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ABSTRACT

Pressure-driven membrane filtration systems are widely utilized in wastewater treatment, desalination,
and water reclamation and have received extensive attention from researchers. Computational fluid
dynamics (CFD) offers a convenient approach for conducting mechanistic studies of flow and mass
transfer characteristics in pressure-driven systems. As a signature phenomenon in membrane systems,
the concentration polarization that accompanies the permeation process is a key factor in membrane
performance degradation and membrane fouling intensification. Multiple fouling models (scaling,
biofouling and colloidal particle fouling) based on CFD theory have been constructed, and
considerable research has been conducted. Several representative antifouling strategies with special
simulation methods, including patterned membranes, vibration membranes, rotation membranes, and
pulsatile flows, have also been discussed. Future studies should focus on refining fouling models
while considering local hydrodynamic characteristics; experimental observation tools focusing on the
internal structure of inhomogeneous fouling layers; techno-economic model of antifouling strategies
such as vibrational, rotational and pulsatile flows; and unfavorable hydraulic phenomena induced by
rapidly changing flows in simulations.

© Higher Education Press 2024

1 Introduction

Due to the challenging global water crisis, pressure-
driven membrane separation technologies have gained
Their applications

widespread adoption worldwide.

include seawater and brackish water desalination;
municipal, industrial, and agricultural wastewater
treatment and reclamation; and tap water purification
(Wei et al., 2021; Johnston et al., 2022; Lin et al., 2022b).
The popularity of these membrane technologies can be
attributed to their high efficiency, outstanding effluent
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quality, stable operation, and relatively low energy
consumption.
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The membrane separation system encounters various
challenges in practical applications, and the following
two steps are of utmost importance. (i) Concentration
polarization (CP): CP leads to a substantial increase in
solute concentration around the membrane surface,
resulting in elevated energy consumption and reduced
membrane module yield due to permeability reduction.
Additionally, CP increases the risk of scaling and
shortens the lifespans of membranes (Johnston et al.,
2022). (ii)) Concomitant membrane fouling: Membrane
fouling can be classified into several different categories
including biofouling, particulate and colloidal fouling,
inorganic fouling (scaling), and organic fouling.

CFD has been extensively utilized as an auxiliary tool
in theoretical research and in the product design of
membrane systems, resulting in a growing body of
associated literature. Researchers have studied the
performance optimization and fouling control of
membrane filtration systems from several perspectives
with the help of CFD tools. Classification by foulant type
includes scaling (Radu et al., 2014a; Uppu et al., 2020),
biofouling (Kostoglou and Karabelas, 2013; Cao et al.,
2018; Jeong etal., 2020; Kerdi etal., 2021; Desmond
et al., 2022), and colloidal particle fouling (Uppu et al.,
2019). Classification by antifouling strategies includes
optimization of the spacer geometry (Han et al., 2018;
Kavianipour etal.,, 2019; Ruiz-Garcia and de la Nuez
Pestana, 2019; Xie etal.,, 2019; Toh etal., 2020),
patterned membranes (surface roughness) (Shang et al.,
2020b; 2020a; Zhou et al., 2021), vibration membranes
(Lorente et al., 2018; Su etal., 2019; Tan etal., 2019),
rotation membranes (Jogdand and Chaudhuri, 2015;
Uppu et al., 2019; Park et al., 2023), and pulsation feeds
(Zoubeik et al., 2018; Salama et al., 2020; Li et al., 2022;
2023). Furthermore, the simulation scope was expanded
from several localized repeating spacer cells to full-scale
membrane devices (Mao et al., 2021; Wei et al., 2021;
Lin etal, 2022a). As a well-established numerical
simulation technique, the effectiveness of CFD within
membrane systems has been widely validated (Liang
et al., 2020; Chong et al., 2023).

There have been reviews in the field of membrane
fouling with various focuses. Membrane performance
optimization strategies involving spacer geometry
optimization (Haidari et al., 2018; Lin et al., 2021;
Rahmawati et al., 2021) and surface modification
(Asadollahi et al., 2017; Wang et al., 2023) have gained
considerable attention. The membrane fouling theory and
corresponding anti-fouling strategies have also been well
reviewed (Bucs etal.,, 2018; Goh etal., 2018; 2019;
Jamieson and Leterme, 2021; Najid etal., 2022). In
addition, studies have focused on specific membrane
types, such as FOs (Liang and Fletcher, 2023),
membranes with electromagnetic fields (Piyadasa et al.,
2017), and spiral wound membrane (SWM) modules
(Karabelas et al., 2015). Notably, CFD simulation results

have served as key evidence, whereas the simulation
methodology has received limited attention and lacked
comprehensive evidence, despite numerous studies
coupling different fouling models that have emerged in
recent years.

In this paper, a comprehensive review of studies
concerning simulations of membrane modules using CFD
is provided, which encompasses the theoretical backgro-
und and modeling approaches of these systems. In
contrast to existing reviews, this work prioritizes how
CFD numerical simulations of membrane systems are
conducted, specifically the numerical implementation of
the membrane permeation process and concentration
polarization and the method of coupling fouling models.
Moreover, several representative antifouling strategies
with special simulation methods, including patterned
membranes, vibration membranes, rotation membranes,
and pulsatile flows, are also mentioned.

2 CFD basic theory

The governing equations including continuity (or mass),
momentum (Navier—Stokes), and solute mass transport
(convection—diffusion) equations are utilized to describe
the conservation and transport processes:

pV'VZSml, (1)
@+V-VV =-V +V-(%)+S 2)

,0 al‘ - P m2s
%+V-VC =DV’c+S,s, 3)

where 7V is the velocity vector, p is the fluid density, p is
the hydraulic pressure, T is the stress tensor, c is the
solute concentration and D is the solute diffusivity. The
source terms S,;, S, and S,; are presented in the
following text. For example, if the effect of gravity is

considered, then S,, = pg. The item V- (?) is replaced by
uV?v in most studies. The effect of volume dilation

2 . . .
uV?y — =V -vI has also been considered in many studies.

Many researchers have adopted turbulence models, such
as the renormalization group (RNG) k—¢ model (Bahoosh
et al., 2022), standard k—e model (Park et al., 2021), shear
stress transport (SST) model (Mokhtar et al., 2021), large
eddy simulation (LES) model (Su et al., 2018), and direct
numerical simulation (DNS) (Ali et al., 2020).
Additionally, the fluid viscosity u is replaced by 1/Re (Re
is the Reynolds number) (Wu and Lin, 2012; Kerdi et al.,
2018; 2020), while the diffusion coefficient D is replaced
by vH/D (v is the fluid velocity, A is the feed channel
height) (Koutsou et al., 2018). In this paper, Re refers to
the Reynolds number, v represents the fluid velocity and
H represents the height of the feed channel. Definitions
of dimensionless numbers including Re, Sh, Sc, Pn, and
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other metrics commonly used in CFD (e.g., shear stress
and mass transfer coefficient) are provided in the
Supplementary Material. Table 1 details the geometric
structure, simulation parameter settings, and key results in
the CFD modeling of the membrane modules. Notably,
the governing equations are applied in the fluid domain,
while the spacers are assumed to be in a noninteracting
solid domain. Due to the complexity of the geometry, the
spacer is considered as a porous domain in some studies
to replace its blocking effect on the flow by setting the
source term S, = —UV/Kgpucer — 0.5R eV |V] in Eq. (2)
and the parameter values used in the spacer porous
domain are presented in Table 2.

Several common assumptions are made to simplify
complex flow and mass transfer systems (Evangelista,
1988; Boudinar et al., 1992). The fluid is assumed to be
a constant-density, incompressible Newtonian fluid. The
flow is considered steady and laminar. Additionally, in
most studies, changes in concentration, pressure, velocity,
and osmotic pressure on the permeate side are neglected
due to minimal foulant retention and stable pressure
guaranteed by atmospheric pressure. The permeate side
hardly affects the membrane performance, so the feed
side is preferred for the simulation domain.

3 Membrane permeation and
concentration polarization

Mass transport through osmotic membranes is a critical
mechanism in filtration systems and requires prudence in
numerical simulations. According to Darcy’s law, the
permeate flux J can be calculated by Eq. (4), and the
permeable membrane is numerically determined by
setting the source term at the boundary wall, as shown in

Eq. (5):

J= L(AP - An), 4)
Ry

Sm=-JpA/V], ®)
where R is the permeation resistance, y is the viscosity of
the solution, P is the pressure, 7 is the osmotic pressure
and A is the difference between the membrane sides. A is
the face area adjacent to the membrane, and V is the
volume adjacent to the membrane. j is the normal vector

1
perpendicular to the membrane. The components o can

be replaced by the water permeability L,. The permélation
resistance R commonly comprises three components: the
membrane inherent resistance R,, the concentration
polarization resistance R.,, and the fouling resistance R;.
R, is typically treated as a constant, while R, is
associated with the concentration polarization effect. The
magnitude and composition of R, vary depending on the
type of fouling, such as scaling, colloidal fouling or
biofouling. These aspects are discussed in the following

sections. Item Am can be omitted because the osmotic
pressure is negligible in comparison to the transmem-
brane pressure (Sablani etal., 2001). In studies where
inorganic salts are the target foulant, the osmotic pressure
is controlled by the solute concentration and can be
derived from the modified van’t Hoff formula:

7=N,,RTc, (6)

where N, is the ionization number, R is the gas constant
and 7 is the temperature. Table 3 lists the detailed
correlations between ¢ and 7, as well as the fluid density,
viscosity and diffusion coefficient.

The concentration polarization (CP) is widespread and
extremely important to consider in numerical simulations
of pressure-driven membrane systems. As membrane
permeation intensifies, water enters the permeation
channel, while a substantial amount of solute (e.g., salt
and dissolved substrate) becomes trapped on the feed
side. The convection-diffusion process fails to uniformly
distribute solute in the bulk flow over time, resulting in
the formation of a thin CP layer near the membrane
surface. This phenomenon may cause the concentration
between the membrane surface and the bulk flow to differ
by up to three times (Completo etal., 2016). A high
concentration at the membrane surface increases the
osmotic pressure  and reduces the net pressure (AP — Ar)
difference, thus weakening the driving force for
membrane permeation. The CP layer ultimately
contributes to the promotion of membrane fouling and
reduces membrane performance. Another perspective
reveals that according to the equation (8,/5. Sc'”), the
thickness of the viscous boundary layer ¢, (i.e., the region
of sharply reduced fluid wvelocity near the wall)
significantly exceeds that of the concentration boundary
layer 6. (Li etal., 2016). This finding suggests that the
flow velocity within the concentration boundary layer is
influenced primarily by the wall rather than by the bulk
flow. Such observations underscore the importance of
boundary layer flow field disturbances.

As depicted in Fig.1, a notable concentration disparity
exists between the bulk flow and the membrane surface,
and these differences can be connected through the CP
model (Schock & Miquel, 1987; Senthilmurugan et al.,
2005):

Cf,m — Cp

c,-C,
where C; is the bulk feed concentration of salt, C, is the
bulk permeate concentration of salt, C,, is the feed
concentration of salt at the membrane surface and k is the
mass transfer coefficient.

The experimentally obtained R, can be used to
macroscopically analyze the effect of CP on filtration
systems. The salt water and pure water are filtered under
the same operating conditions, and the difference in the
total permeate resistance calculated from Eq. (4) is R,,.

eJ/k’ (7)
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1. CFD Simulation

2. Permeation calculation
J =1 (Lerp, Terp)
J,=[(J, ccpp, assumed RE)
Sim :f(crm, /)

) 1. Experimental RE, J
Assumed 0

2. RE,=f(RE, J ,0)
3.0, Ps = fitting (RE)) RE» 0. DS

4.CFD Simulation
J=f (Perp, Terp, 0) |
Crm =f(ccrp, RE,, J)

Converged RE,, o, Ps

P

5. Updated

Fig. 1

Schematic of the calculation method of the permeation process and concentration near the membrane: (a) impermeable

membrane; (b) impermeable and dissolving membrane; (c) construction of the membrane hole; (d) permeable membrane with direct
calculation methods and (e) permeable membrane with the loop-fitting calculation method.

Schausberger et al. reported that R, accounts for 40% of
the total permeate resistance and noted that the current
fouling model may underestimate the impact of CP
(Schausberger et al., 2009).

Pressure-driven membranes are typically classified into
microfiltration (MF), ultrafiltration (UF), nanofiltration
(NF), and reverse osmosis (RO) depending on the pore
size. Various membrane types serve distinct functions
based on filtration effectiveness and economic factors.
MF/UF membranes are commonly utilized for filtration
of particles (Movahedi and Jamshidi, 2022), microalgae
(Kim etal., 2015), macromolecules (Sioutopoulos and
Karabelas, 2012), etc., whereas RO/NF membranes are
predominantly employed for desalination (Sweity et al.,
2013). Consequently, the former primarily addresses
particle deposition and cake layer development in CFD
simulations, while the latter places greater emphasis on
solute concentration. Nevertheless, this differentiation is
not rigid. For instance, Shang et al. (2022b) examined
colloidal particle fouling on patterned nanofiltration
membranes, and Jalilvand et al. (2014) investigated the
impact of concentration polarization in microfiltration
systems. In essence, the choice of simulation method is
dictated by specific research objectives rather than the
type of membrane.

There are several ways to calculate permeation process
and concentration distribution. The schematic is shown in
Fig.1:

(i) Impermeable membrane

The assumption of impermeability is adopted because
of its lower computational performance consumption and

minimal impact on mass transfer, wall shear, and
hydraulic characteristics despite its physical accuracy.
Numerous studies (Cao, 2001; Ndinisa etal., 2005;
Vrouwenvelder etal., 2009¢; 2009a) have shown that
membrane permeation contributes only minimally to
mass transfer in the flow channel, estimated at
approximately 0.05% per spacer cell (Qamar et al., 2019)
or lower than 0.6% (Xie etal., 2014). Additionally, the
permeate flow rate is extremely low, typically
approximately 10 um/s (Kerdi et al., 2020). Similarly, the
ratio of the Sherwood number (S/) simulated with
permeable membranes to that simulated with
impermeable membranes ranges from 1.033—1.083; This
indicates that the effect of permeable walls on mass
transfer is relatively insignificant (Koutsou et al., 2009;
Koutsou and Karabelas, 2015).

(i1) Impermeable and dissolving membrane

To reduce the computational burden with minimal
distortion of simulation accuracy and to emphasize the
high solute concentration near the wall caused by
concentration polarization, the method of dissolving
membrane is adopted, i.e., a constant concentration value
is set at the membrane surface and the membrane is
considered as non-permeable (Chong et al., 2022; Garcia-
Picazo et al., 2023). This method is particularly suitable
for studying the effect of obstructions in a flow channel,
such as feed spacers and turbulence promoters, on flow
and mass transfer. Completo et al. (2016) confirmed that
the dissolving membrane method coupled with
semiempirical correlation demonstrates fairly consistent
results with the permeable membrane method but at the
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cost of considerably less computation time. However,
Binger and Achilli (2023) noted out that the constant wall
concentration assumption fails to accurately describe the
phenomenon in which the concentration boundary layer
decreases significantly with increasing flow velocity and
enhanced mixing efficacy in fluid domains.

(iii) Permeable membrane with direct calculation
methods

Solutes pass through the membrane pores into the
permeate channel and the solute flux J, is corrected by
the defined intrinsic rejection coefficient RE=1-c¢,/
¢;(99%) (Anqi et al., 2015), which is expressed through
the source term S,,; in Eq. (3):

Sm3 = _JSA/Vj’ (8)
J,=(1-RE)Jc. ©)

Guan etal. (2023) considered the concentration
difference across the membrane in Eq. (10):

Js =Ls(mf_mp)‘ (10)
Luo et al. (2020) combined Eq. (9) and Eq. (10):
Jy=L,(ms—m,)—(1—RE)(m;+m,)J /2. (11)

Based on the solute concentration in permeate channel
(c, =J,/IMW, MW is the molecular weight), a further
development was made (Singh etal., 2022; Bae etal.,
2023):

J=(L,P-Lx—L,+ \/ (L,P-L,n+L,)*+4L,L.)/2,
(12)
J,=Loe;MW(L,P+ L+ L~

13
\/(LWP—LWn+LX)2+4L,V,Ls7r)/27er, (13)
where L, is the solute permeability, m is the solute mass
concentration and c is the solute mole concentration. The
suffix f,p represent the feed channel and permeate
channel, respectively.

(iv) Permeable membrane with
calculation method

In contrast to the direct calculations described above,
Cao et al. (2018) used a loop-fitting method to calculate
the parameters of the permeation process based on the
Spiegler—Kedem model. First, the rejection coefficient
RE and permeate flux J are experimentally measured.
Second, the true rejection coefficient RE, is calculated
with the estimated CP layer thickness § by Eq. (14).
Third, the reflection coefficient o and salt permeability
Ps are calculated via nonlinear two-parameter fitting
based on Eq. (15). Fourth, a CFD simulation is
performed, and the refined flux J' and solute
concentration on the membrane surface c;,, are calculated
by Eqgs. (16) and (17). Here, ¢” represents the height of the
first mesh at the membrane. Finally, since J is updated by
J', RE! is recalculated, and further, o’ and Ps’ are refitted.
These corrected parameters are returned to the second

the loop-fitting

step for recalculation. The above calculation loop
continues until the differences between J’, o’ and Ps’ and
between J, o and Ps are small enough.

e’’’RE

RE,= ——— | 14
1+ (e’/® —1)RE (19
1-0
RE =1-—— (15)
J=L,(AP-cAn), (16)
cfe"” /D
' (17)

= RE,+(1—RE,)e” »"
(v) Construction of the membrane hole
A more direct approach is to construct the geometry of
the membrane pore channels. Brisel etal. (2023)
simulated the deposition process of polystyrene particles
with a diameter of 5 um on a polydimethylsiloxane
(PDMS) membrane with a pore diameter of 20 um in a
cross-flow system; the results reveal an excellent fit for
the fluxes in the pore channels via simulation of the
intermediate pore-blocking model of Hermia’s theory.
However, the feasibility of this approach for accessing
membranes with pore sizes less than 1 pm, which are more
commonly used in water treatment processes, needs to be
further investigated. Moreover, microscale simulations of
membrane pores are computationally intensive.

4 Fouling model

The concentration distribution of salt (e.g., NaCl) is
particularly valuable because it can aid researchers in
identifying areas with high fouling potential. However,
this approach has significant shortcomings in that it fails
to reveal the influence of hydrodynamics on the
deposition of colloidal particles, biofilm development,
and inorganic salt scaling, and it also fails to explain the
flux decline with severe fouling and the synergistic effect
between different fouling types. Consequently, models
applicable to different fouling mechanisms have been
developed.

4.1 Scaling

The scaling model introduces a solubility product
equation based on the concentration distribution and
consequently achieves inorganic salt deposition, which
affects the permeation process and hydrodynamics in
membrane modules.

Two sets of meshes exist in parallel in the simulation
domain, one for deposited particle simulations and the
other for traditional fluid calculations. The former is
predivided, while the latter is dynamically adjusted
according to the biomass subdomain. The data exchanged
between the two meshes are passed by interpolation. In
practical  scenarios, deposition does not occur
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immediately even in a supersaturated state due to solution
meta-stability. Hence, the critical deposition point in the
simulation is DS = 1.5, and the solute is consumed by the
source term S,;, as described in Eq. (3) (Zhang &
Klapper, 2010; Radu et al., 2014a):

S = —ka,(VDS ~1Y, (18)
DS = Mamocslah’ (19)

K

sp
where k, is the rate constant, a, is the specific surface area
for precipitate growth related to the local precipitation
faction and DS is the saturation degree. Moreover, yc,
and yso represent the ionic activity coefficients
calculated from the Pitzer model (Sheikholeslami and
Ong, 2003). K,, is the thermodynamic solubility product,
and ay, is the activity of water. Cy is the solute
concentration, and calcium sulfate, the most commonly
investigated inorganic salt, is associated with gypsum
scaling.

Nucleation within liquids requires a  higher
supersaturation degree and nucleation of particles; thus,
only surface nucleation in the supersaturated region is
considered (Dydo etal., 2004). New nuclei with a
constant diameter appear only in areas without existing
crystals, and their nucleation rate is governed by the
probability P%, (0 < PS, < 1), which represents the number
of nuclei formed per unit time A7 per elemental surface
AA (Radu etal, 2014a; Uppu etal, 2020). In the
supersaturated region, the outer nuclei, i.e., particles
within 2 discrete grid distances from the particle—fluid
interface, expand by absorbing nearby solutes, which
manifests as an increase in mass m,. As the particles
grow, particle splitting occurs when the diameter

calculated under the assumption of constant density
reaches a critical value. The inner dense layer (e, < 0.01),
i.e., particles spaced at a distance from the interface of
more than 2 discrete grids, is not involved in growth or
salt consumption (Radu et al., 2014a).

dm,

P% = TAAAT, (20)
dm, 2
< =kA(VDS - 1), @n

where A, is the mean contact area.

In each simulation loop, the following steps are
executed sequentially, as described in Fig. 2: (1) Pre-CFD
simulation and saturation detection based on the
concentration field; (2) surface nucleation and deposited
particle growth in the supersaturation zone; (3) redivision
of the CFD mesh and post-CFD simulation.

Uppu et al. (2020) and Prakash et al. (2023) simplified
the above approach by not dividing the particle deposition
domain and denoted the effect of scaling on permeation
and flow by the deposited layer resistance R, and source
term S ;.

an
% = ANelnz(DS) ,
dr

(22)

2

2 3
dmy_ 33(2n)§kRV,,,(«/DS - 1)2m0 ™
dr m (23)

20V,

T 3A _12{ZINJS)
12\kN.TIn(DS) ) V¢ ’

24

Ca?

Slu
Tk

| e
T

|
| |
A \

O3

Pre — CFD simulation

Scaling

——4—>  Post - CFD simulation

I Loop for next time step

Fig. 2 Schematic of the numerical implementation method of scaling model.
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6 = (xmy)3 (12m,)5 /4, 25)

om,

V,.N,0107°
where Ay, ay and k; represent the rate parameters. m, and
m, represent the number and volume of deposits on the
unit surface, respectively. V,, is the molar volume of the
deposit particle, 7., is the critical volume of the nuclei, N,
is the Avogadro number, T is the temperature, o is the
surface energy for hydrogenous nucleation and ¢ is the
fractional membrane surface coverage.

Radu et al. (2014a) directly applied the Brinkman flow
(Brinkman, 1949) considering the viscous effect and
pressure gradient in the sediment domain with the porous
media assumption:

S m3 = (26)

B vvp = EVZ_V)—l(%ﬂ—K)(V-_\}), 27)
K £ e\3
where « is the hydraulic permeability and & is the
porosity. The second term on the right side of the equal
sign can be omitted.

The scaling model described above is computationally
intensive due to the monitoring of each deposited particle
and mesh redivision in each calculation loop. Mao et al.
(2021) monitored the fouling trends of gypsum in full-
scale brackish water reverse osmosis (RO) modules using
the Scaling Index (SI), which essentially utilizes the
concentration as a monitoring indicator:

SI= log(CCa2+ CSOE' /Ksp)7 (28)

4.2 Biofouling

4.2.1 Discrete cellular automata (CA) biofilm model

In 2009, a research team led by Picioreanu et al. (1998a;
1998b; 2001) proposed a sophisticated 3D computational
model coupling biofouling based on the cellular automata
method and CFD. The numerical implementation of the
biofilm model can be divided into attachment, growth and

Table 4 Parameters of the in biofilm model

multiplication and detachment processes, which are
consistent with the growth processes of microbial
communities.

The CA model also adopts the strategy of dual parallel
meshes in the scaling model mentioned in Section 4.1 by
replacing the sediment particle mesh with a biomass
mesh. The biomass matrix in CFD is numerically
constructed by setting the material properties such that
the matrix has a high viscosity. The microbes are attached
randomly on the solid surface with a constant biomass
attachment rate. Picioreanu et al. (2009) set a maximum
shear stress for the surfaces of the biomass to be
adsorbed. Microbial proliferation is controlled by the
growth rate of biomass, ry, as described in detail in
Section 4.2.2. Once the biomass concentration in one cell
exceeds the predefined value Cy,, the saturated cell
divides into adjacent cells. Randomly redistributed
biomass (i.e., 40%—60% (Picioreanu etal., 2004) or
45%—55% (Radu etal., 2015)) is preferred to avoid
subsequent synchronous splitting. Radu et al. described
and simulated the detachment, erosion and collapse of
biomass (Radu et al., 2010). The biofilm parameters can
be found in Table 4. In this method, the biomass is
removed if the local von Mises stress o exceeds the
biomass mechanical strength o,,, which remains constant
as a material property. Furthermore, a straightforward
approach of setting a maximum biofouling layer thickness
(500um) (Picioreanu et al., 2004) or a maximum biomass
concentration Cy,, (8000mol—C/m?) (Radu et al., 2012)
is used.

In each simulation loop, the following steps are
executed sequentially, as described in Fig. 3: (i ) biomass
adsorption; (ii) biomass multiplication and expansion;
(iii) biomass boundary determination and CFD
remeshing; (iv) CFD calculation; (v) biomass desorption.
The fluid flow and substrate concentration are treated as
stationary during the biomass calculation time step
(several hours) compared to the short CFD calculation
time step (several seconds). As foulant accumulates,
biomass gradually cover membrane and spacer surfaces

Yield coefficient. Maximum

Half-saturation

Maximum Biomass  Biomass mechanical Diffusion coefficient for

Meaning Attachment rate, o Ysx ’ rzﬁfc’iﬁc coefficient, Ks  concentration, Cx, strength, oy substrate, Dy,
9 max

Cmol/(m? - d) molC/molbiomass  d-! mol/m3 Cmol/m3 N/m2 m?/s
Picioreanu 6x 1074 0.52 2.8 0.063 2800 - 2.5%x1079
et al.
(2009)
Radu et al. 5%1073 0.5i 2 0.025 8000 7 1079
(2010) x
Radu et al. 10-3.15%x 1073 0.5 2 0.025 8000 7 1079
(2012) 5x1077,15x 10
Bucs 0.06,0.13,0.26 1 1.08 0.05 1400 - 1079>
etal.,
(2014a)
Radu et al. L% 1073(C —mol/(m * d) 0.5i 2 0.025 7 1070

(2015)
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Fig.3 Schematic of the numerical implementation method of the
biofouling model (Radu et al., 2010).

and significantly alter the hydrodynamics and permeate
performance, which serve as the key metrics for
researchers.

The biomass growth rate, ry, is controlled by the local
substrate  concentration. One limiting compound
concentration C; is adopted and governed by the mass
balance equation in Eq. (3) considering Monad kinetics
(Monod, 1941):

S =rs =Ysxry, 29
C

= max—SC > 30

e o) G0

where 7 is the substrate consumption rate in the biomass
subdomain, ry is the biomass growth rate, Yy is the yield,
Umax 18 the maximum specific growth rate, K; is the half-
saturation coefficient and Cy is the biomass concentra-
tion. The diffusion coefficient D for the substrate in Eq.
(3) in the biofilm region can either be set as that in the
fluid domain D, or adjusted via the porosity . (Bucs
etal., 2016):
D=¢.D,. 31
As confirmed by Vrouwenvelder etal. (2009c¢),
diffusive flux is substantially greater than convective flux
when considering the mass transfer of the substrate near
the membrane, which may help demonstrate that the
presence or absence of flow within the biomass has little
effect on the accuracy of the overall calculation. The
biomass region is considered to be impermeable due to its
low permeability, which is on the order of 107'° m?/s
(Fowler and Robertson, 1991; McDonogh et al., 1994).
Therefore, under this assumption, the substrate is
controlled by convection and diffusion in the fluid
domain, while diffusion occurs only within the biomass

domain (Bucs et al., 2014a).

However, understanding the flow and mass transfer
within biomass is crucial once large areas of biofouling
result in severe dead zones, solute accumulation and
permeation blocks. Although poor mass transfer can
reduce substrate concentrations in biomass regions,
subsequent poor hydrodynamic conditions (e.g., low
velocity and shear stress) have complex and multifaceted
effects on biomass growth. Importantly, shear stress has a
dual influence on membrane fouling. On the one hand, a
high shear stress promotes mass transfer to mitigate
substrate accumulation near the membrane (Schwinge
et al., 2002a; Koutsou and Karabelas, 2015) and promotes
scouring and destruction of existing biomass (Koutsou
and Karabelas, 2015). On the other hand, high steady
shear stress may cause microbial attachment (seeding),
consequently leading to the early development of
biofouling (Radu et al., 2010; Lecuyer et al., 2011; Wang
etal.,, 2013; Saur etal., 2017). Additionally, fluctuating
unsteady shear stress can help minimize biofilm
attachment (Kerdi etal., 2018). The Brinkman flow
mentioned in Section 4.1 can be employed in biomass
layers with constant thicknesses (Jeong et al., 2020), as
well as in regions occupied by the microbial cells, as
described in Section 4.2.1.

Despite its simplicity, this solution has several
shortcomings: (i) Detached biomass, ranging from single-
celled microorganisms to small biomass residues to large
microbial colonies, is immediately removed from the
system. This assumption does economize calculation
resources. However, this approach ignores the clogging
by dislodged biomass debris, which can commonly occur
in the narrow flow channel of the membrane module; (ii)
the assumption of a constant mechanical strength o,
may not accurately represent the varied mechanical
properties of different types and growth stages of
microorganisms; and (iii) natural decay processes are not
accounted for.

4.2.2 Simplified approach: biofouling resistance and
artificially established biomass geometry

Systematic modeling of the biofilm development process
is consistent with the real situation, but it is preferable for
studies that are concerned only with the effect of biomass
on flow and permeation to disregard the individual
microorganisms and adopt a simplified approach.

Mohan et al. considered the combined EPS and SMP
(CES) model (Janus, 2014; Janus and Ulanicki, 2015) to
be more reliable than the sectional resistance model (Li
and Wang, 2006) and adopted the former model to simu-
late biofouling in MBR. The CES model, which assumes
that soluble microbial products (SMPs) cause irreversible
fouling and that extracellular polymeric substances
(EPSs) cause reversible fouling, is embedded in the
fouling resistance R, in Eq. (4) (Mohan et al., 2022):
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Rf:RiJ’-Rr’ (32)

R, = akie"’ I X Cspp, (33)
=(1.376x 10'2@ —2.564 % 10'3)><

' Mivss (34)

(Curss X J =1, 40,

where R; and R, are the resistances of irreversible fouling
and reversible fouling, respectively. a;, b, and k; are
coefficients, and Cpps, Cprss, Csup, and Cyyss are the
concentrations of each component. m,,,, represents the
detached fouling cake due to backflow.

Treating microorganisms as solid domains to study
surrounding fluid dynamics is another approach.
Petrosino et al. used spherical particles to determine that
bovine serum albumin (BSA) causes fouling during
ultrafiltration. Three regions with different protein
concentrations are selected corresponding to different
particle volume fractions within the Monte Carlo box as
shown in Fig. 4(a). CFD simulations are performed in the
fluidic domain after removing the particle domain, and
the calculated impedance of the protein-contaminated
layer shows an uncertainty of only 4% from the
experimental validation (Petrosino et al., 2023). Luo et al.
(2022) conducted CFD simulations with staggered
impermeable cylinders representing the cells and a loose
EPS layer covering the membrane surface as shown in
Fig. 4(b); these researchers reported that a high EPS
concentration significantly increased the pressure drop
and filtration resistance of the biofilm. Lin et al. (2023)
manually established a biomass regularly distributed on
filaments as shown in Fig. 4(c) to represent the effect of
biofouling on the hydrodynamic characteristics of flow

(a)

(b) Inlet

w0 %&8

><10‘4 mv m

Permeate

channels.
4.3 Colloidal particles

4.3.1 Porous cake layer

As colloidal particles accumulate, the membrane surface
is covered with a porous cake layer ranging from one to
one hundred micrometers in height. According to the
cake-enhanced osmotic pressure (CEOP) theory (Chong
et al., 2008; Fimbres Weihs and Wiley, 2014), the porous
cake hinders solute back-diffusion and increases the
concentration polarization and osmotic pressure, thus
significantly reducing the near-membrane mass transfer
and permeation flux.

The hindering effect on flow within the porous layer
caused by the fouling layer is expressed using the
momentum source term S,, in Eq. (2) (Zhuang et al.,
2018). The cake layer impedes solute diffusion within the
porous domain, which is achieved in numerical
simulation by strengthening the diffusion coefficient D,.
based on the solute diffusion coefficient without the cake
layer D, (Boudreau, 1996).

Sm2 = _gc#(Rm + Rc)v/éa (35)
E.

D,=—— 36

.= o (36)

where &, is the porous domain porosity, ¢ is the porous
layer height and R, is the resistance caused by the fouling
layer.

The additional cake layer resistance R,, representing the
hindering effect of particle accumulation on the membr-
ane surface, is introduced into Eq. (4). The following is
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Fig. 4 Schematic of the artificially established biomass geometry: (a) various concentration of BSA particles in the Monte Carlo
box (Petrosino et al., 2023); (b) cylinders represent the EPS layer covering the membrane surface (Luo et al., 2022); and (c) the
manually established biomass domain is regularly distributed on filaments (Lin et al., 2023).
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the general form of the cake layer resistance:

dm./dt =S, (37)

dR./dt = adm_ /dt = aS., (38)
where m, is the local cake layer mass determined by
the particle deposition rate and « is derived from the
cake layer porosity ., particle diameter €, and particle
density p. based on the Carman—Kozany equation

180(1 —&,)
(= —— %

[
flux theol;y, S . is determined by the net flux (J - J.,;), the
particle deposition ratio 6, and the local particle
concentration C, as follows.

S.=0C,(J—=J.u). (39)

In cross-flow filtration, 6 depends on the local shear
rate (Knutsen and Davis, 2006), which ranges from 0-1.
The critical flux J,,; is influenced by Brownian diffusion
and shear-induced diffusion, which results from the low
Reynolds number in the filtration system and the typical
size of colloidal particles. The detailed calculation
methods for 8 and J,,;, are described in the Supplementary
Material.

Considering the effect of solute concentration on
porosity, Fimbres Weihs and Wiley (2014) proposed a
new calculation method for @ using the Carman—Kozany
equation as a basis:

) (Carman, 1997). According to critical

180
O o (40)
(1-8)(2&,-3)

&l-¢ )]2.955
c W }

J‘&.(
f’
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de,, 41)
&1 —0.026[

g, (1-¢)
o (2e.-3)

& = j 3 2.955 ~<c? (42)

" 1 - 0,026 £l )

. 83,w(1 - 86')
where g, and ¢, represent the porosity at the cake—fluid
interphase and at the cake—membrane interphase,

respectively.

A similar form of bovine serum albumin (BSA) was
used for membrane fouling (Schausberger et al., 2009):

( AP ) -,
a= __Rm /mca (43)
lu‘llh

S.=A(C,)" (i =), (44)

where 71, is the amount of substance per membrane of
deposited BSA. The superscript eq indicates equilibrium
deposition, while 1/ indicates one hour of filtration.

Su et al. (2019) gradually increased the porosity of the
porous medium g, in the porous cell on the membrane
surface via particle deposition. The porous cell is treated
as a “fully deposited cake cell” as ¢, reaches the critical

value of 0.4, after which the process of particle deposition
and increasing porosity is transferred to the upper cell.
AlthoughUppu et al. (2019) stated that g, is related to
solute concentration C,, these researchers still used the
assumption of constant cake layer porosity because the
concentration boundary layer is much larger than the
thickness of the cake layer:
&.=0.209-0.04171gC.. (45)

Several methods subtly differ from the above formulas
for calculating the cake layer resistance R. and thickness
h.. In general, these methods are all controlled by the flux
J and the near-membrane concentration.

Movahedi and Jamshidi (2022) adopted integral
equations based on dR./dt =kC,J for the simulation of
colloidal clay:

2kAPC,t

R.+R,=Ry+R)X|1 + ——| , 46
( ’ ) ( /”l(RCO +Rm)2) ( )

he = LJCPCEth, (47)

where R, is the resistance of the first cake layer deposited
over the membrane surface, & is a constant parameter, AP
is the pressure difference through the membrane, u is the
fluid viscosity and ¢ is the filtration time. Cgy represents
the expansion of the cake layer due to interparticle water,
swelling, compaction and particle settling and is
determined by experimental measurements.

Al-Abbasi and Bin Shams divided the silica gel layer
into a gel layer and an adsorption layer:

R.=R,+R,, (48)
AP
ng/dt = ng (E —Rg), (49)
R, =k,C,, (50)
= g 1
h, fOJC,,dz, (51)

where R, is the gel layer resistance, R, is the adsorption
layer resistance, k, and k, are coefficients, J* is the
critical flux, C, is the silica gel concentration on the
membrane surface and C, is the silica gel volume fraction
on the membrane wall (Al-Abbasi and Bin Shams, 2021).

Rajabzadeh etal. (2010) reported that membrane
fouling caused by soy protein extracts involves both
reversible R, and irreversible R; fouling resistance. This
reversible fouling is predominantly attributed to CP, and
irreversible fouling is attributed to protein adsorption at
membranes via first-order kinetics:

dR,/dt = C (@~ R)/k, (52)

R. =B(1+AAP), (53)

where the parameters a, 8, A, and k are determined by
experiments.



16 Front. Environ. Sci. Eng. 2024, 18(8): 93

4.3.2 Particle trajectory

Targeting the resistance of porous regions on membranes
may not satisfy the accuracy requirements of some
studies, such as those on the deposition process of the
cake layer, the movement of particles through the
micropores in the membrane, and interactions between
particles and particles and between particles and the
membrane. An alternative approach is needed to track the
trajectory of the particles. The widely adopted Lagrangian
approach is as follows:

7

_)
m,,—at2 =F,

(54

wherg 7 is the particle position, m, is the particle mass
and F is the net resultant force, consisting of the fluid-
induced force (drag force, lift force) (Shang et al., 2022b;
Zhang et al., 2022), contact force in collision (Lohaus
etal., 2018), body force (gravitational force, buoyancy
force, electric force), added mass force, near-surface
force described in XDLVO theory and Brownian random
force (Jung and Ahn, 2019). Because the simulation
systems in most studies involve dilute solutions (<10%
v/v), the reaction force of the particles on the fluid is
negligible (Rahimi et al., 2009). Using a built-in module
in CFD software, such as the discrete phase model
(DPM), the particle transport task considering force
balance can be achieved (Rahimi et al., 2009).

Interestingly, the particle tracking approach can be
coupled with the resistance of porous media approach.
Jung and Ahn (2019) linearly transferred the thickness of
the deposited particle A, to the cake layer resistance R,:

R. =hap,(1-¢&.), (55)
where « is defined in Eq. (38), €. is the porosity of the
cake layer, which is assumed to be 0.4, and p, is the
density of the particle.

Radu et al. (2014b) disregarded the resultant forces on
the particles to avoid complicated mechanical calcula-
tions and treated the local fluid velocity as the particle
velocity in the deposition process of microspheres
mimicking bacterial cells on the SWM surface. Once the
wall adhesion condition is met, i.e., when the particle—
wall distance drops below 5 um and the particle velocity
fails below 1 pm/s, the particle is removed from the
simulation domain, and the deposition location is
simultaneously recorded. Similarly, Ma et al. (2019) used
the Eulerian—Eulerian multiphase model to simulate the
sludge distribution in a hollow-fiber MBR, where the
behavior of the sludge deposition is controlled by the
probability @:

24J
D=,
24J+C,d,G
where C, is the coefficient of the drag and lifting force, d,

is the diameter of the sludge particle and G is the velocity
gradient. The Eulerian—Eulerian multiphase model has

(56)

also been applied as an approach for observing particle
distributions (Fang and Wu, 2008; Wu and Lin, 2012).

Collision detection and contact force calculations are
critical for tracking the motion of massive amounts of
particles deposited on a membrane surface. The built-in
multiphase and discrete phase model in conventional
CFD  software  (ANSYS-Fluent®, OpenFOAM®,
COMSOL®) is not capable of handling these calcula-
tions; thus, the discrete element method (DEM) is needed
to assist in the particle calculation, i.e., CFD-DEM
coupling. The open-source software CFDEM®, which
combines  fluid  (OpenFOAM®) and  particle
(LIGGGHTS®) calculations, is widely utilized (Lohaus
etal., 2018; Li et al., 2019; Puderbach et al., 2021; Bréasel
etal., 2023). Lohaus etal. (2018) reported that the
interaction between particles and the inner structure of
membrane pores critically affects pore clogging. In
particular, particle re-entrainment in the pore channel and
reattachment lead to severe fouling or even complete
blockage. Brisel etal. (2023) identified a correlation
between cake layer morphology and filtration conditions.
A higher cross-flow velocity leads to a denser cake layer,
and a lower velocity leads to more particle deposition and
a greater flux decline. Moreover, an increase in
transmembrane pressure exacerbates pore clogging. Li
etal. (2019) investigated the effects of the particle size
distribution, liquid viscosity and compressibility of the
cake layer on the filtration performance.

4.4 Issues for a more realistic model

4.4.1 Combined fouling model

It has been fairly well documented that fouling in
pressure-driven membrane modules tends to manifest as
multiple concomitant types. Thompson etal. (2012)
identified gypsum crystals within the biomass matrix on
RO membranes and illustrated that the biofilm
substantially augmented mineral fouling.

Zhang and Klapper (2010) developed a combined
model of biofilm-induced calcite precipitation using the
Euler-Euler approach, which is limited in addressing
interphase surface interactions like sediment surface
nucleation and biofilm encapsulation behavior. Notably,
the biomass in this study catalyzed urea degradation,
consequently generating precursor inorganic salts for the
scaling process.

Olivera-Nappa etal. (2010) developed a two-dimen-
sional model that integrates both biomass and inorganic
sediments to investigate the biochemical processes of
biofilm development and metal element leaching on
mineral ore surfaces. In the premise of particle-repre-
sented biomass versus sediment, the following synergies
exist between biomass and sediments: (i) Biomass utilizes
inorganic sediments as a substrate, (ii)) The diffusion
coefficients of inorganic salts are affected by particle
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concentration, and (iii) Sediments are exclusively
generated on the outer surface of the bioparticle. The
model developed by Radu etal. in 2015, considering
calcium sulfate scaling and biofouling, stands as the most
comprehensive and intensive simulation study on
combined fouling in pressure-driven membrane systems
to date (Radu et al., 2015).

However, current numerical modeling studies on
combined fouling have limitations. Most studies focus on
the synergistic effects between mineral scaling and
biofouling, while neglecting the effects of organic
foulants and colloidal particles in combined fouling. A
synergistic effect has been observed between organic
fouling and scaling in forward osmosis systems. The
early conditioning layer formed by organics on the
membrane surface may inhibit the nucleation and develop-
ment of gypsum crystals, while alginate-based organics
can interact with calcium ions, thereby promoting scaling
(Chun etal.,, 2020). No simulation studies have been
conducted to model combined fouling incorporating these
mechanisms.

4.4.2 Large-scale & full-scale simulation

As shown in Table 1, the simulation domain in most
studies is limited to several cells divided by spacers,
assuming periodic boundary conditions. While this
approach is sensible for avoiding redundant calculations
and conserving computational resources, it may not
accurately represent the non-periodic nature of the
filtration vessel, particularly for the lead and tail elements
in full-scale systems, where the bulk flow concentration
increases as permeation proceeds (Thompson et al., 2012;
Gorzalski and Coronell, 2014). This highlights the
significance of conducting simulations on large-scale
membrane modules and even full-scale plants comprising
multiple filtration elements.

Li and Tung (2008) demonstrated the critical role of
computational domain size in accuracy by comparing
simulated pressure drop values with experimental data.
An optimal scale of 18 x 8 cells was determined for its
lowest pressure drop deviation (~7%). With advance-
ments in computer performance, larger-scale simulations
have become feasible. Wei etal. (2021) conducted a
large-scale three-dimensional CFD simulation on spiral
wound RO membrane module with dimensions of 2.05 m
length, 0.9 m width, an effective membrane area of
400 ft* and approximately 13 million mesh elements.
Sitaraman and Battiato (2022) simulated a two-
dimensional axisymmetric RO membrane with a length of
1m and approximately 14 million mesh elements.

Large-scale simulation is not just a simple zoom of the
small-scale simulation under the assumption of
periodicity, but more importantly it furnishes the spatially
and temporally varying hydrodynamic parameters for
individual filtration element and assists in identifying

potential fouling regions under actual operating condi-
tions. The mass transfer correlations, typically in the
dimensionless power-law form of Sh=aRe’Sc
(constants «@,f, and y are determined based on geometry
and system type), can be derived from parameter fitting
through large-scale simulations. According to the mass
transfer coefficient data, the one-dimensional model in
full-scale system of solute concentration, concentration
polarization modulus, solute flux, water flux and pressure
loss as a function of length/element stage can be obtained
(Guillen and Hoek, 2009; Gu et al., 2021). Chong et al.
(2022) adapted the aforementioned calculation method by
conducting CFD simulations with dissolving-imperm-
eable membrane. They then applied the obtained mass
transfer correlations to calculate the permeate parameters
of a full-size system with permeable membrane, which is
valid as long as the ratio of volumetric flow rate to mass
transfer coefficient is less than 20. Liang et al. (2019)
extended their work by developing a techno-economic
model to evaluate the water production performance,
mass transfer effect and economic cost of different spacer
geometries.

A more direct approach for full-scale simulation is
transferring the outlet boundary conditions of the
previous element to the inlet boundary conditions of the
next element for sequential calculation (Keucken et al.,
2018). Alternatively, merging multiple elements by
disregarding the connecting pipes and valves is proposed
(Mao et al., 2021), However, this method is evidently not
cost-effective for dealing with complex geometries and
multistage systems.

4.4.3 Validation

Experiment validation serves as a direct approach to
verify the accuracy of pressure-driven membrane fouling
models. Apparent hydrodynamic parameters obtained
from experiments, such as pressure drop (Akagi et al.,
2018; Gu etal., 2021; Kerdi etal.,, 2021; Guan et al.,
2023), velocity distribution (Qamar etal., 2019),
permeate flux (Gu et al., 2021), shear stress (Kavianipour
et al., 2017), friction coefficient (Liang et al., 2019), CP
modulus (Gu et al., 2021; Sitaraman and Battiato, 2022),
and ATP/TOC concentration of attached biomass (Lin
et al., 2020), are commonly used as validation metrics.
Qualitative comparison of flow characteristics and
hydrodynamic trends with literatures can also aid in
simulation validation (Chong etal.,, 2022). Achieving
exact consistency between experimental and simulated
geometries is challenging in simulation studies aimed at
optimizing spacer geometry. Hence, comparisons of
dimensionless correlations among similar structures, such
as dependence of S/ on Pn (Sutariya et al., 2022; Chong
et al., 2023), dependence of Sh on Re and Sc¢ (Liang
etal.,, 2019; Sitaraman and Battiato, 2022), and
dependence of friction coefficient f on Re (Mokhtar
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etal., 2021), serve as reasonable alternatives. Cao et al.
(2018) utilized polystyrene beads to replace microbial
cells in filtration experiments, validating the accuracy of
the proposed microbial deposition-adhesion model.

Although experimental apparent parameters reflect the
macroscopic influence of membrane fouling and provide
strong corroboration for the accuracy of the CFD
simulation and fouling model, microscopic characteriza-
tion technique is required to determine the morphology
and distribution of foulants on the membrane. This is
critical for investigating the development of complex
biofouling/scaling. In-situ Optical Coherence Tomogra-
phy (OCT) is employed to capture images on spacer
filaments and membrane surfaces, confirming the good
agreement between experimental biomass distribution and
the hydrodynamics obtained from simulation work (Ali
etal., 2019; Kerdi et al., 2020; 2021). Picioreanu et al.
obtained biofilm morphology by OCT to investigate its
elastic-viscous properties, which provided crucial data for
the biofouling model (Jafari et al., 2018; Picioreanu et al.,
2018). Confocal laser scanning microscope (CLSM) with
fluorescence dyeing enables mapping of biomass
distribution on a broader range of membrane surfaces,
validating its agreement with CFD results (Lin etal.,
2022b; 2023). Besides foulant distribution, changes in
flow patterns within membrane modules altered by
membrane fouling have received considerable attention,
necessitating non-invasive real-time observation techni-
ques. Doppler OCT provides a method to visualize the
velocity distribution in a two-dimensional plane within
the flow channel, enabling accurate validation of CFD
results (Gao et al., 2013; Park et al., 2016). Overall, the
current experimental work has adequately confirmed the
reliability of CFD simulations coupled with fouling
models.

5 Numerical construction of the
antifouling strategy

5.1 Patterned membrane

The use of micropatterned membranes is considered an
effective method for mitigating membrane surface
fouling. Typical patterns as shown in Figs. 5(c)— 5(h)
include waves (Zhao etal., 2020), rectangles (Shang
et al., 2020a), prisms (Lee et al., 2013), pyramids (Choi
etal., 2015), trapezoids (Won et al., 2016), and arches
(Shang et al., 2021). The generally studied pattern sizes
are at the micrometer or millimeter level, while nanoscale
patterns do not contribute to membrane fouling mitigation
(Shang et al., 2020b).

Cross-flow filtration creates vortices in the valleys of
the patterned membrane that grow with increasing cross-
flow velocity, which enhances localized mass transfer and
disturbs the boundary layer, thus leading to better

performance than that yielded by the flat membrane. Ilyas
et al. (2022) observed vortex formation and convection
away from the valley in vibrating patterned membranes,
which significantly reduced the fouling rate compared to
flat membranes. Shang et al. (2021) reported that arch and
trapezoidal patterns substantially increase the mass
transfer coefficient (> 3 times that of a flat membrane)
and decrease the CP factor (< 60% of a flat membrane).

The streamlines (Fig. 5 (a)) obtained by Choi et al.
(2015) further revealed that the vortex stream inside the
valley and the main flow stream are separated from each
other, which makes it difficult for particles to enter the
valley. Due to flow scouring, particles are deposited
primarily at the surface in the mainstream direction rather
than facing the mainstream. An increase in the permeate
flux is accompanied by an increase in the vortex
streamline toward the bottom, which indicates that the
region of potential particle deposition moves from the
upper part of the valley down to the bottom. Contrary to
common sense, a higher cross-flow velocity leads to a
higher collision frequency, which may lead to more
severe particle deposition (Choi et al., 2015). However,
the opposite conclusion was drawn by additional studies.
Won etal. (2016) concluded that a higher cross-flow
velocity triggers greater shear stress near the pattern and
vortices closer to the main flow, which facilitates the
reentry of particles in the valley and thus alleviates
particle deposition. Jung and Ahn (2019) suggested that
particles barely touch most of the surface in a valley at
high cross-flow velocities, which indicates stronger
particle remixing to the bulk flow and less membrane
fouling. In their study, they also determined that
depositing large particles on patterned membranes is
difficult as shown in Fig. 5 (b). By analyzing particle
trajectories, Shang etal. (2022b) also supported the
viewpoint that a high cross-flow velocity reduces
membrane fouling.

Despite the above advantages of patterned membranes,
Shang etal. (2022a) cautioned about their higher CP
factor, which results in more severe fouling of inorganic
salts and organic small molecules. This tendency is
worsened by improper orientation of the pattern,
especially when the pattern is perpendicular to the flow.
Although the patterned membrane enhances the shear
stress in the upper part of the valley, this stress is reduced
in the whole domain, especially at the valley bottom (Lee
etal., 2013).

Changes in the patterned morphology affect the
microscopic flow field, which in turn yields different
permeate performances and antifouling capabilities.
Shang et al. (2020a) noted that conventional membranes
with irregular apertures are not effective at resisting
fouling. The irregular geometry produces few vortices
and has a strong shading effect on foulants entering the
valley (Shang et al., 2020a). Won et al. (2016) concluded
that trapezoidal patterns have a larger vortex region than
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prism patterns, which significantly reduces membrane
fouling. Ilyas et al. (2021) conducted CFD simulations of
rectangular and trapezoidal patterned membranes of
different sizes and noted that trapezoidal patterns and
smaller pattern spacings lead to higher velocities in
valleys, which 1is beneficial for reducing foulant
deposition. Shang etal. (2021) considered the arch
pattern to have a larger high-velocity zone in the valley,

e e ——

(a) ——————

x (mm)

02 04 06 08 10

stronger reflux velocity, larger membrane area and
greater shear stress than the trapezoidal pattern, which
proved the potential of the arch shape pattern. Zhou et al.
(2021) performed a comprehensive simulation of
patterned membranes for shapes including rectangles,
trapezoids, prisms, pyramids, cylinders, circles and
polyhedrons. Analysis of the flow field confirmed the
phenomena of solute accumulation in the valley, high
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Fig. 5 Simulation results of patterned membranes. (a) stream lines in the valley (Choi et al., 2015); (b) particle distribution on
patterned membrane for different particle diameters and Reynolds numbers (Jung and Ahn, 2019); (c) velocity streamline profile for
different patterned membranes: wave tri, rec, and trap (Zhao et al., 2021); (d) velocity streamline profile for conventional membrane
and rectangular membrane (Shang et al., 2020a); (e) real-time solute concentration distribution for triangular membrane and
cambered membrane (Shang et al., 2021); (f) streamlines for different patterned membranes (Shang et al., 2020b); (g) streamlines for
rectangular membranes and triangle membranes (Ilyas et al., 2021); and (h) solute concentration distribution for different patterned
membranes, namely, rectangles, trapezoids, prisms, pyramids, cylinders, circles, and polyhedrons (Zhou et al., 2021).

shear stress and permeate flux near the peak. More
importantly, the additional membrane area of patterned
membranes is believed to play a decisive role in
counteracting unfavorable hydraulic conditions in the
valley area and yielding a higher overall permeate flux
than that of flat membranes.

5.2 Vibration

Vibration significantly reduces the probability of foulant
deposition on the membrane surface and disrupts the
concentration boundary layer.

When the direction of reciprocating vibration is
perpendicular to the direction of membrane permeation,
the vibration is numerically calculated by setting the
periodic velocity v =2xfAsin(2nft) on the membrane
surface (Su et al., 2018), i.e., modifying the source term
S, in Eq. (2):

Sm2 =

{ p(2rf)’ Acos (2 f1)i,on the membrane (57)

0,1in the fluid domain

where i is the normal vector in the vibration direction, f
is the vibration frequency, A is the vibration amplitude
and ¢ is time.

Ilyas etal. (2022) used a new method of dynamic
meshing for the case in which the vibration direction is
parallel to the permeation direction. The whole mesh is
given a periodic displacement of Acos 2n f1).

Zamani et al. (2013) investigated the effect of vibrating
fiber membrane configuration and filament distance on
the membrane surface shear rate. There is an optimal
fiber distance in the studied configuration (a fiber
diameter of 0.8 mm, a vibrating amplitude of 1 cm and a
vibrating frequency of 5 Hz), and the staggered
configuration produces high maximum wall shear
compared to the square-shaped arrangement. Moreover, a
larger fiber spacing provides a more uniform shear stress

distribution. Su etal. (2018; 2019) compared the
performances of various Reynolds numbers, vibration
frequencies, vibration amplitudes and vibration times. CP
is significantly weakened (up to a 25% reduction in NaCl
accumulation, a 60% improvement in the normalized
permeate flux and a considerable decrease in deposited
particles, as shown in Fig. 6 (a)) by vibration, as
evidenced by the increase in the Sherwood number. The
antifouling effect increases with increasing vibration
frequency and decreases when the Re is high; however, it
is necessary to consider the balance between the vibration
cost and benefit. Interestingly, parameters such as the CP
modulus, Sherwood number and permeate flux exhibit
sinusoidal variations due to vibration, while no significant
changes are found in the flow pattern.

5.3 Rotation

Rotation creates a large shear-enhanced zone on the
membrane surface and intensifies mass transfer, which is
an effective strategy for mitigating membrane fouling.

The rotating dynamic membrane can be divided into
rotating rotors and rotating membranes. The boundary
condition with forced velocity in the polar coordinate
system is applied on the rotating surface with a constant
angular velocity Q:

Ve =1Q (58)

v,=0 (59)
where v, and v, are the axial and tangential velocities,
respectively, at a distance of  from the axis.

The rotor, e.g., the impeller or disk, creates a strong
swirling flow on the membrane surface. Hwang et al.
(2014) reported high shear stress and high velocity (1-2
orders of magnitude greater than the inlet and outlet
velocities) on the membrane surface, which led to
significant cake layer disruption. Notably, the simulated
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Fig. 6 Simulation results of the vibration and rotation membranes. (a) the deposited particle on no-vibration and 60 Hz vibration
membranes (Su et al., 2019); (b) the wall shear stress distribution on the membrane surface with a rotating impeller (Xie et al., 2018);
(c) wall shear stress distribution on the perforated and nonperforated disk (Kim et al., 2015); (d) the vortex structures visualized by
the A,-criterion for etching disks with the number of etching patterns ranging from 0 to 16 (Park et al., 2023); (e) the shear stress
distribution on the surfaces of staggered rotating membranes (Zhang et al., 2022); and (f) the shear stress distribution on basket

surfaces (Naskar et al., 2019).

shear stress is 15%—50% lower than the shear stress
derived from the empirical equations, probably due to the
actual filtration geometry. Kim et al. (2015) reported that
higher rotational speeds result in more uniform velocities
and shear stresses on the membrane surface. The
perforated disc performed better than the ordinary disc, as
shown in Fig. 6 (c). The average shear stress was well

fitted to the flux and fouling layer resistance. Similarly,
pattern-etched discs, as shown in Fig. 6 (d), were used to
improve the performance of the rotation dynamic
filtration system by inducing complex vortexes. The best
performance was achieved with a pattern number of 8.
However, Park etal. (2023) concluded that the key
influencing factor in rotating dynamic membranes is still
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the rotational speed. Xie et al. (2018) confirmed that the
CFD results aligned well with the PIV data. There is a
dead zone near the shaft and a region of high velocity and
shear rate at the leading edge of the impeller as shown in
Fig. 6 (b), which periodically cleans the outer membrane.
Jogdand and Chaudhuri (2015) agreed that there is an
annular region with high concentrations and low fluxes
near the axis, which poses a high pollution risk, while
high feed velocity may weaken the dead region to some
extent. Higher rotational speeds and feed pressures
correspond to higher permeate fluxes; however, the
disadvantage is that the cake layer forms rapidly at high
pressure and results in a rapidly decreasing flux (Jogdand
and Chaudhuri, 2015; Uppu et al., 2019). The abovemen-
tioned team performed a system-level energy analysis and
reported that the energy needed to rotate the disk at low
rotational speeds was much less than the energy needed to
maintain permeation. However, the flux increase at high
rotational speeds at the cost of high energy consumption
was not significant. This analytical approach provides
insights into the techno-economic modeling of shear-
enhanced systems via the use of dimensionless
parameters, such as time (¢ =tD/r?), shear rate
(v =vy/Q), flux (J*=JuR,/pP), pressure (P*=(P-
m)/m), permeate volume (V*=VR,/AP‘t) and work
(W*=WR,,/AP”t") (Chaudhuri and Jogdand, 2017).
Similarly, Mat Nawi et al. (2022) reported that increasing
the distance between the turntable and the membrane
significantly decreased the flux. Encouragingly, the
energy needed for rotation was two orders of magnitude
lower than that needed for aeration according to the
energy consumption analysis.

The self-rotation of the membrane also enables
enhanced shear. Ji et al. (2016) applied a centrifugal term
S,» = pw’r in the fluid domain for a rotating tubular
membrane. Rotation is particularly effective at preventing
large particles from being deposited on the membrane
surface but has a negligible effect on small particles
(< 8um). Pinilla etal. (2020) considered the rotation
membrane in an MBR system with an eccentric place-
ment configuration to be better than that with a central
placement configuration because of its excellent ability to
eliminate dead zones. The rotational speed is a key factor
in wall shear stress, although moderate speeds are still
recommended. There is also a positive relationship
between the sludge concentration (expressed as fluid
viscosity) and wall shear stress. Zhang etal. (2022)
discussed the effects of rotational velocity and inlet
velocity on the hydrodynamic characteristics of staggered
rotating membrane systems (Fig. 6 (e)). Naskar et al.
(2019) reported that the intermeshed spinning basket
membrane (ISBM), which consists of two intermeshed
counter rotating flat membranes (Fig. 6 (f)), is excellent
for filtration at high concentrations and for severe fouling
despite its high energy consumption and low space
utilization. High shear stress exists at both the outer edge

and near the rotational axis of the membrane surface,
while areas of low shear stress exist in the middle region.
The shear stress on the leading face is 1.5 times greater
than that on the trailing surface.

5.4 Pulsatile flow

The primary membrane fouling control strategy produces
perturbations on the membrane surface, which can be
achieved by periodically changing the wvelocity and
pressure through the application of functional feed.
Measures such as pulse flow, alternating tangential flow
(ATF) and the periodic feed pressure technique (PFPT)
have been investigated. The function feed can be easily
realized by modifying the boundary condition of the
simulation domain, e.g., by assigning a periodic function
to the velocity inlet or the pressure inlet.

Jalilvand et al. (2014) reported that sinusoidal pulsatile
flow (uy,) and step pulsatile flow (u,,) have greater shear
stress, which mitigates membrane fouling, than does
continuous flow at the cost of affordable feed channel
pressure loss (<400Pa/m). Li etal. (2022) further
showed that step pulsatile flow exhibits better perfor-
mance than sinusoidal, reciprocal and power flows.
Sinusoidal pulsatile flow at 5 Hz induced greater wall
shear stress and membrane flux than sinusoidal pulsatile
flow at 10 Hz and continuous flow, probably because a
lower frequency has a higher peak velocity to maintain
the same average velocity (Li et al., 2023):

2
. :A+Asin(7nt+¢0) (60)
_J 00<t<T/2
i = { 2AT/2<1<T 1)

where A is the oscillation domain, 7 is the cycle time and
@, 1s the initial phase difference.

Radoniqi etal. (2018) developed a two-dimensional
CFD model for ATF filtration considering cycle time,
cross-flow rate, permeate flux and TMP. The simulation
and experimental data aligned well. The Salama Team
confirmed the anti-fouling capability of PEPT in a
membrane system for treating oily wastewater using two-
phase flow CFD simulation. Choosing the proper cycle of
periodic feed pressure can interrupt the leakage process of
oil droplets into membrane pores, thus slowing membrane
fouling (Salama et al., 2020; Zoubeik et al., 2018).

6 Retrospection and prospection

CFD, as a versatile and extensively employed tool, plays
a pivotal role in various aspects of membrane research.
This work significantly contributes to hydrodynamic
analysis, the establishment of fouling models, and the
optimization of spacer geometry and working conditions.
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Moreover, CFD enables the identification of potential
areas susceptible to contamination, the formulation of
precision-driven operational and cleaning methodologies,
and the reduction of operational costs and energy
consumption. Importantly, CFD eliminates the necessity
for laborious repetitive experiments and circumvents the
limitations associated with the absence of in situ
microscopic observations. Here, we provide several
suggestions for numerical simulations of fouling models
and antifouling strategies:

1) It is common in simulations to choose constants as
parameters for fouling models; however, these models are
subject to additional constraints. For example, biomass
that develops in regions of high shear stress is denser and
tougher; thus, constant biomass density, porosity, and
mechanical strength values are inaccurate. The deposition
of inorganic crystals at the wall is influenced by
hydrodynamics; therefore, a constant deposition rate is
not appropriate.

2) It is necessary to experimentally obtain internal
information about the fouling layer, such as the
density/porosity distribution, microbial activity and
foulant fraction. The above information can make an
essential contribution to understanding the development
of membrane fouling and improving and refining fouling
models.

3) In membrane filtration systems where vibration,
rotation, pulsation, and other mechanical means are used
to enhance wall shear and generate wall slip, it is critical
to balance the trade-offs between energy consumption
and antipollution performance and to determine the
optimal vibration frequency/rotation rate. CFD provides a
good way to quantitatively analyze the effectiveness of
antipollution agents. A model that introduces parameters
such as energy consumption, shear rate, permeation flux,
and CP modulus to assist in the techno-economic analysis
would be very helpful.

4) Feed control methods such as pulsatile flow,
alternating tangential flow (ATF) and the periodic feed
pressure technique (PFPT) are promising. However, it is
necessary to study the unfavorable hydraulic phenomena
caused by sharp changes in the flow rate or flow
direction, such as substantial pressure loss and even
hydraulic shock. The cost of modifying the filtration
system to achieve feed control also needs to be
considered.
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