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Abstract. The Einstein-scalar field theory can be used to model gravitational
physics with scalar field sources. We discuss the initial value formulation of
this field theory, and show that the ideas of Leray can be used to show that
the Einstein-scalar field system of partial differential equations is well-posed
as an evolutionary system. We also show that one can generate solutions of
the Einstein-scalar field constraint equations using conformal methods.

Mathematics Subject Classification (2000). Primary 83C05.

Keywords. Partial differential equations, Einstein’s equations.

1. Introduction

In Newtonian theory, one models gravitational physics by studying a linear ellip-
tic Poisson equation for the Newtonian potential on a fixed absolute background
space and time, with the motion of material bodies governed by the Newtonian
force equation on this fixed background. By contrast, in general relativity the grav-
itational field is modeled using Lorentzian spacetimes whose curvature reflects the
material and field content of the spacetime. Mathematically, a Lorentzian space-
time is a pair (Mn+1,g) where Mn+1 is a smooth manifold of dimension n + 1
(in everyday physics n = 3, but higher dimensions are sometimes considered for
modeling electromagnetism and other interactions with gravity), and g is a pseudo-
Riemannian metric of signature (−,+, . . . ,+). The metric distinguishes timelike
directions g(X,X) < 0 for a tangent vector X (along the possible path for a mas-
sive physical object), null directions g(X,X) = 0 (along the possible path for a
massless physical particle), and spacelike directions g(X,X) < 0. The physical
time between a pair of events, as would be marked by a proper clock, corresponds
to the g-length of the timelike trajectory followed by that clock. The path followed
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by a test particle which is free of nongravitational forces corresponds to a timelike
geodesic in the spacetime.

It is well known that theoretical studies of general relativity have predicted
such strange and interesting phenomena as the expansion of the universe, black
holes, gravitational lenses, and gravitational waves. These phenomena, all of which
have now been confirmed either by direct or indirect observation, were originally
discovered via studies of solutions of the Einstein field equations. It is also well
known, at least among mathematicians, that Einstein’s equations present a num-
ber of very challenging mathematical problems, such as the cosmic censorship
conjectures and the question of the nonlinear stability of black holes.

In this brief review, we show that in two important ways, the ideas of Leray
have played an important role in the study of Einstein’s equations. In previous
studies these ideas were applied in the absence of a scalar field. Here, since scalar
fields are now viewed as possibly important for understanding the apparent ac-
celeration of the expansion of the universe, and since including them results in
some additional interesting features in the analysis, we work with the Einstein-
scalar field system. We introduce this system in Section 2 and discuss its Cauchy
formulation in Section 3. We then show in Section 4 how Leray’s ideas play a
role in understanding the evolutionary aspect of the Einstein-scalar field system.
In Section 5 we prove the existence of solutions to the Einstein-scalar constraint
equations via the conformal methods, where seminal ideas of Leray regarding so-
lutions of nonlinear elliptic equations have played a crucial role.

We end this section with a note about notation. Wherever there may arise a
possible confusion, we use bold faced symbols for spacetime variables and tensors.
For initial data sets, we reserve the notation of over-barred symbols for physical
variables, which satisfy the relevant constraint equations, and may or may not
be “time-dependent” depending on the context. Unadorned symbols are used for
free conformal data as described in Section 5. Finally, a “tilded” symbol (as in
(5.4) below) appears when we need to introduce an intermediate quantity which
is neither a free variable, nor a physical one.

2. Einstein-scalar field equations

For general source fields, the Einstein gravitational field equations take the tenso-
rial form

G(g) = T(Φ,g), (2.1)

where G(g) is the Einstein tensor, which is a second order differential operator on
the metric defined by G(g) := Ric(g)− 1

2Rg with Ric(g) denoting the Ricci tensor
of g and R denoting the scalar curvature of g, and where T(Φ,g) is the stress-
energy or energy-momentum tensor,1 a specified functional of the source fields Φ
and the metric. The specific form that the stress-energy tensor takes depends upon

1Note that we have chosen units so that 8π times the Newtonian gravitational constant is set
equal to one.
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the source fields presumed to be present in the physical system being modeled.
Here, we presume that Φ is a scalar field, which we label Ψ, with potential function
V (Ψ), and we set

T = ∂Ψ ⊗ ∂Ψ −

[

1

2
|∂Ψ|2

g
+ V (Ψ)

]

g. (2.2)

In addition to equation (2.1), the Einstein-scalar field theory includes a field
equation for Ψ, which reads

∇α∂αΨ =
dV

dΨ
, (2.3)

where ∇ denotes the covariant derivative compatible with g. While this extra
equation may simply be added to the theory by hand, it also follows directly as a
necessary consequence of equation (2.1) together with the geometric properties
of the Einstein tensor: One readily verifies that the Bianchi identities for the
curvature imply that the Einstein tensor satisfies the identity

divg G(g) = 0 (2.4)

where divg denotes the divergence operator for the metric g. This condition to-
gether with (2.1) implies the conservation law

divg T = 0. (2.5)

We readily verify that (2.5) applied to the scalar field stress-energy tensor (2.2)
results in the field equation (2.3).

How does one choose the scalar field potential function V (Ψ)? While there are
many possibilities, we note that V (Ψ) = m

2 Ψ2 corresponds to the massive Klein–
Gordon field, while setting V (Ψ) = Λ for a nonzero constant Λ and requiring that
Ψ = constant produces the vacuum Einstein theory with nonzero cosmological
constant Λ.

3. The Cauchy problem: constraints and evolution

The Einstein-scalar field system of partial differential equations on a 3+1 spacetime
consists of eleven equations (2.1) and (2.3) for the eleven field variables gµν and
Ψ (for n + 1 dimensions, there are 1

2 (n + 1)(n + 2) + 1 equations for the same
number of field variables). One of its most characteristic features, however, is that
it is both an underdetermined and an overdetermined system, in the sense that
if one formulates the Einstein-scalar-field system as a Cauchy problem, there are
constraint equations which must be satisfied by any candidate set of initial data,
and as the data evolves there are certain of the field variables whose evolution is
entirely at one’s discretion. Both of these features reflect the spacetime covariance
of the theory (i.e., the theory has the spacetime diffeomorphism group as its gauge
group).

To see these features explicitly, we now sketch out an n + 1-decomposition
of the Einstein-scalar field variables and equations. Given a spacetime (Mn+1,g),
we start by choosing an n+1-foliation of the spacetime manifold Ft : Σn →Mn+1
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(t ∈ R), for which each of the leaves Ft(Σ
n) of the foliation is presumed spacelike.

We also choose a threading of the spacetime by a congruence of timelike observer
paths Tp : R →Mn+1 (p ∈ Σn). The choice of a foliation and a threading, together
with a choice of coordinate patches for Σn, automatically determines local coor-
dinates (x0 = t, x1, . . . , xn) and local coordinate bases (∂/∂t, ∂/∂x1 . . . , ∂/∂xn)
covering Mn+1. We may then, without loss of generality, write the metric (locally)
in the form

g = −N2θt ⊗ θt + γ̄ijθ
i ⊗ θj

where (θt = dt, θj = dxj + βjdt) is the one-form basis dual to the surface-
compatible tangent vector basis

(

e⊥ =
∂

∂t
− βj

∂

∂xj
,
∂

∂x1
. . . ,

∂

∂xn

)

with e⊥ a normal vector field to Ft(Σ
n). Here N is the positive definite “lapse

function”, βj are the components of the spacelike “shift vector”, and γ̄ij are the
components of the spatial metric tensor. We note that for each choice of t, γ̄(t) =
γ̄ij(t)dx

i ⊗ dxj is the induced Riemannian metric on the leaf Ft(Σ
n). We use the

notation K̄(t) = K̄ij(t)dx
i ⊗ dxj to denote the second fundamental form defined

by the foliation.
For the scalar field Ψ, there is no need to do any space + time decomposition.

However, we shall use the notation ψ̄ to denote the restriction of Ψ to one of the
leaves of the chosen foliation, and we shall use the definition

π̄ :=
1

N

(

∂

∂t
ψ̄ − βm

∂

∂xm
ψ̄

)

for convenience in working with the time derivative of Ψ.
If we now apply the usual n + 1-decomposition to express the spacetime

curvature in terms of the time-dependent spatially covariant quantities γ̄, K̄, N, β
and their various derivatives and (spatial) curvature, we find that the Einstein-
scalar field equations (2.1) and (2.3) split into two types: constraint equations
which require any choice of initial data to satisfy certain identities, and evolution
equations which describe how the spatial fields evolve from one leaf of the foliation
to the others. Explicitly, we have the following:

Constraint equations

From the G⊥⊥ equation derived from (2.1), we obtain the Hamiltonian constraint

2N−2G⊥⊥ ≡ Rγ̄ − |K̄|2γ̄ + (tr K̄)2 = π̄2 + |∇̄ψ̄|2γ̄ + 2V (ψ̄). (3.1)

From the G⊥j equations derived from (2.1), we obtain the momentum constraint

−N−1G⊥j ≡ ∇̄mK̄
m
j − ∂j tr K̄ = π̄∂jψ̄. (3.2)

Note that these equations constrain the choice of the data (γ̄, K̄, ψ̄, π̄); they do
not involve the lapse and shift. We refer the interested reader to [2] for a survey
on the constraint equations.
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Evolution equations

From the Gij equations derived from (2.1), we obtain

∂

∂t
K̄ij = N

(

Rij − 2K̄imK̄
m
j + tr K̄K̄ij − ∂iψ̄∂jψ̄ +

1

n− 1
γ̄ijV (ψ̄)

)

−∇̄i∂jN + LβK̄ij ; (3.3)

here and above ∇̄ is the covariant derivative associated to γ̄, Rij are the compo-
nents of the spatial Ricci tensor calculated from γ̄, and L denotes the Lie derivative
operator. This is an evolution equation for K̄. We obtain an evolution equation
for π̄ from the spacetime field equation (2.3) for ψ̄:

∂

∂t
π̄ = N

(

∆γ̄ ψ̄ + tr K̄π̄ −
dV

dψ̄

)

+ γ̄mn∂mN∂nψ̄ + Lβπ̄, (3.4)

where ∆γ̄ is the Laplace–Beltrami operator for the metric γ̄.
We have evolution equations for K̄ and π̄. What about γ̄, N , β and ψ̄? The

evolution equation for ψ̄ comes from the definition for π̄:

∂

∂t
ψ̄ = Nπ̄ + Lβψ̄. (3.5)

The evolution equation for γ̄ comes from the definition of the second fundamental
form:

∂

∂t
γ̄ij = −2NK̄ij + Lβ γ̄ij . (3.6)

For the other field variables, N and β, there are no evolution equations. This
freedom to choose N and β and their evolution any way one wishes reflects the
gauge invariance of the field equations under the action of the diffeomorphism
group.

To summarize, the Cauchy formulation of the Einstein-scalar field equations
asks that one choose the initial data set (γ̄, K̄, ψ̄, π̄) subject to the constraint
equations (3.1)–(3.2). One then chooses N and β freely in time, to fix the gauge,
and finally one proceeds to evolve (γ̄, K̄, ψ̄, π̄) via the evolution equations just
listed. Note that if one chooses the constraints to hold initially, in any accurate
evolution they must remain satisfied for all time.

4. Evolution system

Does an initial data set satisfying the constraint equations (3.1)–(3.2) always gen-
erate (via the evolution equations (3.3)–(3.6)) a spacetime solution of the Einstein-
scalar field equations (2.1)–(2.3)? To show this, one needs to prove that the system
is well-posed in some appropriate sense. Here we discuss the well-posedness results
of Leray–Ohya and of Leray, as applied to the Einstein-scalar field system. Note
that our focus here is solely on the evolution system. One must use the Bianchi
identity to show that the constraints are preserved in the evolution (they satisfy
a hyperbolic system, see [9]), thus yielding a local existence result for the full set
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of field equations. We refer the reader to [1] where this issue (again for vacuum
solutions) is addressed in a similar setting to the one considered here.

To check if a given system is hyperbolic in the Leray–Ohya sense, one seeks to
diagonalize the matrix of the principal parts (highest derivatives) of the system.
If this diagonalization can be done, the system is a causal Leray–Ohya hyper-
bolic system if in addition to being Leray–Ohya hyperbolic, each operator has a
characteristic cone which contains the metric cone. As a consequence, it can be
shown that it is well-posed in Gevrey classes of functions. These are spaces of
C∞ functions whose successive derivatives satisfy certain inequalities which are
generally too weak to imply the convergence of the corresponding Taylor series.
Well-posedness means that a set of initial data in such classes will generate a
spacetime solution with evolving data in the same classes. It also implies causal
propagation, with the domain of dependence of the data determined by the causal
cones of the spacetime metric, as well as continuous dependence of the evolved
solution on the choice of data. Note that the principal parts of a Leray–Ohya sys-
tem may generally have multiple characteristics. Also note that in verifying the
criteria for a Leray–Ohya system, one need not have the same order for each of
the various evolution equations which make up the system.

If in fact the operators in the principal part of a Leray–Ohya system do not
have multiple characteristics—i.e., if there exists a cone in the cotangent plane
such that each straight line passing through a point in its interior intersects the
characteristic cone in N distinct points if the operator is of order N , then the
system is called Leray hyperbolic. It can be shown that such a system is well-posed
in Sobolev spaces as well in Gevrey class spaces.

For a more detailed discussion of Leray–Ohya and Leray hyperbolicity, see
[13, 14, 4].

We now apply these ideas to the Einstein-scalar field system. In doing so, we
work with the Einstein-scalar field system in mixed first order (for γ̄ and K̄) and
second order (for ψ̄), to mesh with the extant treatments.

4.1. Leray–Ohya hyperbolic system for γ̄, K̄ and ψ̄

We set ∂̄0 := ∂/∂t− Lβ and we consider the system

∂̄2
00Rij − ∂̄0∇̄iRj0 − ∂̄0∇̄jRi0 + ∇̄i∇̄jR00 = Fij

which is derived by taking linear combinations of equations from the Einstein-
scalar field system (see [1] for a similar derivation in the vacuum case). If ∂̄0γ̄ij is
replaced by its value in terms of K̄,

∂̄0γ̄ij = −2NK̄ij , (4.1)

this system reads as a third order system for K̄ of the form

∂̄0(−N
−2∂̄2

0 + ∇̄h∇̄h)K̄ij = fij (2 in γ̄, 2 in K̄, 3 in N, 3 in ψ̄) + f̃ij , (4.2)

with

f̃ij := N∇̄i∂j(N
−2∂̄2

0 − ∇̄h∂h)N.
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The numbers appearing above with fij (and below with h) denote the order of
the highest derivatives of the unknowns which occur in that term. The additional
term N∇̄i∂j(N

−2∂̄2
0 −∇̄h∂h)N is clearly third order in γ̄ (and fourth order in N).

The wave equation for ψ̄ reads, in terms of γ̄, K̄ and the presumably specified
variables N and β, as follows:

−N−1∂0(N
−1∂0ψ̄) +N−1γ̄ij∇̄i(N∂jψ̄) + K̄i

iN
−1∂0ψ̄ =

dV

dψ̄
.

Applying the operator ∂0 and using (4.1) gives an equation of the form

∂0(−N
−2∂2

0 + ∇̄h∂h)ψ̄ = h (1 in γ̄, 1 in K̄, 2 in N, 2 in ψ̄). (4.3)

The principal matrix of a system of partial differential equations EB(uA) = 0,
with unknowns uA, is obtained by assigning to each unknown an integer m(uA)
and to each equation an integer n(EB) such that the highest derivatives of uA
appearing in EB are at most of order m(uA)− n(EB). The principal part relative
to uA in the equation EB = 0 then consists of the terms of order m(uA) − n(EB)
in uA. It is zero if there are only terms of smaller order. These integers m(uA) and
n(EB) are collectively called the Leray–Volevich indices for the system.

For the system of PDEs (4.1), (4.2) and (4.3) with the field variables γ̄(t),
K̄(t) and ψ̄(t), we choose the Leray–Volevich indices

m(γ̄) = 3, m(K) = 3, m(Ψ) = 4, (4.4)

n(4.1) = 2, n(4.2) = 0, n(4.3) = 1. (4.5)

The principal matrix is then a triangular matrix, with the elements in the diagonal
being the derivative ∂̄0 along the normal e⊥ to the space sections and the product
of this operator by the wave operator in the spacetime matrix. These operators
are causal and hyperbolic. Both are such that their characteristic cones at a point
contain the metric null cone. However, the nondiagonal form of the principal matrix
does not permit one to conclude that it is Leray hyperbolic.

If we replace K̄ in (4.2) by its value in terms of γ̄ using (4.1), and give to γ̄ the
index 4, we obtain for (4.2) and (4.3) a diagonal system with principal operators
the wave operator and the operator

∂̄2
0(−N−2∂̄2

0 + ∇̄h∇̄h).

This operator has a double characteristic, the spacelike hyperplane, and the system
is only Leray–Ohya hyperbolic, relative to the Gevrey class of index 2. The Cauchy
problem for this system is well posed in this class; the domain of dependence of
the solution is determined by the light cone of the spacetime metric.

4.2. Leray hyperbolic system for γ̄, K̄ and ψ̄ with a lapse condition

The system for γ̄, K̄ and ψ̄ can be put into Leray hyperbolic form if we impose a
condition on the lapse function N which makes it a quasi-diagonal system for γ̄,
K̄, ψ̄ and now also N.



38 Y. Choquet-Bruhat, J. Isenberg and D. Pollack JFPTA

To remove the term f̃ij , which introduces nondiagonal elements into the
principal matrix, we require that N satisfy a wave equation with source term,
with that source term being an arbitrarily specified function F :

−N−2∂2
00N + ∇̄i∂iN = F,

and we then insert this equation into (4.2). We now consider the system consisting
of (4.1)–(4.3) with this change, together with the equation

∂̄0((−N
−2∂̄2

0 + ∇̄i∂i)N) = ∂̄0F, (4.6)

obtained by taking the ∂̄0 derivative of (4.2), and using (4.1). We choose for N
and (4.6) the Leray–Volevich indices

m(N) = 4, n(4.6) = 1. (4.7)

The system is now quasi-diagonal with hyperbolic diagonal elements given by
∂̄0(−N

−2∂̄2
0 + ∇̄i∇̄i) and ∂̄0. This leads to the following result.

Theorem 4.1. The system (4.1), (4.2), (4.3), and (4.6) is a Leray causal hyperbolic
system for γ̄, K̄, ψ̄ and N .

5. The constraints

The Einstein-scalar field constraints consist of the n + 1 equations (3.1)–(3.2),
to be satisfied by the initial data (γ̄, K̄, ψ̄, π̄) on an n-dimensional manifold Σ.
Locally, due to the symmetry of these tensors, this initial data can be regarded as
a set of n(n + 1) + 2 functions, which makes the underdetermined nature of the
constraint equations apparent. We recall that (γ̄, K̄, ψ̄, π̄) denotes a set of initial
data which satisfies the constraint equations; we use the same quantities without
the over-bars to denote functions which we choose freely in order to construct the
data (γ̄, K̄, ψ̄, π̄). Also for convenience here, we restrict our considerations to the so-
called cosmological case, for which Σ is a compact manifold (see [6] for a treatment
of the asymptotically flat case). Even in vacuum there are infinitely many solutions
of the constraints, depending on arbitrary transverse-traceless (divergence and
trace free) tensors, which can be interpreted as “radiation data”.

5.1. The conformally formulated constraints

The conformal method involves decomposing the data (γ̄, K̄, ψ̄, π̄) into certain
parts which are chosen freely, and other parts which are determined by solving
equations which we derive from the constraint equations. We consider the case
n ≥ 3. The most basic piece of the freely chosen data is a choice of a Riemannian
metric γ, or rather the conformal class of metrics represented by γ. The physical
metric γ̄ is required to be conformally related to γ. One sets

γ̄ ≡ ϕ
4

n−2 γ
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for a positive function ϕ on Σ. The following identity then holds between the scalar
curvatures of γ̄ and γ:

R(γ̄) = −ϕ−
n+2
n−2

(

4(n− 1)

n− 2
∆γϕ−R(γ)ϕ

)

. (5.1)

On the other hand, the divergences of traceless contravariant symmetric 2-tensors
are related by the identity

divγ̄ P̄ = ϕ−
2(n+2)

n−2 divγ P (5.2)

if

P̄ = ϕ−
2(n+2)

n−2 P.

Using (5.2) (applied to the traceless part of K̄) together with (5.1), the Einstein-
scalar field constraints may be conformally reformulated as follows.

5.1.1. The momentum constraint. The momentum constraint may be expressed
with respect to the background metric ϕ by

divγ K̃ =
n− 1

n
ϕ

2n
n−2∇τ + ϕ

2(n+2)
n−2 J̄ , (5.3)

where τ = trγ K̃ = trγ̄ K̄ is the mean curvature, the physical extrinsic curvature

(second fundamental form) K̄ is related to K̃ (as contravariant tensors) by

K̄ = ϕ−
2(n+2)

n−2 K̃ +
τ

n
γ̄−1

with γ̄−1 denoting the contravariant form of the metric γ̄, and where J̄ := −π∇ψ.
We have shown in [6], following ideas originating from York [18], that it is useful

to associate to the background conformal metric γ a function Ñ which is related
to the original lapse by the equation2

N(Det γ̄)−1/2 = Ñ(Det γ)−1/2,

or simply

N = ϕ
2n

n−2 Ñ .

Then the “physical” scalar field initial data (ψ̄, π̄) consists of ψ̄ = ψ and

π̄ = rN−1∂0ψ = ϕ−
2n

n−2 π, where π = Ñ−1∂0ψ,

and it follows that

J̄ = −ϕ−
2(n+2)

n−2 π∇ψ = ϕ−
2(n+2)

n−2 J, where J = −π∇ψ.

Hence the Einstein-scalar field momentum constraint equation does not contain ϕ
if ∇τ = 0. Setting

K̃ = Lγ,confX + U, ∆γ,conf := divγ Lγ,conf (5.4)

2This relation consists in requiring that each metric has an associated initial lapse with the same
“densitized lapse”.
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with Lγ,confX the conformal Lie derivative of γ (or conformal Killing operator)
with respect to a vector field X and with U a freely specified traceless 2-tensor, the
system may be regarded as a self-adjoint linear elliptic system for X, as follows:

∆γ,confX = − divγ U +
n− 1

n
ϕ

2n
n−2∇τ − π∇ψ. (5.5)

In summary, if we begin with a choice of “free” initial data (γ, U, τ, ψ, π) and solve

the conformally formulated momentum constraint equation (5.5) to determine K̃

as indicated in (5.4) then K̃ satisfies the momentum constraint equation (5.3).

5.1.2. The Hamiltonian constraint. If we specify the initial data (γ, U, τ, ψ, π) and
use the identities (5.2) and (5.1), then the Hamiltonian constraint equation (3.1)
becomes a semilinear elliptic equation, called the Lichnerowicz equation, for ϕ. We
have shown [6, 7] that it takes the form

H ≡ ∆γϕ− f(ϕ) = 0 (5.6)

with
f(ϕ) := Rγ,ψ ϕ−Aγ,K̃,π ϕ

−
3n−2
n−2 + Bτ,ψ ϕ

n+2
n−2

where we set cn := n−2
4(n−1) , and we let

Rγ,ψ := cn(R(γ) − |∇ψ|2γ), Aγ,K̃,π := cn(|K̃|2γ + π2)

and

Bτ,ψ := cn

(

n− 1

n
τ2 − 4V (ψ)

)

.

We observe that Aγ,K̃,π ≥ 0, while the sign of Bτ,ψ depends on the relative values of

τ and V (ψ). Note that in the constant mean curvature case the system of equations
are “semi-decoupled” in that we may first solve the momentum constraint equation
(5.3) (which does not involve ϕ) and then use the resulting K̃ to formulate the
Lichnerowicz equation as described above. If we can find a positive solution ϕ to
this equation then this determines the physical metric γ̄ and second fundamental
form K̄ as well as the physical initial data (ψ̄, π̄) for the scalar field.

In [6, 7] we establish a number of results regarding the existence or nonex-
istence of solutions for the system consisting of (5.5) and (5.6). We present here
some of the existence results, in a low regularity setting, on manifolds with τ
constant (constant mean curvature, or “CMC”, initial data). The assertion that
these results hold in a low regularity setting follows from methods established
by Choquet-Bruhat [3] and Maxwell [15, 16] for the vacuum Einstein constraint
equations.

5.2. Existence theorems

We denote by W p
s the usual Sobolev space on (Σ, γ), consisting (for s a positive

integer) of functions with all weak derivatives of order less than or equal to s lying
in Lp, and by Mp

s the space of W p
s Riemannian metrics (which is an open cone in

the space of all W p
s 2-tensors if s ≥ 2 and p > n/2, or if p = 2 and s > n/2). We

denote W 2
s by Hs and M2

s by Ms.
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5.2.1. Solving the momentum constraint. Given a traceless tensor U on Σ, the
conformally formulated momentum constraint equation (5.5) is a linear elliptic
equation for the vector field X. The kernel of ∆γ,conf consists of the space of
conformal Killing vector fields. The inhomogeneous term divγ U is orthogonal to
this space. The following theorem is a consequence of known theorems for linear
elliptic systems. We suppose that s is an integer.3 We let F denote the left hand
side of (5.5) in the CMC setting, so that

F = − divγ U − π∇ψ.

Theorem 5.1. The conformally formulated momentum constraint equation (5.5)
with γ ∈ Mp

2 , p > n/2, has a solution X ∈ W q
2 , 1 < q ≤ p, if F ∈ Lq and if

J = π∇ψ is orthogonal in the L2 sense to the space of conformal Killing (CK)
vector fields on (Σ, γ).

Moreover the solution is uniquely determined up to the addition of a confor-
mal Killing vector field. There exists a constant c(γ), depending only on γ, such
that the unique solution which is orthogonal to the space of CK vectors satisfies

‖X‖W q

2
≤ c(γ)‖F‖Lq . (5.7)

Corollary 5.2. If γ ∈M2
s , s > n/2 and F ∈ Hs−2, then X ∈ Hs.

Proof. We first remark that if s > n/2, then the Sobolev embedding theorem
W p

2 ⊂ Hs for p ≤ 2n/(n−2s+4) implies that if s > n/2 there exists p > n/2 such
that the embedding holds.

The corollary is then established in the usual way, by differentiating the
equation and using the Sobolev multiplication and interpolation properties. �

5.2.2. Solving the Hamiltonian constraint. Satisfying the Hamiltonian constraint
is equivalent to finding a positive solution of the Lichnerowicz equation (5.6). To
prove the existence of positive solutions we use the method of sub- and super-
solutions. The early approaches (see [10]) to solving the Lichnerowicz equation
made use of the Leray–Schauder degree. The method employed here uses esti-
mates for linear elliptic equations together with the Arzelà–Ascoli theorem; see
for example [11]. The first solutions were found in Hölder spaces, then in Sobolev
spaces Hs, s > (n+1)/2+1. The regularity has since been reduced to W p

2 , p > n/2
(see [3]) and to Hs, s > n/2 (see [16]), in the absence of the scalar field.

We give a general theorem, adapted to equations of the type of the Lichnero-
wicz equation, with or without a scalar field. Consider the semilinear equation

∆γϕ = f(x, ϕ) ≡
N

∑

i=1

ai(x)ϕ
pi , (5.8)

3The case of noninteger s > n/2 is treated by Maxwell [16] for the vacuum Einstein constraint
equations. This of course requires working with distributional solutions if n = 3. For integral
choices of s > n/2 we in particular have s ≥ 2 when n ≥ 3. Thus the formulas presented here
involve pointwise almost everywhere defined derivatives.
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on the compact manifold (Σ, γ), where x ∈ Σ, and pi ∈ R. We say that ϕ− is
a subsolution of (5.8) if ∆γϕ− ≥ f(x, ϕ−), and ϕ+ is a supersolution of (5.8) if
∆γϕ+ ≤ f(x, ϕ+).

Theorem 5.3. Equation (5.8) admits a positive solution ϕ ∈W p
2 , p > n/2, provided

the following conditions are satisfied:

(a) γ ∈Mp
2 , p > n/2, and ai ∈ Lp for i = 1, . . . , N .

(b) The equation admits a strictly positive subsolution ϕ− and a supersolution
ϕ+, both in W p

2 , with 0 < ϕ− ≤ ϕ+ <∞.

The solution ϕ then satisfies ϕ− ≤ ϕ ≤ ϕ+, and is unique if f(x, y) is increasing
in y for each x ∈ Σ. On the other hand, if the ai are all of the same sign then no
positive solution exists.

Corollary 5.4. If in addition γ ∈ Ms, s > n/2, ai ∈ Hs−2, i = 1, . . . , N , then
ϕ ∈ Hs.

It can be proved by using conformal invariance that, in the case of the Lich-
nerowicz equation, the uniqueness of the solution is independent of the sign of
Rγ,ψ (see Theorem 7.12 of [4]).

In the original analysis of the Lichnerowicz equation for vacuum CMC data
on compact manifolds, the full Yamabe theorem4 is employed to fix the sign of the
linear zero order term [11]. A verification that one only needs to control the sign
of the scalar curvature (a much easier result), even in the low regularity setting,
is provided by results of [3] and [16]. The following result provides the analog of
this control in the presence of a scalar field (see Proposition 1 of [7]).

Theorem 5.5 (The Yamabe-scalar field conformal invariant). The functional on
H1(Σ) (for given γ ∈Mp

2 and ψ ∈W p
2 ) defined by

Qγ,ψ(u) =
c−1
n

∫

Σ
[|∇u|2γ + Rγ,ψu

2] dvolγ

(
∫

Σ
u2n/(n−2) dvolγ)(n−2)/n

(5.9)

admits an infimum, Yψ([γ]) > −∞, which is a conformal invariant. Its sign deter-
mines the Yamabe-scalar field classes of pairs (γ, ψ). A pair (γ, ψ) with Yψ([γ]) < 0
(respectively Yψ([γ]) = 0, or Yψ([γ]) > 0) can be conformally transformed to a pair
such that Rγ,ψ < 0 (respectively Rγ,ψ = 0, or Rγ,ψ > 0) on Σ, and moreover if
Rγ,ψ maintains a fixed sign on Σ it is necessarily of the same sign at Yψ([γ]).

The proof of the following existence theorem relies on the construction of
sub- and supersolutions ϕ− and ϕ+. We have supposed that τ is a constant and
that V is a smooth function of ψ ∈W p

2 ⊂ C0(Σ), since p > n/2. We therefore also
have Bτ,ψ ∈ C0(Σ) ⊂ L∞.

4This says that every metric on a compact manifold is conformal to one with constant scalar
curvature. The proof of this theorem was completed by Schoen [17] after essential contributions
by Yamabe, Trudinger and Aubin. We refer the interested reader to [12, 5] and the references
contained therein.
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The expression Aγ,K̃,π = cn(|K̃|2γ + π2) satisfies Aγ,K̃,π ≥ 0, and, for a

solution K̃ of the momentum constraint, Aγ,K̃,π ∈ Lp since

W p
1 ×W p

1 ⊂ Lp when p > n/2.

Here we present results in the case that Bτ,ψ = cn(
n−1
n τ2 − 4V (ψ)) ≥ 0. We refer

the interested reader to [7] for a more general treatment.

Theorem 5.6. Suppose that γ ∈Mp
2 , p > n/2, ψ ∈ W p

2 , K̃, π ∈W p
1 and Bτ,ψ ≥ 0.

Then the Lichnerowicz equation (5.6) admits a positive solution ϕ > 0, ϕ ∈ W p
2 ,

in the following cases:

(1) (γ, ψ) is in the positive Yamabe-scalar field class and Aγ,K̃,π 6≡ 0, or

(2) (γ, ψ) is in the zero Yamabe-scalar field class and infΣ Bτ,ψ > 0.

Proof. If (γ, ψ) is in the positive or zero Yamabe-scalar field class, a constant
supersolution can be constructed directly as follows. First note that, as indicated
in Theorem 5.5, we may assume that Rγ,ψ ≥ 0. This may require that we make a
preliminary conformal transformation of our initial data, and find a new solution of
the conformally formulated momentum constraint equation (see [7]). We consider
the function of the single variable y defined by

F (y) = Bτ,ψy
n

n−2 + Rγ,ψy
n−1
n−2 −Aγ,K̃,π, (5.10)

where f denotes the mean value of a function f on (Σ, γ):

f ≡
1

Vol(Σ, γ)

∫

Σ

f dvolγ .

Note that by setting y(x) = ϕ(x)4 we see that f(x, φ) = y−
3n−2

4(n−2)F (y), provided
that we do not replace the coefficients by their average values.

Under the stated hypothesis one easily sees that F (y) is increasing on R+ and
has exactly one positive root. We let y0 = ϕ4

0 denote this root, so that F (y0) = 0.
Now consider the linear equation

∆γv = Rγ,ψϕ0 −Aγ,K̃,πϕ
−

3n−2
n−2

0 + Bτ,ψϕ
n+2
n−2

0 . (5.11)

By our choice of ϕ0 the right hand side of this equation has mean value zero and is
therefore orthogonal to the constants. Thus we may consider the function v ∈W p

2 ,
with mean value zero on Σ, which solves (5.11). The function

ϕ+ ≡ ϕ0 + v − inf
Σ
v ≥ ϕ0, ∆γϕ+ ≡ ∆γv,

is a supersolution if Rγ,ψ ≥ 0, because

∆γϕ+−f(·, ϕ+) = Rγ,ψ(ϕ0−ϕ+)−Aγ,K̃,π(ϕ
−

3n−2
n−2

0 −ϕ
−

3n−2
n−2

+ )+Bτ,ψ(ϕ
n+2
n−2

0 −ϕ
n+2
n−2

+ ).

Hence if Rγ,ψ ≥ 0, then since Aγ,K̃,π ≥ 0 and Bτ,ψ ≥ 0, we have

∆γϕ+ − f(·, ϕ+) ≤ 0
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because ϕ+ ≥ ϕ0. In the case of the zero Yamabe-scalar field class the same type
of argument holds, but we must use, in addition, the hypothesis Bτ,ψ 6≡ 0 to ensure
that ϕ0 > 0.

In order to find a positive subsolution first note that any number ℓ < 1 such
that

ℓ <
infΣ Aγ,K̃,π

supΣ(Rγ,ψ + Bτ,ψ)

is a constant subsolution. It is positive only if infΣ Aγ,K̃,π > 0.
One may relax this hypothesis on Aγ,K̃,π by instead constructing a non-

constant subsolution using the conformal invariance of the Lichnerowicz equation
[10, 11, 16, 7]. We ignore for the purposes of this theorem the connection between

the coefficient Aγ,K̃,π and the tensor K̃ arising from the solution to the conformally

formulated momentum constraint equation (5.5). In order to state the conformal
invariance properly one must, in addition to conformally rescaling the coefficients,
solve (5.5) with the conformally transformed data before posing the conformally
transformed Lichnerowicz equation. We refer the reader to Proposition 2 of [7] for
details. Since we are only concerned here with the Lichnerowicz equation we may
state the conformal invariance as follows:

∆γϕ−Rγ,ψϕ+ Aγ,K̃,πϕ
−

3n−2
n−2 − Bτ,ψϕ

n+2
n−2

= θ
n+2
n−2 (∆γ′ϕ′ −R′

γ,ψϕ
′ + A′

γ,K̃,π
ϕ′−

3n−2
n−2 − B′

τ,ψϕ
′

n+2
n−2 ),

with

γ′ = θ
4

n−2 γ, ϕ′ = θ−1ϕ, A′

γ,K̃,π
= Aγ,K̃,πθ

−
4

n−2 , B′

τ,ψ = Bτ,ψ.

Now suppose Aγ,K̃,π ≥ 0, Aγ,K̃,π 6≡ 0. We set

k = Rγ,ψ + λBτ,ψ

with λ = 0 in the positive Yamabe-scalar field case, while we take λ > (infΣ Bτ,ψ)−1

in the case Rγ,ψ = 0. Then there exists a θ > 0, θ ∈W p
2 , such that

∆γθ − kθ = −Aγ,K̃,π.

Then ∆γθ −Rγ,ψθ = −θ
n+2
n−2R′

γ,ψ implies

R′

γ,ψ = θ−
n+2
n−2 (Aγ,K̃,π + (Rγ,ψ − k)θ).

The “primed Lichnerowicz equation” then admits the positive constant subsolution
ℓ if

−R′

γ,ψℓ+ A′

γ,K̃,π
ℓ−

3n−2
n−2 − B′

τ,ψℓ
n+2
n−2 ≥ 0,

or, equivalently,

θ−
n+2
n−2 {−(Aγ,K̃,π + λBτ,ψ)θ}ℓ+ Aγ,K̃,πθ

−
4

n−2 ℓ−
3n−2
n−2 − Bτ,ψℓ

n+2
n−2 ≥ 0.

Any number ℓ such that

ℓ ≤ min(inf
Σ
λ

n−2
4 θ−1, inf

Σ
θ

n−2
4(n−1) )
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is a positive subsolution of this transformed equation, and this shows that θ−1ℓ is
a positive subsolution of the original equation. �

An analogous method allows for the construction of sub- and supersolutions
in the negative Yamabe-scalar field class. We refer the interested reader to [3] and
to [16] for the vacuum case and [6] for the Einstein-scalar field system.

Remark 5.7. The existence and nonexistence results presented here cover all cases
when Bτ,ψ ≥ 0 is a constant,5 since then either infΣ Bτ,ψ > 0 or Bτ,ψ ≡ 0, and one
is therefore studying the equation

∆ϕ ≥ 0 [or ≤ 0] and 6≡ 0,

which has no solution on a compact manifold.

Acknowledgments

The authors would like to thank the Isaac Newton Institute of Mathematical Sci-
ences in Cambridge, England for providing an excellent research environment dur-
ing the program on Global Problems in Mathematical Relativity during Autumn,
2005, and again in October 2006, where some of this research was carried out.

The research of J. Isenberg was partially supported by the NSF under Grant
PHY-0354659, and the research of D. Pollack by the NSF under Grant DMS-
0305048.

References

[1] A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. W. York, A nonstrictly

hyperbolic system for the Einstein equations with arbitrary lapse and shift. C. R.
Acad. Sci. Paris Sér. II 323 (1996), 835–841.

[2] R. Bartnik and J. Isenberg, The constraint equations. In: The Einstein Equations and
the Large Scale Behavior of Gravitational Fields, P. T. Chruściel and H. Friedrich
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