufficient to have L invariant:

L (t, x, Tgψ,∇Tgψ, ∂tTgψ) = L (t, x, ψ,∇ψ, ∂tψ) .

Assumption A-2 states that the fundamental equations of physics are invari-
ant for the Poincaré group: it is the only principle on which the special theory of
relativity is based, in other words, its full content.

The Poincaré group P is a generalization of the isometry group E. The isom-
etry group E in R

3 is the group of transformations which preserve the quadratic
form

|x|2 =
3

∑

i=1

x2
i

and hence the Euclidean distance

dE(x, y) =

√

√

√

√

3
∑

i=1

|xi − yi|2,

that is, if g ∈ E, then

dE(gx, gy) = dE(x, y).

If we identify the physical space with R3, the isometry group is also called the
congruence group. Roughly speaking, the Euclidean geometry is the study of the
properties of geometric objects which are preserved by the congruence group. This
group is generated by translations and rotations. For this reason it is also called
the group of rototranslations. In fact an element of this group can be represented
as

gx = Ox+ v

where O ∈ O(3) is an orthogonal matrix (rotation) and v ∈ R3 is a vector (trans-
lation). Thus E is a Lie group with six generators.

The Poincaré group P is the transformation group in R4 which preserves the
quadratic form

|x|2M = −x2
0 +

3
∑

i=1

x2
i

which is induced by the Minkowski bilinear form

〈x, y〉M = −x0y0 +
3

∑

i=1

xiyi.
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The 4-vectors v = (v0, . . . , v3) ≡ (v0,v) are classified according to their causal
nature as follows:

• a 4-vector is called space-like if |v|2M > 0,

• a 4-vector is called light-like if |v|2M = 0,

• a 4-vector is called time-like if |v|2M < 0.

The Poincaré group is a 10-parameter Lie group generated by the following
one-parameter transformations:

• Space translations. This invariance guarantees that space is homogeneous, i.e.
the laws of physics are independent of space: if an experiment is performed
here or there, it gives the same results.

• Space rotations. This invariance guarantees that space is isotropic: the laws
of physics are independent of orientation.

• Time translations. This invariance guarantees that time is isotropic, i.e. the
laws of physics are independent of time: if an experiment is performed earlier
or later, it gives the same results.

• Lorentz transformations. This invariance guarantees the principle of rela-
tivity which states that an experiment performed in an inertial frame gives
the same results as an experiment performed in a non-moving frame. The
Lorentz transformations form the Lorentz group which is a three-parameter
Lie subgroup of P. The generators of the Lorentz group are the following:

x′ = γ(x− v1t),
y′ = y,
z′ = z,
t′ = γ(t− v1x);

x′ = x,
y′ = γ(y − v2t),
z′ = z,
t′ = γ(t− v2y);

x′ = x,
y′ = y,
z′ = γ(z − v3t),
t′ = γ(t− v3z),

where

γ =
1√

1 − v2
(3)

with v = vi, i = 1, 2, 3.

The causal nature of a vector is not changed by a Lorentz transformation, and
hence the Lorentz group is not a transitive group: space and time are mixed,
but. . . not so much.

The Lorentz group is not the only group which guarantees the principle of
relativity. For example the Galileo group also does. Thus the Lorentz invariance
is an empirical fact and, as will be shown below (see Theorem 6), it implies the
remarkable facts of the Einstein special theory of relativity, such as the celebrated
formula E = mc2.

Concluding, the Poincaré group is a 10-parameter Lie group generated by the
above transformations (plus the time inversion, t 7→ −t, and the parity inversion
(x, y, z) 7→ (−x,−y,−z)).

The Poincaré group acts on a scalar field ψ by the following representation:

(Tgψ)(t, x, y, z) = ψ(t′, x′, y′, z′), (t′, x′, y′, z′) = g(t, x, y, z).
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The simplest equation invariant for the Poincaré group is the d’Alembert
equation

�ψ = 0 (4)

where

�ψ =
∂2ψ

∂t2
− ∆ψ and ∆ψ =

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
.

Actually, the d’Alembert equation is the simplest variational field equation in-
variant for the Poincaré group. In fact it is obtained from the variation of the
action

S0 =

∫

L0 dx dt, L0 = −1

2
〈dψ, dψ〉M =

1

2
|∂tψ|2 −

1

2
|∇ψ|2. (5)

We end this section by recalling the notion of 4-vector field. A 4-tuple of
quantities

F = (F 0, F 1, F 2, F 3)

is called a 4-vector field if, under a Lorentz transformation, it changes as do the
quantities (t, x, y, z), namely

F ′
0 = γ(F0 − vF1),

F ′
1 = γ(F1 − vF0),

F ′
2 = F2,

F ′
3 = F3.

For example, if ψ is scalar field, then the Minkowski gradient ∇Mψ := (−∂tψ,∇ψ)
is a 4-vector field. We recall that ∇Mψ is defined by the duality map provided by
the Minkowski quadratic form 〈·, ·〉M :

〈∇Mψ,w〉M = dψ[w] for every w ∈ R
4.

The components of a cotangent vector, i.e. the components of a differential
1-form, transform in a different way; in fact, given a 1-form

∑3
i=0Aidx

i we have

A′
0 = γ(A0 + vA1),

A′
1 = γ(A1 + vA0),

A′
2 = A2,

A′
3 = A3.

2.3. The gauge invariance

Take a function ψ : R
4 → V and assume that the representation Tg of some group

(G, ◦) acts on V . This action induces two possible actions on ψ:

• a global action: ψ(x) 7→ Tgψ (x) where g ∈ G;
• a local action: ψ(x) 7→ Tg(x)ψ(x) where g(x) is a smooth function with values

in G.
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In the second case, we have a representation of the infinite-dimensional group

G = C∞(R4, G)

equipped with the group operation

(g ◦ h) (x) = g(x) ◦ h(x).
If a Lagrangian L satisfies the condition

L(t, x, ψ,∇ψ, ∂tψ) = L(t, x, Tgψ,∇(Tgψ), ∂t(Tgψ)), g ∈ G,

we say that L is invariant for a global action of the group G, or for a trivial gauge
action of the group G; if

L(t, x, ψ,∇ψ, ∂tψ) = L(t, x, Tg(x)ψ,∇(Tg(x)ψ), ∂t(Tg(x)ψ)), g(x) ∈ G,

we say that L is invariant for a local action of G, or for a gauge action of G.
Let us consider two simple examples: the functional

∫

L(∇u) dx, u ∈ R,

is invariant for a global action of the group (R,+) . In fact, if we set Tru = u+ r,
r ∈ R, we have

L (∇u) = L(∇(Tru)).

Next, consider the functional
∫

L(dα) dx

where α is a 1-form and d is the exterior derivative. In this case, L(dα) is not only
invariant for a trivial action of (R,+), but also for the local action

Tg(x)α = α+ dg(x), g(x) ∈ G := C∞(R4,R);

in fact

L(d(α+ dg(x))) = L(dα).

2.4. The simplest nonlinear model

The d’Alembert equation is the simplest equation invariant for the Poincaré group,
moreover it is invariant for the gauge transformation

ψ 7→ ψ + c.

Also, if ψ is complex-valued, it is invariant for the following representation of the
group S1 =

{

eiθ : θ ∈ R
}

:

ψ 7→ eiθψ. (6)

It satisfies assumptions A-1, A-2 and A-3, but it is linear and it produces a
“model of world” rather boring. There exist only nondispersive waves. Let us add
to the Lagrangian (5) a nonlinear term:

L = |∂tψ|2 − |∇ψ|2 −W (ψ) (7)
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where W : C → R satisfies

W (eiθψ) = W (ψ),

i.e. W (ψ) = F (|ψ|) for some function F : R → R. This is the simplest Lagrangian
which gives rise to nonlinear Euler equations and which is invariant for the Poincaré
group and the trivial gauge action (6).

The equation of motion relative to the Lagrangian (7) is the semilinear wave
equation

�ψ +W ′(ψ) = 0 (8)

where

W ′(ψ) =
∂W

∂ψ1
+ i

∂W

∂ψ2
,

that is,

W ′(ψ) = F ′(|ψ|) ψ|ψ| .

In the following sections we will see that equation (8), together with some
mild assumption on W, produces a very rich model in which there are solitary
waves which behave as relativistic particles.

If W ′(ψ) is linear, W ′(ψ) = Ω2ψ with Ω2 > 0, then (8) reduces to the Klein–
Gordon equation. Among the solutions of the Klein–Gordon equations there are
wave packets which behave as solitary waves but disperse in space as time goes
on. On the contrary, if W has a suitable nonlinear component, the wave packets
do not disperse, actually they are solitary waves.

Sometimes, it will be useful to write ψ in polar form,

ψ(t, x) = u(t, x)eiS(t,x). (9)

In this case the action
∫

L dx dt takes the fom

S(u, S) =
1

2

∫

{(∂tu)
2−|∇u|2+[(∂tS)2−|∇S|2]u2} dx dt−

∫

W (u) dx dt = 0 (10)

and equation (8) becomes

�u+ [−(∂tS)2 + |∇S|2]u+W ′(u) = 0, (11)

∂t(u
2∂tS) −∇ · (u2∇S) = 0. (12)

2.5. Conservation laws

Noether’s theorem states that any invariance for a one-parameter group of the
Lagrangian implies the existence of an integral of motion, i.e. a quantity which is
preserved in time by the solutions (see e.g. [12]). Thus (8) has 10 integrals.

• Energy. Energy, by definition, is a quantity which is preserved due to the
time invariance of the Lagrangian; it has the following form (see e.g. [12]):

E = Re

∫
(

∂L
∂(∂tψ)

∂tψ − L
)

dx

where z denotes the complex conjugate of z.
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In particular, if we take the Lagrangian (7), we get

E =

∫
[

1

2
|∂tψ|2 +

1

2
|∇ψ|2 +W (ψ)

]

dx. (13)

Using (9) we get

E =

∫
[

1

2
(∂tu)

2 +
1

2
|∇u|2 +

1

2
((∂tS)2 + |∇S|2)u2 +W (u)

]

dx. (14)

• Momentum. Momentum, by definition, is a quantity which is preserved due
to the space invariance of the Lagrangian; invariance for translations in the
xi direction gives the invariant (see e.g. [12])

Pi = −Re

∫

∂L
∂(∂tψ)

∂iψ dx.

In particular, if we take the Lagrangian (7), we get

Pi = −Re

∫

∂tψ∂ψi dx

and if P = (P1, P2, P3), we can write

P = −Re

∫

∂tψ∇ψ dx. (15)

Using (9) we get

P = −
∫

(

∂tu∇u+ ∂tS∇S u2
)

dx. (16)

• Angular momentum. The angular momentum, by definition, is a quantity
which is preserved due to the invariance of the Lagrangian under space rota-
tions about the origin (see e.g. [12]).

In particular, if we take the Lagrangian (7), we get

M = Re

∫

x ×∇ψ∂tψ dx. (17)

Using (9) we get

M =

∫

x × (∇u ∂tu+ ∇S ∂tS u
2) dx. (18)

• Ergocenter velocity. If we take the Lagrangian (7), the following quantity is
preserved under the Lorentz transformations (by standard computations, see
e.g. [12]):

K =

∫

x

[

1

2
|∂tψ|2 +

1

2
|∇ψ|2 +W (ψ)

]

dx− tP. (19)
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Let us interpret it in a more meaningful way. If we define the ergocenter as
follows:

Q :=

∫

x[ 12 |∂tψ|2 + 1
2 |∇ψ|2 +W (ψ)] dx

∫

[ 12 |∂tψ|2 + 1
2 |∇ψ|2 +W (ψ)] dx

=

∫

x[ 12 |∂tψ|2 + 1
2 |∇ψ|2 +W (ψ)] dx

E , (20)

by the conservation of E , P and K we get

Q̇ =
P

E . (21)

Thus, the three components of Q̇ are another three integrals of motion.

Finally, we have another integral given by the action (6).

• Charge. The charge, by definition, is a quantity which is preserved by the
trivial gauge action (6). The charge has the following expression (see e.g. [3]):

C = Im

∫

∂L
∂(∂tψ)

ψ dx.

In particular, if we take the Lagrangian (7), we get

C = Im

∫

∂tψψ dx.

Using (9) we get

C =

∫

∂tS u
2 dx. (22)

3. Solitary waves and solitons

By solitary wave we mean a solution of a field equation whose energy travels
as a localized packet; by soliton, we mean a solitary wave which exhibits some
form of stability. This is a rather weak definition of soliton but probably the most
commonly used, and it will be adopted in this paper. In order to prove the existence
of solitons, first it is necessary to prove the existence of solitary waves and then
to prove their stability.

3.1. Existence of solitary waves and solitons

The easiest way to produce solitary waves of (8) consists in solving the static
equation

−∆u+W ′(u) = 0 (23)

and setting

ψv(t, x) = ψv(t, x1, x2, x3) = u

(

x1 − vt√
1 − v2

, x2, x3

)

; (24)

ψv(t, x) is a solution of (8) which represents a bump which travels in the x1-
direction with speed v.



70 V. Benci and D. Fortunato JFPTA

In [15] and [19], it has been proved that (23) has nontrivial solutions provided
that W has the following form:

W (u) =
1

2
Ω2u2 − 1

p
up, Ω > 0, 2 < p < 6, (25)

Moreover Shatah [18] found a necessary and sufficient condition which guar-
antees the “orbital stability” of the solitary waves of (8); if W is given by (25),
this condition becomes 2 < p < 10/3 (see e.g. [2] or [3]).

However, it would be interesting to assume

W ≥ 0; (26)

in fact the energy of a solution ψ of equation (8) is given by

E(ψ) =

∫
[

1

2

(

∂ψ

∂t

)2

+
1

2
|∇ψ|2 +W (ψ)

]

dx.

In this case, the positivity of the energy is not only an important requirement
for the related physical models, but it provides good a priori estimates for the
solutions of the relevant Cauchy problem. These estimates allow one to prove
existence and well-posedness results under very general assumptions on W .

Unfortunately Derrick [11], in a well known paper, has proved that (26)
implies that equation (23) has only the trivial solution. His proof is based on
an equality which in a different form was also found by Pohozaev (for details see
also [3]). The Derrick–Pohozaev identity states that for any finite energy solution u
of (23),

1

6

∫

|∇u|2 dx+

∫

W (u) dx = 0. (27)

Clearly the above equality and (26) imply that u ≡ 0.
However, we can try to prove the existence of solitons for (8) (under assump-

tion (26)) exploiting the possible existence of standing waves, since this fact is not
prevented by (27). A standing wave is a finite energy solution of (8) having the
following form:

ψ0(t, x) = u(x)e−iω0t, u ≥ 0. (28)

Substituting (28) in (8), we get

−∆u+W ′(u) = ω2
0u. (29)

Since the Lagrangian (7) is invariant for the Lorentz group, we can obtain
other solutions ψ1(t, x) just making a Lorentz transformation. Namely, if we take
the velocity v = (v, 0, 0), |v| < 1, and set

t′ = γ(t− vx1), x
′
1 = γ(x1 − vt), x′2 = x2, x

′
3 = x3 with γ =

1√
1 − v2

it turns out that

ψ1(t, x) = ψ0(t
′, x′)

is a solution of (8).
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In particular given a standing wave ψ(t, x) = u(x)e−iω0t, the function ψv(t, x)
:= ψ(t′, x′) is a solitary wave which travels with velocity v. Thus, if u(x) =
u(x1, x2, x3) is any solution of (29), then

ψv(t, x1, x2, x3) = u(γ(x1 − vt), x2, x3)e
i(k·x−ωt) (30)

is a solution of (8) provided that

ω = γω0 and k = γω0v. (31)

Notice that (24) is a particular case of (30) when ω0 = 0.
We have the following result:

Theorem 1. Assume that

(i) W (u) ≥ 0,
(ii) W (0) = W ′(0) = 0 and W ′′(0) = Ω2 > 0,
(iii) there exists u0 ∈ R+ such that W (u0) <

1
2Ω2u2

0.

Then (8) has finite energy solitary waves of the form ψ0(t, x) = u(x)e−iω0t for
every frequency ω0 ∈ (Ω0,Ω) where

Ω0 = inf

{

Ω ∈ R : ∃u ∈ R
+, W (u) − 1

2
Ω2u2 < 0

}

.

Notice that by (iii), Ω0 < Ω, so the interval (Ω0,Ω) is not empty.

Proof. By the previous discussion, it is sufficient to show that equation (29) has a
solution u with finite energy. The solutions of finite energy of (29) are the critical
points in the Sobolev space H1(R3) of the reduced action functional:

J(u) =
1

2

∫

|∇u|2dx+

∫

G(u) dx, G(u) = W (u) − 1

2
ω2

0u
2. (32)

By a theorem of Berestycki and Lions [6], the existence of nontrivial critical points
of J is guaranteed under the following assumptions on G:

• G(0) = G′(0) = 0,
• G′′(0) > 0,
• lim sups→∞G′(u)/s5 ≥ 0,
• ∃u0 ∈ R

+ : G(u0) < 0.

It is easy to check that for every frequency ω0 ∈ (Ω0,Ω), the above assumptions
are satisfied. �

3.2. The mass of solitary waves

In classical mechanics the mass is a symmetric tensor mij which relates the mo-
mentum P =(P1, P2, P3) to the velocity v =(v1, v2, v3) by the formula

Pi = mijvj .

Since the momentum of a solitary wave is defined by (15), it is possible to define
the mass of a solitary wave by the above formula and to compute it. As we will
see it turns out that the mass is a scalar, i.e. mij = mδij .
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Theorem 2. Let ψv be defined by (30); then its momentum is given by

P(ψv) = vγ

∫

((∂nu)
2 + ω2

0u
2) dx1 dx2 dx3

were ∂n denotes the directional derivative in the direction n = v/|v|.
Proof. It is not restrictive to choose v = (v, 0, 0); then by (16), we have

P1 = −
∫

(

∂

∂t
u′

∂

∂x1
u′ − ωk1u

′2

)

dx

where we have set

u′(t, x1, x2, x3) = u(γ(x1 − vt), x2, x3), k = (k1, 0, 0).

Then, performing the derivations, we get

P1 =

∫
[

γ2v

(

∂u

∂x1

)2

+ ωk1u
2

]

x1=γ(x1−vt)

dx.

By (31) we have

P1 = v

∫

γ2

[(

∂u

∂x1

)2

+ ω2
0u

2

]

x1=γ(x1−vt)

dx.

Making the change of variables y = (γ(x1 − v1t), x2, x3), we get

P1 = vγ

∫

((∂1u(y))
2 + ω2

0 u(y)
2) dy.

Finally, it is immediate to check that

P2 = P3 = 0.

Thus the theorem is proved. �

The vector P(ψv) is parallel to v. Next we will prove that its norm does not
depend on the direction of v.

To do this we need the following theorem.

Theorem 3. Let u ∈ H1(Rn) be a regular solution of

−∆u+ h(u) = 0 (33)

where h is a continuous real function such that h(0) = 0. Assume that H(u) ∈
L1(Rn) where

H(t) =

∫ t

0

h(s) ds.

Then
∫

H(u) dx =

(

1

n
− 1

2

)
∫

|∇u|2 dx, (34)

∫

|∂iu|2 dx =
1

n

∫

|∇u|2 dx, i = 1, . . . , n. (35)



Vol. 1 (2007) Solitary waves 73

Proof. (34) is the Pohozaev–Derrick equality ([15], [11]). A proof of (35) (as well
as (34)) can be found in [3] or in [2]. �

Since u solves equation (33) with H(u) = W (u)− 1
2ω

2
0u

2, by Theorem 2 and
(35), we have

P(ψv) = vγ

∫
(

1

3
|∇u|2 + ω2

0 u
2

)

dx1 dx2 dx3. (36)

Thus the mass of the solitary wave ψv is well defined and we have

m(ψv) = γ

∫
(

1

3
|∇u|2 + ω2

0 u
2

)

dx. (37)

Hence we get a remarkable fact of the theory of relativity:

Theorem 4. The mass of a solitary wave increases with velocity by the factor

γ =
1√

1 − v2
.

3.3. The Einstein equation

First we will give an explicit formula for the energy of a solitary wave:

Theorem 5. Let ψv be defined by (30); then its energy is given by

E(ψv) = γ

∫
(

1

3
|∇u|2 + ω2

0u
2

)

dx.

Proof. By (14) the energy of ψv is given by

E(ψv) =

∫
[

1

2
(∂tu

′)2 +
1

2
|∇u′|2 +

1

2
(ω2 + k2)u′2 +W (u′)

]

dx

where we have set

u′(t, x1, x2, x3) = u(γ(x1 − vt), x2, x3), k = |k|.
Then, performing the derivations, we get

E(ψv)=

∫
[

1

2

(

(γ2v2+γ2)|∂1u|2+
∑

i 6=1

|∂iu|2+
1

2
(ω2+k2)u2

)

+W (u)

]

x1=γ(x1−vt)

dx.

Making the change of variables y = (γ(x1 − v1t), x2, x3), we get

E(ψv) =
1

2γ

∫
[

(γ2v2 + γ2)|∂1u|2 +
∑

i 6=1

|∂iu|2 + (k2 + ω2)u2

]

dy

+
1

γ

∫

W (u(y)) dy. (38)

Since u solves (33) with H(u) = W (u) − 1
2ω

2
0u

2, by (34) we have
∫

W (u) =
1

2

∫

ω2
0u

2 − 1

6

∫

|∇u|2. (39)
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Moreover, by (35),
∫

|∂iu|2 dx =
1

3

∫

|∇u|2 dx, i = 1, 2, 3. (40)

Substituting (40) and (39) in (38), we

E(ψv) =
1

2γ

∫
(

γ2v2 + γ2 + 2

3
|∇u|2 + (k2 + ω2)u2

)

dx+
1

γ

∫

W (u) dx

=
1

2γ

∫
(

γ2v2 + γ2 + 1

3
|∇u|2 + (k2 + ω2 + ω2

0)u2

)

dx.

By the definition of γ, we have

γ2v2 + γ2 + 1 =
v2 + 1 + 1 − v2

1 − v2
= 2γ2,

and moreover, by (31),

k2 + ω2 + ω2
0 = γ2ω2

0v
2 + γ2ω2

0 + ω2
0 = ω2

0(γ2v2 + γ2 + 1) = 2ω2
0γ

2.

Thus

E(ψv) =
1

2γ

∫
(

2γ2

3
|∇u|2 + 2ω2

0γ
2u2

)

dx = γ

∫
(

1

3
|∇u|2 + ω2

0u
2

)

dx. �

So, by Theorem 5 and (37), we get the Einstein equation:

Theorem 6. The energy of a solitary wave equals its mass:

E(ψv) = m(ψv).

By the above theorem, it turns out that the ergocenter Q, defined by (20),

is actually the center of mass. Thus, the conservation of Q̇ implies that the center
of mass moves along a straight line.

Remark 7. Theorem 6 could have been deduced from (21) by just proving that

Q̇ = v. We have proved it using Theorems 2 and 5 since we wanted to have an
explicit formula for the momentum and energy of a solitary wave.

4. Gauge theories

4.1. The Maxwell equations in empty space

In Section 1 we introduced the Lagrangian (5) which gives rise to the simplest
Poincaré invariant equation for a scalar field ψ, namely equation (4). In order to
generalize this equation we will use the language of differential forms.

If we regard ψ as a 0-form ξ, then (5) takes the form

S0[ξ] =

∫

L0 dx dt = −
∫

〈dψ, dψ〉M dx dt (41)

where 〈ξ, η〉M is the Minkowskian scalar product on the space Λk(R4) of k-forms.
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Using the language of forms, the d’Alembert equation (4) becomes

δdψ = 0 (42)

where δ : Λk → Λk−1 (k = 1, . . . , 4) is the functional adjoint operator of d :
Λk−1(R4) → Λk(R4), defined by the following identity:

∫

〈ξ, dη〉M dx dt =

∫

〈δξ, η〉M dx dt

for any ξ ∈ Λk(R3) and any η ∈ Λk−1(R4) with compact support.
The action S0[ξ] is invariant for the “trivial gauge group” ξ 7→ ξ + c where

c ∈ C is a constant: S0[ξ] = S0[ξ+ c]. Thus if ξ is a solution of (42), then also ξ+ c
solves (42).

One of the most natural generalizations of (41) is given by

S1[ξ] =

∫

L1 dx dt = −1

2

∫

〈dA, dA〉M dx dt (43)

where A is a 1-form

A =

3
∑

j=0

Ajdx
j .

The variation of the action (43) gives the Euler–Lagrange equation

δdA = 0. (44)

This simple generalization gives a much richer structure; in fact, the action (43)
is invariant for the gauge transformation A 7→ A + dχ where χ ∈ G = C2(R4,R),
i.e. the gauge group is an infinite-dimensional group. However, in most physical
interpretations of this theory it is assumed that A and A+dχ give the same exper-
imental results, i.e. χ has no physical meaning. For this reason, we can introduce
the quantity

F = dA (45)

which does not depend on χ (since ddχ = 0) and which is considered the physically
measurable quantity.

By equation (44), and the fact ddA = 0, we see that F satisfies

dF = 0, (46)

δF = 0. (47)

These are the Maxwell equations in the empty space.
Now let us write equations (46), (47) using vector notation. We denote by

j : R
3+1 → Λ1(R3)

the duality map which associates to a 4-vector (v0,v) the 1-form j(v0,v) defined
by

j(v0,v)[(w0,w)] = −v0w0 + v · w.
Then we set (ϕ,A) = j−1(A), i.e.

ϕ := A0 = −A0, A := (A1, A2, A3) = (A1, A2, A3). (48)



76 V. Benci and D. Fortunato JFPTA

Then

〈dA, dA〉M =
1

2

[

3
∑

i,j=1

(∂iAj − ∂jAi)
2 −

3
∑

j=1

(∂0Aj − ∂jA0)
2 −

3
∑

i=1

(∂iA0 − ∂0Ai)
2
]

=
1

2

[

3
∑

i,j=1

(∂iA
j − ∂jA

i)2 −
3

∑

j=1

(∂tA
j + ∂jϕ)2 −

3
∑

i=1

(∂iϕ+ ∂tA
i)2

]

= |∇ × A|2 − |∂tA + ∇ϕ|2.
Thus the action (43) becomes

S1[(ϕ,A)] =
1

2

∫

(|∂tA + ∇ϕ|2 − |∇ × A|2) dx dt.

Taking the variation of S with respect to ϕ and A we get

∇ · (∂tA + ∇ϕ) = 0, (49)

∇× (∇× A) +
∂

∂t
(∂tA + ∇ϕ) = 0. (50)

If we make the change of variables

E = −(∂tA + ∇ϕ), (51)

H = ∇× A, (52)

we obtain

∇× E +
∂H

∂t
= 0, (53)

∇ · H = 0, (54)

and (49), (50) become

∇ · E = 0,

∇× H− ∂tE = 0.

Thus we have obtained the Maxwell equations in the usual 3-vector notation. In
this case, the action (43) can be written as follows:

S1 =
1

2

∫

(E2 − H2) dx dt. (55)

Moreover we can give a physical meaning to the 2-form

F =
∑

i<j

Fij dx
i dxj .

By duality, we can associate to it an antisymmetric 4-tensor
{

F ij
}

. Direct
computations show that

{

F ij
}

=









0 −E1 −E2 −E3

E1 0 H3 −H2

E2 −H3 0 H1

E3 H2 −H1 0









. (56)
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Thus the electromagnetic field
{

F ij
}

is a 4-tensor composed of the 3-vector “elec-
tric field”

E =





E1

E2

E3





and an antisymmetric 3-tensor “magnetic field”

H =





0 −H3 H2

H3 0 −H1

−H2 H1 0



 .

It is well known that it is possible to associate a pseudovector H to any antisym-
metric 3-tensor H by the equation

Hv = H× v, v ∈ R
3.

In this case, H takes the form

H =





H1

H2

H3



 .

Remark 8. While the d’Alembert equation is the simplest equation which satis-
fies A-1, A-2 and A-3 with a global gauge group, the Maxwell equations are the
simplest equations which satisfy A-1, A-2 and A-3 with a nontrivial gauge group.

4.2. Abelian gauge theories

A gauge theory provides a very elegant way to combine the actions (41) and (43)
and to obtain an action invariant for G.

Let G be a subgroup of U(N), the unitary group in CN , and denote by
Λk(R4, g) the set of k-forms defined in R

4 with values in the Lie algebra g of the
group G. A 1-form

Γ =
3

∑

j=0

Γjdxj ∈ Λ1(R4, g)

is called a connection form. The operator

dΓ : Λk(R4, g) → Λk+1(R4, g)

defined by

dΓ = d+ Γ =
3

∑

j=0

(∂j + Γj)dx
j

is called the covariant differential and the operators

Dj =
∂

∂xj
+ Γj : C1(R4,CN ) → C0(R4,CN ), j = 0, . . . , 3,

are called the covariant derivatives. The 2-form

F = dΓΓ =
3

∑

i,j=0

(∂iΓj + [Γi,Γj ])dx
i ∧ dxj

is called the curvature.
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We set

L0 =
1

2
〈dΓψ, dΓψ〉M ,

where ψ ∈ CN . Moreover, we set

LG =
1

2q2
〈dΓΓ, dΓΓ〉M ,

where q is a parameter which controls the coupling of LG with L0.
A gauge field (see e.g. [22], [17]) is a critical point of the action functional

S =

∫

L dxdt, L = L0 + LG −W (ψ), (57)

where W : CN → R is a function which is assumed to be G-invariant, i.e.

W (gψ) = W (ψ), g ∈ G. (58)

We are interested in the Abelian gauge theory, i.e. in the case in which

G = U(1) = S1 = {z ∈ C : |z| = 1}.
In this case the Γj(x, t) are imaginary numbers; if we set

Aj = − 1

iq
Γj , j = 0, . . . , 3, (59)

it turns out that A =
∑3

j=0Ajdx
j is a real-valued 1-form. Moreover, since in this

case [Γi,Γj ] = 0, we have

dΓΓ =

3
∑

i,j=0

∂iΓjdx
i ∧ dxj = dΓ = −iqdA.

In this case, it turns out that

LG =
1

2q2
〈dΓΓ, dΓΓ〉M = −1

2
〈dA, dA〉M = L1

as defined in (43). By (48) and (59), the covariant derivatives take the form

Dt =
∂

∂t
+ iqϕ, Dj =

∂

∂xj

− iqAj

and, for q = 0, they reduce to the usual derivatives. Using the above notation, the
Lagrangian density L0 can be written as follows:

L0 =
1

2
|Dtψ|2 −

1

2
|Dxψ|2

=
1

2

[∣

∣

∣

∣

(

∂

∂t
+ iqϕ

)

ψ

∣

∣

∣

∣

2

− |(∇− iqA)ψ|2
]

where Dxψ = (D1ψ,D2ψ,D3ψ) and, using (55), the action (57) takes the form

S =
1

2

∫
[

|Dtψ|2 −
1

2
|Dxψ|2 +

∣

∣

∣

∣

∂A

∂t
+ ∇ϕ

∣

∣

∣

∣

2

− 1

2
|∇ × A|2

]

dx dt−
∫

W (ψ) dx dt.
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Taking the variation of S with respect to ψ, ϕ and A we get the following
system of equations:

D2
tψ − D2

xψ +W ′(ψ) = 0, (60)

∇ ·
(

∂A

∂t
+ ∇ϕ

)

= q

(

Im
1

ψ

∂ψ

∂t
+ qϕ

)

|ψ|2 , (61)

∇× (∇× A) +
∂

∂t

(

∂A

∂t
+ ∇ϕ

)

= q

(

Im
∇ψ
ψ

− qA

)

|ψ|2 . (62)

The evolution problem for equations (60)–(62) has been studied in [13], where the
existence of a global solution has been proved.

4.3. The Maxwell equations and matter

The Abelian gauge theory, i.e. equations (60)–(62), provides an elegant way to
couple the Maxwell equation with matter if we interpret ψ as a matter field.

In order to give a more meaningful form to these equations, we will write ψ
in polar form

ψ(x, t) = u(x, t)eiS(x,t), u ≥ 0, S ∈ R/2πZ.

So (57) takes the form

S(u, S, ϕ,A) =

∫∫
[

1

2

(

∂u

∂t

)2

− 1

2
|∇u|2 −W (u)

]

dx dt

+
1

2

∫∫
[(

∂S

∂t
+ qϕ

)2

− |∇S − qA|2
]

u2 dx dt

+
1

2

∫∫
(∣

∣

∣

∣

∂A

∂t
+∇ϕ

∣

∣

∣

∣

2

− |∇ × A|2
)

dx dt

and equations (60)–(62) take the form

�u+W ′(u) +

[

|∇S − qA|2 −
(

∂S

∂t
+ qϕ

)2]

u = 0, (63)

∂

∂t

[(

∂S

∂t
+ qϕ

)

u2

]

−∇ · [(∇S − qA)u2] = 0, (64)

∇ ·
(

∂A

∂t
+ ∇ϕ

)

= q

(

∂S

∂t
+ qϕ

)

u2, (65)

∇× (∇× A) +
∂

∂t

(

∂A

∂t
+ ∇ϕ

)

= q(∇S − qA)u2. (66)

These are the complete Maxwell equations. In order to write them in the usual
form, we make the change of variables (51), (52) obtaining (53) and (54). Moreover,
setting

ρ = −
(

∂S

∂t
+ qϕ

)

qu2, (67)

j = (∇S − qA)qu2, (68)
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it turns out that (65) and (66) are the second couple of the Maxwell equations
with respect to a matter distribution with charge ρ and current density j:

∇ · E = ρ, (69)

∇× H− ∂E

∂t
= j. (70)

Equation (63) can be written as follows:

�u+W ′(u) +
j2 − ρ2

q2u
= 0 (71)

and finally (64) is the charge continuity equation

∂

∂t
ρ+ ∇ · j = 0. (72)

Notice that equation (72) is a consequence of (69) and (70). In conclusion,
an Abelian gauge theory, via equations (69)–(71), provides a model of interaction
of the matter field ψ with the electromagnetic field (E,H). In fact it is possible to
show that equations (69)–(71) are equivalent to (63)–(66).

The gauge group is given by G ∼= C∞(R4) with the additive structure and it
acts on the variables ψ, ϕ,A as follows:

Tχψ = ψeiχ,

Tχϕ = ϕ− ∂χ

∂t
,

TχA = A + ∇χ,
with χ ∈ C∞(R4). Our equations are gauge invariant due to the way they have
been constructed. However, if we use the variables u, ρ, j,E, H, this fact can be
checked directly since these variables are gauge invariant.

4.4. Existence of solitary waves

Now let us consider the problem of the existence of solitary waves and solitons for
an Abelian gauge theory. The Lagrangian L is invariant for the following repre-
sentation of the Lorentz group:

ψv(t, x) = ψ(t′, x′),

ϕv(t, x) = γ[ϕ(t′, x′) + v · A(t′, x′)],

Av(t, x) = γ[A(t′, x′) + ϕ(t′, x′)v],

thus, similarly to the case of (8), in order to produce solitary waves, it is sufficient
to find stationary solutions of (63)–(66) and to make a Lorentz transformation.
By definition, a stationary solution of (63)–(66) is a solution of the form

ψ(t, x) = u(x)ei(S(x)−ωt), u > 0, ω ∈ R, S ∈ R/2πZ,

∂tA = 0, ∂tϕ = 0.
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A stationary solution solves the following system of equations:

−∆u+ [|∇S − qA|2 − (qϕ− ω)2]u+W ′(u) = 0, (73)

−∇ · [(∇S − qA)u2] = 0, (74)

∆ϕ = q(qϕ− ω)u2, (75)

∇× (∇× A) = q(∇S − qA)u2. (76)

Equations (73)–(76) are the Euler–Lagrange equation of the reduced action
functional, i.e. their solutions are the critical points of the functional

J (u, S, ϕ,A) =
1

2

∫

(|∇u|2 − |∇ϕ|2 + |∇ × A|2) dx dt

+
1

2

∫

[|∇S − qA|2 − (qϕ− ω)2]u2 dx dt+

∫

W (u) dx dt. (77)

Clearly when u = 0, the only finite energy gauge potentials are the trivial ones
A = 0, ϕ = 0.

It is possible to have three types of stationary nontrivial solutions of (73)–
(76):

• electrostatic solutions: A = 0, ϕ 6= 0;
• magnetostatic solutions: A 6= 0, ϕ = 0;
• electromagnetostatic solutions: A 6= 0, ϕ 6= 0.

Under suitable assumptions, all these types of solutions exist. In this section
we will discuss a theorem relating to electrostatic solutions. In this case we make
the following Ansatz:

u = u(x), S = −ωt, A = 0, ϕ = ϕ(x).

With this Ansatz, the equations (64) and (66) are identically satisfied, while (63)
and (65) become

−∆u+ (qϕ− ω)2u+W ′(u) = 0, (78)

∆ϕ = q(qϕ− ω)u2; (79)

and the functional (77) reduces to

J (u, ϕ) =
1

2

∫

[|∇u|2 − |∇ϕ|2 − (qϕ− ω)2u2] dx dt. (80)

The following theorem can be proved

Theorem 9. Assume that

W (u) =
1

2
Ω2u2 − 1

p
up with 4 < p < 6, Ω > 0. (81)

Then, if |ω| < Ω, there exist infinitely many solutions (u, ϕ) of (78), (79) such that

u ∈ H1(R3),

∫

R3

|∇ϕ|2 dx <∞.
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The proof of this theorem is contained in [1]. The existence and nonexistence
of electrostatic solutions for a system like (78), (79) has been proved under different
growth conditions on W (see [7]–[10], [20]). The analysis of the stability of such
solutions has not been carried out; however, some results in this direction are
contained in [14].

4.5. Existence of vortices

In this section, we will discuss the existence of magnetostatic and electromagneto-
static solutions, in particular we shall study the existence of vortices in the sense
of the definition stated below. We set

Σ = {(x1, x2, x3) ∈ R
3 : x1 = x2 = 0}

and we define the map

θ : R
3 \ Σ → R/2πZ, θ(x) = Im log(x1 + ix2).

A solution of (73)–(76) is called a vortex if it has the form

ψ(x, t) = u(x)ei(kθ(x)−ωt), k ∈ Z \ {0}. (82)

Observe that θ ∈ C∞(R3 \ Σ,R/2πZ) and ∇θ ∈ C∞(R3 \ Σ,R3), namely

∇θ(x) =

(

x2

x2
1 + x2

2

,
−x1

x2
1 + x2

2

, 0

)

.

Using this Ansatz equations (73), (75), (76) become

−∆u+ [|k∇θ − qA|2 − (qϕ− ω)2]u+W ′(u) = 0, (83)

∆ϕ = q(qϕ− ω)u2, (84)

∇× (∇× A) = q(k∇θ − qA)u2. (85)

The following existence result for vortex solutions holds:

Theorem 10. Assume that W is defined by (81) with 2 < p < 6 and set

ωp = Ω

√

min

(

1,
p− 2

2

)

, Ω > 0.

Then for any ω ∈ (−ωp, ωp) and any k ∈ Z equations (83)–(85) admit a finite
energy solution (u, ϕ,A) with u 6= 0. Moreover

(i) if ω 6= 0 and k = 0, then ϕ 6= 0 and A = 0 (electrostatic solutions),
(ii) if ω = 0 and k 6= 0, then ϕ = 0 and A 6= 0 (magnetostatic vortices),
(iii) if ω 6= 0 and k 6= 0, then ϕ 6= 0 and A 6= 0 (electromagnetostatic vortices).

The proof of this result, in a slightly more general form, is contained in [4].

Remark 11. By using (84) it is easy to see that, if ω1 6= ω2, then the corresponding
solutions (uω1

,ϕω1
), (uω2

,ϕω2
) are different. In an analogous manner equation (85)

implies that if k1 6= k2, then the corresponding solutions (uk1
,Ak1

), (uk2
,Ak2

) are
different.
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Remark 12. If (u, ϕ,A) with u 6= 0 solves (83)–(85), then assertions (i)–(iii) in
Theorem 10 follow immediately from (84), (85).

4.6. The case of positive energy density

Theorems 9 and 10 allow one to show the existence of solitary waves in gauge
theories; however, they are not suitable for physical models, as in these theorems
W is not positive. Thus there exist field configurations for which the energy density
and hence, by Theorem 6, the matter density is not positive, which is a very
unpleasant fact.

In order to check this, we compute the formula for the energy.

Theorem 13. If (u, S,E,H) is a solution of the field equations (63)–(66), its energy
is given by

E(u, S,E,H) =

∫
[

1

2

(

∂u

∂t

)2

+
1

2
|∇u|2 +W (u) +

ρ2 + j2

2q2u2
+

E2 + H2

2

]

dx

where ρ and j are defined in (67), (68).

Proof. We recall the well known expression for the energy density (see e.g. [12]):

∂L
∂(∂u

∂t
)
· ∂u
∂t

+
∂L

∂(∂S
∂t

)
· ∂S
∂t

+
∂L

∂(∂ϕ
∂t

)
· ∂ϕ
∂t

+
∂L

∂(∂A

∂t
)
· ∂A
∂t

− L,

where

L =
1

2

(

∂u

∂t

)2

− 1

2
|∇u|2 −W (u)

+
1

2

(

∂S

∂t
+ qϕ

)2

− 1

2
|∇S − qA|2 u2

+
1

2

∣

∣

∣

∣

∂A

∂t
+∇ϕ

∣

∣

∣

∣

2

− 1

2
|∇ × A|2.

Now we will compute each term. We have

∂L
∂(∂u

∂t
)
· ∂u
∂t

=

(

∂u

∂t

)2

(86)

and

∂L
∂(∂S

∂t
)
· ∂S
∂t

=

(

∂S

∂t
+ qϕ

)

∂S

∂t
u2

=

(

∂S

∂t
+ qϕ

)

∂S

∂t
u2 +

(

∂S

∂t
+ qϕ

)

qϕu2 −
(

∂S

∂t
+ ϕ

)

qϕu2

=

(

∂S

∂t
+ qϕ

)2

u2 −
(

∂S

∂t
+ qϕ

)

qϕu2

=
ρ2

q2u2
+ ρϕ.
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By the Gauss equation (69), multiplying by ϕ and integrating, we get

−
∫

E · ∇ϕ =

∫

ρϕ.

Thus, replacing this expression in the above formula, we get
∫

∂L
∂(∂S

∂t
)
· ∂S
∂t

=

∫
(

ρ2

q2u2
− E · ∇ϕ

)

. (87)

Also we have
∂L

∂(∂ϕ
∂t

)
· ∂ϕ
∂t

= 0 (88)

and
∂L

∂(∂A

∂t
)
· ∂A
∂t

=

(

∂A

∂t
+ ∇ϕ

)

· ∂A
∂t

= −E · ∂A
∂t

. (89)

Moreover, using the notation (51), (52), (67), (68), we have

L =
1

2

(

∂u

∂t

)2

− 1

2
|∇u|2 −W (u) +

ρ2 − j2

2q2u2
+

E2 − H2

2
.

Then, by (86)–(89) and the above expression for L we get

E(u, S, ϕ,A) =

∫
[

∂L
∂(∂u

∂t
)
· ∂u
∂t

+
∂L

∂(∂S
∂t

)
· ∂S
∂t

+
∂L

∂(∂A

∂t
)
· ∂A
∂t

− L
]

=

∫
[(

∂u

∂t

)2

+
ρ2

q2u2
− E · ∇ϕ−E · ∂A

∂t
− L

]

=

∫
[(

∂u

∂t

)2

+
ρ2

q2u2
+ E2

]

−
∫

[

1

2

(

∂u

∂t

)2

− 1

2
|∇u|2 −W (u) +

ρ2 − j2

2q2u2
+

E2 − H2

2

]

=

∫
[

1

2

(

∂u

∂t

)2

+
1

2
|∇u|2 +W (u) +

ρ2 + j2

2q2u2
+

E2 + H2

2

]

. �

The above theorem implies that the interesting case occurs when W ≥ 0.
The study of equations (60)–(62) with W ≥ 0 is just at the beginning. Now we
will state a very recent first result in this direction.

We assume that W is a C2 function satisfying the following assumptions:

(W1) W ≥ 0, W (0) = W ′(0) = 0.
(W2) W

′′(0) = Ω2
0 > 0.

(W3) There exist Ω1, c > 0 with Ω1 < Ω0 such that

W (s) ≤ 1

2
Ω2

1s
2 + c for all s ∈ R.
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(W4) For all s ∈ R,

0 ≤ 1

2
W ′(s)s ≤W (s).

(W5) W
′′ is bounded.

The following theorem holds [5]:

Theorem 14. Assume that W satisfies (W1)–(W5). Then there exists q∗ > 0 such
that, for 0 < q < q∗, equations (78) and (79) have solutions (u, ϕ) such that
u ∈ H1(R3),

∫

|∇ϕ|2 <∞ and ω0 ∈ (Ω1,Ω0).

Remark 15. The assumption that q must be sufficiently small is essential in the
proof of the theorem. This fact has the following physical interpretation: if q is too
big, the electric force becomes too strong with respect to the forces that keep the
solitary wave concentrated. Then solitary waves cannot form.
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