Front. Environ. Sci. Eng. 2023, 17(7): 81
https://doi.org/10.1007/s11783-023-1681-5

RESEARCH ARTICLE

The main and added effects of heat on mortality in 33
Chinese cities from 2007 to 2013

Yanlin Niu®?3, Jun Yang4, Qi Zhao>%7, Yuan Gao®, Tao Xue’, Qian Yin!Y, Peng Yin'l, Jinfeng Wangm’lz,

Maigeng Zhou'!, Qiyong Liu ()*%

1 Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing 100013, China
2 State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention,
Chinese Center for Disease Control and Prevention, Beijing 102206, China
3 University College London, London, WC1H ONN, UK
4 School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
5 Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
6 Shandong University Climate Change and Health Center, Shandong University, Jinan 250100, China
7 Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Diisseldorf 40225, Germany
8 School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
9 Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and
Biostatistics, School of Public Health, Peking University, Beijing 100191, China
10 State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Nature Resources Research,

Chinese Academy of Sciences, Beijing 100101, China

11 National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for

Disease Control and Prevention, Beijing 100050, China

12 University of Chinese Academy of Sciences, Beijing 100049, China

HIGHLIGHTS

GRAPHIC ABSTRACT

¢ The main and added effect from heat co-existed
in China.

¢ Both of the main and added effect could
increase the mortality risk of population.

e Females, the elderly, the less educated and
inland residents were more vulnerable.
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ABSTRACT

Increases in ambient temperatures and the frequency of extreme heat events constitute important
burdens on global public health. However, evidence on their effects on public health is limited and
inconclusive in China. In this study, data on daily deaths recorded in 33 Chinese cities from 2007 to
2013 was used to evaluate the effect of heat on mortality in China. In addition to the definition of a
heatwave established by the China Meteorological Administration, we combined four city-specific
relative thresholds (90th, 92.5th, 95th, and 97.5th percentiles) of the daily mean temperature during
the study period and three durations of = 2, = 3, and = 4 days, from which 13 heatwave definitions
were developed. Then, we estimated the main and added effects of heat at the city level using a quasi-
Poisson generalized additive model combined with a distributed lag nonlinear model. Next, the
estimates for the effects were pooled at the national level using a multivariable meta-analysis.
Subgroup analysis was performed according to sex, age, educational attainment, and spatially
stratified heterogeneity. The results showed that the mortality risk increased from 22.3% to 37.1% due
to the effects of the different heatwave definitions. The added effects were much lower, with the
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highest increase of 3.9% (95% CI: 1.7%—6.1%) in mortality risk. Females, the elderly, populations
with low educational levels, and populations living inland in China were found to be the most
vulnerable to the detrimental effects of heat. These findings have important implications for the
improvement of early warning systems for heatwaves.
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1 Introduction

Extreme heat events with longer durations, higher freque-
ncies, and greater intensities have become increasingly
common due to climate change (Hoegh-Guldberg et al.,
2018; Lange et al., 2020; Zhao et al., 2021). At present,
the number of individuals exposed to extreme heat is
projected to substantially increase with each additional
unit of warming (Byers et al., 2018; Romanello et al.,
2021), with a growing number of deaths due to heat
exposure expected on a global scale. A clear increasing
trend in heatwave-related mortality has been observed in
China during the past two decades, with an increase of
63.6% in 2015-2020 compared to 2000-2004 (Cai et al.,
2021). Although humanity’s ability to adapt to extreme
temperatures is likely to improve in the future, heat-
related excess mortality continues to rise with rising
temperatures, with projections indicating an increase from
1.9% in 2010 to 2.4% in 2030 and 5.5% in the 2090 in
China (Sun et al., 2021; Yang et al., 2021). Thus, the
negative health effects of exposure to extreme heat have
become a non-negligible threat to human beings. In this
context, further research on the health impact of heat is
needed, especially in developing countries, to provide
evidence for the development of mitigation and
adaptation strategies (Campbell et al., 2018; Vicedo-
Cabrera et al., 2021).

The impact of heat on human health is commonly
divided into two categories (Hajat et al., 2006; Gasparrini
and Armstrong, 2011): the main effect, which is caused
by daily temperature levels and estimated by the usual
exposure-response relationship between temperature and
health on both heatwave days and non-heatwave days,
and the added effect due to the duration of heat sustained
for several consecutive days, which is estimated by the
time of duration and specific temperatures (i.e., extreme
temperatures during a heatwave). The majority of studies
in this field have found that the main and added effects of
heat significantly increase the health risk of exposure to
extreme heat, wherein the impact of latter is relatively
small compared to the former (Gasparrini and Armstrong,
2011; Lee et al., 2016; Sherbakov et al., 2018; Yin et al.,
2018). However, some researchers have failed to identify
the added effects in their studies (Barnett et al., 2012;
Arbuthnott and Hajat, 2017; Guo et al., 2017). Possible
reasons for these inconsistent conclusions are as follows:
(1) different study areas and populations resulted in
various influencing factors of vulnerability, including
climatic characteristics, local socioeconomic level, and

capacity of residents to adapt to changes in climate (Hajat
and Kosatky, 2010; Yin et al., 2018; Sera et al., 2019;
Yang et al., 2019; Ebi et al., 2021); (2) diverse study
designs, including different temperature metrics, heat-
wave definitions, health outcomes, and models and para-
meters (Chen et al., 2015; Arbuthnott and Hajat, 2017;
Yang et al., 2019); (3) heat acclimatization may change
with time and the implementation of adaptation strategies
(Jay et al., 2021). This highlights the fact that current
research in this area is insufficient to satisfy the needs of
policymakers, especially in certain regions (e.g., South
Asia and China) (Dimitrova et al., 2021).

Furthermore, evaluations at the individual level and in
different areas is also of great importance for formulating
targeted strategies and tailored measures to respond to
global warming (Anderson and Bell, 2011; Son et al.,
2019). Therefore, gathering evidence is crucial to fill this
gap and develop credible solutions for reducing the
exposure of vulnerable populations to the health risks of
extreme.

In this study, a database of temperature, mortality, and
air pollution in 33 Chinese cities from 2007 to 2013 was
established. The primary objective of this study was to
quantify and compare the main and added effects of heat
under multiple heatwave definitions. Second, considering
the large influence of individual-level characteristics,
including sex, age, and education, on the relationship
between heat and health (Son et al., 2019), we aimed to
further evaluate the effect modification of these factors.
Finally, the spatially stratified heterogeneity of effects in
different areas was examined.

2 Materials and methods

2.1 Study sites

The study population included residents from 33 major
cities in China, including 31 provincial capital cities that
have been described in a previous study (Yang et al.,
2019), as well as Shenzhen and Ningbo. The study sites
covered all the different climatic and geographical zones
in China, which can be used as representative samples.
According to the Chinese North—south demarcation (Tan,
2011) and coastal administrative area classification and
codes (Center, 2006), the study sites were divided into
south and north and categorized into coastal cities and
inland cities (Table 1). The study period was from 2007
to 2013.
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Table 1 Summary of heatwave definitions and heatwave days in 33 main cities in China in warm season from 2017 to 2013

Heatwave definition Threshold Duration Total Mean Standard deviation Min. Median Max. Q-AIC

HWI = 90th =2d 2112 64 8 50 61 82 229431.3
HW2 = 90th = 3d 1313 40 10 24 36 62 229480.3
HW3 = 90th = 4d 864 26 10 10 23 50 229382.8
HW4 = 92.5th =2d 1494 45 7 31 42 59 229433.0
HW5 = 92.5th =3d 886 27 8 13 24 44 229452.1
HW6 = 92.5th =4d 553 17 7 5 14 33 229448.5
HW7 = 95th =2d 915 28 5 18 26 40 229355.9
HW8 = 95th =3d 517 16 6 6 14 29 229422.7
HW9 = 95th = 4d 302 9 5 1 8 22 2294393
HW10 = 97.5th =2d 428 13 3 7 12 19 229417.1
HWI11 = 97.5th = 3d 239 7 4 2 7 14 229371.7
HWI12 = 97.5th = 4d 137 4 3 0 4 11 229427.5
CMA 35°C = 3d 381 12 20 0 0 76 229487.6

Note: The city-specific relative thresholds based on the statistical distribution of daily mean temperature during the study period were used from HW1 to
HW 12, while the absolute threshold of daily maximum temperature was used by CMA.

2.2 Data collection

Data on the daily number of deaths of urban residents
from 2007 to 2013 were obtained from the Chinese
National Center for Chronic and Noncommunicable
Disease Control and Prevention. Based on the 10th
revision of the International Classification of Diseases
(ICD-10), records were included if the underlying cause
of death was non-accidental (ICD-10: A00-R99). The
daily number of deaths was further categorized by sex,
age group (0-64, 65-74 and = 75 years) (Yin et al,
2018; Yang et al.,, 2019), and educational attainment
(illiterate, primary school, and junior high school and
above). The annual population for each city was obtained
from the National Bureau of Statistics.

Daily contemporanecous meteorological data were
obtained from the ERAS5 data set, published by ECMWF
(European Centre for Medium-Range Weather Forecasts),
including the daily mean temperature (°C), daily
maximum temperature (°C), daily minimum temperature
(°C), relative humidity (%), and average wind velocity
(m/s). ERAS reanalysis is a climate data set containing
many atmospheric, land surface, and sea state parameters
produced by the ECMWF with in situ and satellite
observations (Hersbach et al., 2020). ERAS data cover the
period from 1950 to the present and are available on
regular latitude-longitude grids at approximately 31 km x
31 km resolution (0.25° x 0.25°). The daily series of
meteorological indicators for each city in this study were
obtained by calculating the spatial average of values in
grid points weighted by the proportion of the area of the
city covered by the grid.

The daily mean concentrations of PM, s at the city level
were obtained from the PM, ; Hindcast Database (PHD).
The PHD is a database that assembles data sets from

multiple sources using a machine learning approach,
which provides historical PM, 5 estimates in a regular
grid of 0.1° x 0.1° across China, from 2000 to 2016 (Xue
et al., 2019). The data processing of PM, 5, which was the
same as the meteorological data, and the mean value
within the study area were taken as the average exposure
level of air pollution.

2.3 Heatwave definition

At present, there is no unified definition for “heatwave”
(Chen et al., 2015; Tong et al., 2015; Xu et al., 2016; Guo
et al,, 2017; Yang et al, 2019). In addition, it is
inappropriate to use a single definition because of the
diverse adaptability of individuals from different regions
to changes in their environment and climate (Yang et al.,
2019). In China, heatwaves are defined by the China
Meteorological Administration (CMA) as three or more
consecutive days with daily maximum temperatures
exceeding a threshold of 35 °C. In addition to the
definition proposed by the CMA, we further established
four relative thresholds (90th, 92.5th, 95th, and 97.5th
percentiles) based on the statistical distributions of daily
mean temperature during the study period (Guo et al.,
2017) and three durations of = 2, = 3, and = 4 days. As
a result, a total of 13 definitions for “heatwave” were
established (Table 1).

2.4 Statistical analysis

2.4.1 Two-stage analysis strategy

In this study, we used a two-stage analysis strategy to
assess the effects of heat on mortality. In the first stage,
city-specific associations between heat and mortality,
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including the main and added effects, were estimated. In
the second stage, the estimates for associations among the
cities studied were pooled at the national level using
multivariable meta-analysis. The analyses were restricted
to the warm season (from May to September), which was
considered to be the prime period of high temperatures
and heatwaves in China in previous studies (Chen et al.,
2015; Yin et al., 2018; Yang et al., 2019). The analysis
was conducted separately for each heatwave definition.

In the first stage, we used a quasi-Poisson generalized
linear model that assumed the mortality count to follow
an over-dispersed distribution for each day to estimate the
city-specific mortality risk (relative risk, RR) from heat
by including temperature and a heatwave indicator
(Gasparrini and Armstrong, 2011), as follows:

log[E (Y,)] = a +ns(RH,,3) + ns(year,,5) +ns(doy,,4)
+y"DOW,+ 6" HOLIDAY, + of f set (log (pop))
+B Temp,,+& HW,

where E(Y)) is the expected number of deaths on day ¢,
is the intercept, and ns(-) is the natural cubic spline
function. Relative humidity on day ¢ (RH,) with three
degrees of freedom (df) was used to control for potential
confounding effects (Hu et al., 2020). Based on previous
studies (Gasparrini and Armstrong, 2011; Lee et al.,
2018), year (year,) with 5 df and day of the year (doy,)
with 4 df were used to control for long-term and seasonal
trends, respectively. The days of the week (DOW,) and
public holidays (HOLIDAY,) were also included in the
model as categorical variables, with the corresponding
coefficients of y and J. Each year’s population for each
city on a log scale was included in the model as an offset
to control for the potential confounding effect of demo-
graphic shifts over time (Qiao et al., 2015; Tong et al.,
2015; Cheng et al., 2018). Temp,, is the cross-basis
matrix of the daily mean temperature on day ¢ to estimate
the nonlinear effect and lag effect, and / is the lag days. f
is the vector of the regression coefficients for Temp, ;. The
relationship in the temperature space was modeled by a
natural cubic spline with 6 df and three equally spaced
knots, while changes in the shape along lags were
modeled by a natural cubic spline with 5 df, up to a
maximum lag day of 10 (Gasparrini and Armstrong,
2011). HW,, with the corresponding coefficient of ¢, was
the dummy variable, assigned 1 for days with heatwaves
and 0 for days without heatwaves, based on the heatwave
definitions mentioned in Section 2.3. The temperature
with the minimum mortality risk for each city was used as
the reference value for estimating the RR of temperature,
which was derived from the best linear unbiased
prediction (BLUP) of the overall cumulative exposure-
response association between daily mean temperature and
mortality (Gasparrini et al., 2015). Based on previous
studies (Hajat et al., 2006; Guo et al., 2017), the main
effect was defined as the independent impact of daily
temperature on health, whereas the added effect was

defined as an additional risk due to the duration of heat
sustained for several consecutive days. Then, the city-
specific main effect was estimated as the RR between the
median temperature among heatwave days and the
minimum mortality temperature using Temp,, and the
city-specific added effect was estimated as the exponen-
tial of the coefficient for W, (Gasparrini and Armstrong,
2011). The main and added effects are presented as
percentage changes in the risk.

In the second stage, the pooled estimates of the main
and added effects were produced using a multivariable
meta-analysis based on restricted maximum likelihood
(REML). Heterogeneity between cities was evaluated by
calculating I-square (/%) statistics and p-values using the
Cochran Q test in meta-regression models (Gasparrini
et al., 2012). I2 represents the percentage of variability in
the RRs attributable to the cities.

The Akaike information criterion for quasi-Poisson (Q-
AIC) was used to assess the goodness of the model fit
among the 13 heatwave definitions. The sum of the Q-
AIC values for each heatwave definition from all models
in the 33 cities was compared. Then, the optimal model
fit and optimal heatwave definition were determined
when the sum was minimized.

2.4.2  Subgroup analysis

To evaluate the effect modification of factors at the
individual level and to identify vulnerable subpopula-
tions, the aforementioned two-stage analysis was repeated
by sex, age group, and educational attainment (Yin et al.,
2018; Yang et al., 2019). The difference between the
effect estimates for the two subpopulations was compa-
red, and the significance was tested using the following
formula:

_ E, - E,

VSE(E,Y +SE(E,)
where Z is the Z-test value, £, and E, are the effect
estimates for the two subgroups, and SE(E,) and SE(E,)

are their respective standard errors (Clogg et al., 1995;
Paternoster et al., 1998).

Z

2.4.3 Spatial stratified heterogeneity analysis

Spatial stratified heterogeneity is a major feature of
geographical objects, which refers to a within-strata
variance that is less than the between-strata variance.
Geodetector is widely used to explore and utilize spatial
heterogeneity, and its core idea is based on the
assumption that there would be similarity in the spatial
distribution of certain independent variables and their
corresponding dependent variables if the former had a
significant impact on the latter (Wang et al., 2010; Wang
and Hu, 2012). The factor detector in Geodetector can
explore the spatial heterogeneity of variable Y and
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quantify the extent to which factor X explains the
heterogeneity of attribute ¥ (Wang et al., 2010). The g-
statistic method was proposed by Wang et al. (2010;
2016) to measure the degree of spatially stratified
heterogeneity and to test its significance using the
following expression:

g=1- i Nidi, _ | SSW
N&? SST
L
SSW =" No;
h=1
SST = N&?

where 7 =1, 2, ..., L is the stratum of variable Y or factor
X in the area, the area is composed of N units, stratum # is
composed of N, units, and 0,2 and 6> denote the variance
of Y in stratum /4 and the entire area, respectively. SSW
and SST represent the within-sum of squares and the total
sum of squares, respectively. The range of the ¢ value is 0
to 1, where the larger the value, the more obvious the
spatial heterogeneity of Y and the stronger the explana-
tory power of factor X to attribute Y if the stratum is
determined by factor X.

In this study, taking the mortality risk estimates (f for
the main effect and ¢ for the added effect) as Y and the
divisions mentioned in Section 2.1 as X, the spatial
heterogeneity of the health impacts from heat was
explored using Geodetector. In addition, the effects
within the stratum were pooled using meta-analysis when
heterogeneity was detected and compared. To decrease
the probability of producing a false negative, two-tailed
P-values less than 0.1 was considered statistically
significant in this part of the analysis.

2.4.4 Ethical approval

Ethical approval for this study was obtained from the
Chinese Center for Disease Control and Prevention
Ethical Review Committee (ICDC-2019008) prior to data
collection. All analyzed data were anonymized and
protected by a confidentiality agreement. This study was
performed in accordance with the principles of the
Declaration of Helsinki.

2.4.5 Sensitivity analysis

To evaluate the robustness of the model, a sensitivity
analysis was performed by modifying the df of the
variables for the city-specific model, including the
relative humidity (df = 3-5), year (df = 3-5), and day of
year (df = 3-5). The maximum lag days for Temp, , were
set to 7 and 14. Moreover, the variable PM, 5 was added
to the model to test its influence on the heat effect.
Sensitivity analyses were conducted in models with the
mildest (HW1) and strictest (HW12) heatwave definitions

All statistical analyses and plots were conducted using
the “dlnm” (Gasparrini, 2011), “metafor” (Viechtbauer,
2010), and “ggplot2” (Wickham, 2016) packages in R
(version 3.6.3). Spatial heterogeneity analyses were
implemented using Geodetector. For all statistical tests
except the spatial heterogeneity analysis in Section 2.4.3,
a two-tailed P-value less than 0.05 was considered as
statistically significant.

3 Results

3.1 Descriptive statistics
The medians of the daily mean temperature, relative
humidity, and PM, . concentration in the study area
during the warm season from 2007 to 2013 were 23.39 °C,
74.45%, and 46.62 pg/m3, respectively (Table 2). During
the study period, the total number of deaths was
2,097,942, The average number of deaths per day ranged
from 2 in Lhasa to 239 in Chengdu (Table 2). The
average number of daily deaths in males was 35, which
was higher than that in females. Among all age groups,
the average number of daily deaths reached a maximum
of 29 in individuals aged 75 years or above. The average
number of daily deaths in populations with an educational
attainment of illiterate, primary school, and secondary
school or higher was 13, 19, and 22, respectively (Table 2).
The number of heatwave days varied with different
heatwave definitions (Table 1). The total heatwave days
decreased with the increase in temperature threshold in
the heatwave definition (e.g., HW1, HW4, HW7, and
HW10) and showed a similar declining trend with the
extension of duration under the same threshold (e.g.,
HW1, HW2, and HW3). During the study period, the
maximum total number of heatwave days was 2,112 days
under the loosest definition (i.e., HW1, in which the
threshold of the daily mean temperature was = 90th
percentile and the duration was = 2 days). Conversely,
the most stringent definition (i.e., HW12, in which the
threshold of the daily mean temperature was = 97.5th
percentile and the duration was = 4 days) resulted in a
minimum of 137 heatwave days. According to the
definition proposed by the CMA, the total number of
heatwave days was 381. The sum of Q-AIC for each
heatwave definition from all models in 33 cities was a
minimum of 229,422.7 under the definition of HWS, in
which the threshold of the daily mean temperature was =
95th percentile and the duration was = 3 days (Table 1).

3.2 Effects estimation

The main effects of heat on mortality showed an upward
trend with an increase in the temperature threshold and/or
the extension of duration in the heatwave definition,
varying from 22.3% to 37.1% with statistical significance
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Table 2  Statistical description of mortality and environmental indicators in 33 main cities in China in warm season from 2007 to 2013

Items Total Min. P25 Median Mean P75 Max.
Mortality (Count) 2097942 0 13 30 60 88 805
Sex

Male 1229326 0 8 19 35 51 445

Female 868616 0 5 12 25 37 360
Age (Years)

<65 594975 0 4 10 17 24 184

65-74 403276 0 2 6 12 17 164

=175 1003259 0 5 14 29 43 429
Educational attainments
Illiterate 471080 0 1 5 13 17 309
Primary school 661048 0 3 9 19 27 319
Secondary or higher 762046 0 5 12 22 29 152
Daily mean temperature (°C) —2.84 19.16 23.39 22.36 26.85 35.20
Relative humidity (%) 14.42 62.72 74.45 70.73 81.79 98.27
PM, 5 (ng/m’) 1.47 31.61 42.62 47.39 58.46 196.45

Note: P25 and P75 refer to 25th and 75th percentiles, respectively.

(Table 3). The mortality risk increased by 28.3% (95%
CI: 22.1%-34.9%) because of the main effect under the
heatwave definition of HWS. In contrast to the main
effect, the added effect decreased slightly with an
increase in duration in the heatwave definition when the
temperature threshold was relatively high, but increased
with the increase in temperature threshold. Compared
with the main effects, the added effects were much lower,
with the highest increase of 3.9% (95% CI. 1.7%—6.1%)
in mortality risk under the heatwave definition of HW10.
When HW8 was adopted, the main effect was statistically

significant from the exposure day to the 2nd day,
reaching the highest increase of 9.7% (95% CI: 6.7%—
12.8%) on the exposure day and then dropping drama-
tically from lag day 1 (Fig. 1).

3.3 Subgroup analysis

The effects of heat on mortality risk in the subgroups
differed with the change in heatwave definition (Fig. 2,
Table 3). Briefly, the main effect in subgroups increased
with the increase in threshold temperature and/or the

Table 3 Pooled main and added effects for mortality risk with tests for heterogeneity across cities with different heatwave definitions

Main effect Added effect
Heatwave definition No. Cities
Percentage change (%) (95% CI) )4 P Percentage change (%) (95% CI) 2 P

HW1 33 22.3(17.8,27.0) 46.77  <0.001 02(-1.4,1.9) 34.59 0.017
HW?2 33 23.7(18.4,29.2) 55.10  <0.001 0.4(-1.1,1.9) 12.89 0.185
HW3 33 24.0 (18.8,29.4) 52.86  <0.001 0.6 (—-1.2,2.5) 23.68 0.017
HW 4 33 22.6 (17.6,27.8) 50.40 <0.001 1.2 (-0.1,2.6) <0.01 0.819
HW 5 33 24.4 (19.0, 30.0) 52.83  <0.001 1.5(0,3.1) 0.02 0.203
HW 6 33 24.6 (19.4,30.2) 5149 <0.001 2.3(0,4.7) 28.04 0.016
HW1T 33 25.8(20.4,31.5) 46.18  <0.001 2.7(0.9, 4.5) 15.24 0.272
HW 8 33 28.3(22.1,34.9) 5448 <0.001 2.6(0,5.4) 39.61 0.010
HW9 33 31.3(25.2,37.7) 44.17  <0.001 1.0 (-2.8,4.9) 53.16  <0.001
HW 10 33 32.3(25.8,39.3) 44.88 <0.001 3.9 (1.7,6.1) 4.40 0.177
HW 11 33 37.1(29.3,45.3) 5223  <0.001 3.6 (1.0,6.3) 0.02 0.052
HW 12 31 36.1(28.4,44.2) 48.53  <0.001 3.1(-0.7,7.0) 14.27 0.100
CMA 16 28.5(20.4,37.2) 69.89  <0.001 0.9 (-1.9,3.7) 9.85 0.381

Note: There were no heatwave days identified in some of the 33 cities when adopting the heatwave definition of HW12 and CMA, so the number of cities
was less than 33. P refers to the p-values from the Cochran’s Q test in the meta-regression models.
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Fig. 1 Lag pattern for the median temperature among heatwave days
(28.42 °C) versus the minimum mortality temperature (21.10 °C) when
adopted HW8.

extension of duration in the heatwave definition. When
the optimal heatwave definition HW8 was adopted in the
model, the main effect increased the mortality risk in
females by 41.4% (95% CI: 30.4%—53.4%), which was
significantly higher than that in males (23.3%, 95% CI:
18.0%-28.8%; Z = —2.92, P = 0.004) (Table 4); the
mortality risk increased by 41.1% (95% CI: 30.5%-—

52.5%) in individuals aged 75 years old or above, which
was the highest in age groups (Z =-2.28, P =0.023; Z =
—2.55, P = 0.011); the mortality risk decreased when the
education level improved, and illiterate individuals were
more affected compared to individuals with superior
educational attainments (Z = 4.82, P <0.001; Z=6.16, P
< 0.001), which represents an increase of 111.1% (95%
CI: 75.7%—-153.5%) for risk. The variation in the added
effect was not as regular as that in the main effect.
Although the added effect showed a similar trend to the
main effect on mortality risk in subgroups when adopting
HW3, statistical significance was only observed when
comparing the illiterate groups and the population with
secondary or higher educational attainment (Z = 2.23, P =
0.026) (Table 4).

3.4 Spatial stratified heterogeneity analysis

No statistical significance was observed for the spatial
stratified heterogeneity (SSH) of the heat effect between
the north and south (Tables 4 and 5). Similarly, the SSH
of the main effect between coastal and inland cities was
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Fig.2 Subgroup comparison of the effect of heat on mortality risk under different heatwave definitions in 33 major cities in China

from 2007 to 2013.
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Table 4 Subgroup comparison of the effect of heat on mortality risk when adopted HW8 in 33 major cities in China from 2007 to 2013

Main effect Added effect
Groups Comparable group
Percentage change (95% CI) Z P Percentage change (95% CI) Z P

Sex

Male vs. Female 23.3(18.0, 28.8) -2.92  0.004 2.2(-0.5,5.1) -1.15 0.250

Female 41.4 (304, 53.4) 4.8(1.5,8.2)
Age (Years)

<65 vs. 65-74 22.4(13.4,32.2) —0.60  0.549 3.4(0.3, 6.6) 0.79  0.430

65-74 vs. =75 26.1 (19.0, 33.6) -2.28 0.023 1.2(-3.2,5.8) —0.83  0.407

=15 vs. <65 41.1 (30.5, 52.5) -2.55  0.011 3.7(=0.1,7.6) -0.11 0912
Educational attainments
Illiterate vs. Primary school 111.1(75.7, 153.5) 482  <0.001 7.4 (0.7, 14.5) 0.85 0.395
Primary school vs. Secondary or higher 31.3(23.5,39.5) 3.03 0.002 4.0(0.3,7.9) 1.96  0.050
Secondary or higher vs. Illiterate 16.1 (10.4,22.2) 6.16  <0.001 -1.3(-5.0,2.5) 223 0.026

not detected (Table 4). Regarding the added effect, the
SSH was statistically significant between coastal and
inland cities under the definition of HW10 (¢ = 0.1469,
P =0.0606) (Table 4). When pooling the effect within the
stratum, the mortality risk in coastal cities increased by
up to 1.1% (95% CI: -2.9%-5.2%) due to the added
effect. The risk in inland cities increased by 4.9% (95%
CI: 2.4%—7.5%). The increase in mortality risk in inland
cities was much higher than that in coastal cities.
However, no statistically significant added effect was
observed in coastal cities (Table 5).

3.5 Sensitivity analysis
The results of the sensitivity analysis for both the main

and added effects showed that the model was robust when
the dfs were altered for relative humidity (df = 3-5), year

(df = 3-5), and day of year (df = 3-5) in the model (Fig.
S1, Table S6). Changing the maximum lag days to 7 and
14 in the model did not result in significant differences in
the fitting effect of the model (Fig. S2, Table S6).
Furthermore, the exposure-response relationship was
similar before and after adjusting for PM, s (Fig. S3,
Table S6).

4 Discussion

In this study, we found that both the main effect from the
increase in temperature and the added effect from
sustained heat over several consecutive days increased the
mortality risk, of which the former was much larger than
the latter. Among the populations studied, females, the
elderly, populations with low educational levels, and

Table 5 Pooled main and added effects for mortality risk between coastal and inland cities with different heatwave definitions

Main effect Added effect
HW Percentage change (95%CI) Percentage change (95%CI)
Coastal Inland Coastal Inland

HW1 25.5(15.9, 36.0) 21.3 (16.1, 26.6) —0.5(-3.4,2.5) 0.6 (—1.5,2.6)
HW2 29.8 (19.0, 41.6) 21.6 (15.9,27.4) —0.8(-3.3, 1.8) 0.9 (-0.9,2.7)
HW3 28.4(19.3,38.2) 22.5(16.7,28.7) —0.3(-5.7,5.5) 0.7 (-1.5,2.9)
HW4 26.6 (16.6,37.4) 21.1 (15.5,27.0) 1.2(-1.4,3.8) 1.2(-0.3,2.8)
HWS 29.3(19.3,40.2) 22.4(16.4,28.6) 0.2(-2.8,3.2) 2.0(0.2,3.8)
HW6 30.3(20.2,41.2) 22.2 (16.6, 28.0) -1.5(-7.5,4.9) 3.3(0.6, 6.0)
HW1 28.6 (16.5, 42.0) 24.5(18.5,30.7) 0.5(=2.5,3.7) 3.4(1.3,5.6)
HWB 32.8(19.5,47.5) 26.4 (19.5,33.7) —0.6 (-5.0, 3.9) 3.9(0.9,7.1)
HW9 33.6(21.3,47.3) 30.4 (23.3,37.9) -3.6(-11.8,5.4) 2.6 (—1.6,6.9)
HW10 33.8(19.3,50.1) 31.8(24.2,40.0) 1.1(-2.9,5.2) 49(24,7.5)
HW11 37.4(20.9, 56.1) 37.1(27.9, 46.8) -3.8(-11.9,5.1) 43(1.2,7.5)
HW12 34.9 (204, 51.1) 36.8 (27.4,46.8) 3.0 (-5.3,12.1) 2.7 (-1.5,7.1)
CMA 20.7 (16.1, 25.5) 33.7(21.6,47.0) 1.1(-6.2,8.9) 0(-2.9,3.0)
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populations living inland in China were found to be more
vulnerable to heat.

Consistent with previous studies (Campbell et al.,
2018), our study found that high temperature could
increase mortality risk significantly, which was defined as
the main effect in this study. Similar to other studies (Guo
et al., 2011; Guo et al., 2014), this effect appeared quickly
and did not last for long. Moreover, an increasing number
of studies have focused on the effects of heatwaves.
Studies conducted in the US (Hajat et al., 2006; Gronlund
et al., 2014; Sherbakov et al., 2018), China (Dong et al.,
2016; Yin et al., 2018), Korea (Lee et al., 2016), and Iran
(Aboubakri et al., 2019) have reported that the added
effects could increase the risk of hospital admission
and/or mortality from various diseases to varying degrees.
Our results suggest that the main effects of heat could
significantly increase the mortality risk in China, varying
from 22.3% to 37.1%, whereas the added effects would
only increase the mortality risk by up to 3.9%. Gasparrini
and Armstrong (2011) found that the main effects of heat
on mortality risk in the US were 4.9%-8.0%, while the
added effects were 0.2%-2.8%, which was consistent
with the results of the present study, wherein the added
effect was found to be relatively smaller than the main
effect. Using the definition of a heatwave in which the
threshold of the daily mean temperature was = 97.5th
percentile and the duration was = 3 days, Yin et al.
(2018) found that the mortality risk in China increased by
7% due to the added effect, which is slightly higher than
that observed in the present study. It is worth noting that
the limited heatwave days identified in a relatively short
period of three years in the study by Yin et al. may have
resulted in the differences observed in conclusions
between studies. Another study (Lee et al., 2016) in Seoul
found that the added effect was 3.7%—18.1%, which was
higher than observed that in the present study. This may
be caused by the differences between Korea and China in
terms of living habits and the climate adaptation ability of
the residents and the natural environment. However, a
multicountry study (Guo et al., 2017) failed to detect the
added effect of heat in China. This may be due to the fact
that it only included six cities in China. In contrast to
previous studies (Dong et al., 2016; Guo et al., 2017; Yin
et al., 2018) conducted in China, in the present study, a
large dataset covering 33 cities over a long period of
seven years was used, which provides a stronger basis for
the provision of credible evidence to fill the gaps in this
research area than previous studies.

In this study, females and the elderly, especially those
with less education, were found to be more vulnerable to
heat, consistent with the results of previous studies
(Gronlund et al., 2014; Chen et al., 2015; Dong et al.,
2016; Yin et al.,, 2018). Because of the difference in
physiological and thermoregulation ability between sexes,
females have a lower tolerance and adaptation to heat,
which makes them more vulnerable (Druyan et al., 2012;

Kim and Kim, 2017). A decline in body functioning and a
high prevalence of chronic diseases in the elderly make it
more likely and easier to induce or aggravate certain
diseases during heatwaves, and even death (Gasparrini
and Armstrong, 2011; Huang et al., 2022). People with
less education usually have poor social and economic
conditions, lack adequate and effective protective mea-
sures, and lack sufficient awareness of self-protection
against adverse weather events, resulting in higher health
impacts from heat exposure. The identification of vulner-
able populations can help in formulating targeted public
health interventions and strengthen health protection for
key groups when meteorological disasters, such as
heatwaves, occur. In this study, we also found that there
was a strong spatially stratified heterogeneity of the
health impacts from heat between coastal and inland areas
in China, and the added effect was higher in inland areas
than in coastal areas. A possible reason for this spatial
heterogeneity may be the combined effect of natural and
socio-economic factors in different regions. Compared
with inland areas, coastal areas have better climatic
conditions and ecological environments thanks to the
influence of the ocean, which may alleviate some of the
effects caused by high temperatures and heatwaves. In
addition, benefiting from the more developed economies
of coastal areas, local residents have better living
conditions and abundant public resources, which enables
them to adapt more easily to extreme weather events,
such as heatwaves. However, we did not observe any
spatial heterogeneity in terms of heat effects between the
north and south of China.

Furthermore, we also found that the health effects of
exposure to extreme heat varied with the different
heatwave definitions, highlighting the need to exercise
caution when choosing the threshold for defining
heatwaves in early warning systems. To be specific, a
looser definition for heatwaves would trigger the warning
system much more easily, which can be more effective in
reducing the adverse impacts of heatwaves on human
health, but it may also result in a waste of public
resources and public indifference, and vice versa.
Moreover, a stricter definition that reflects the most
intense heatwave, but also leads to the shortest heatwave
period, may not necessarily have the strongest effect on
reducing health risks (Heo et al., 2019). Therefore, it is of
great importance to identify an optimal heatwave
definition for use in early warning systems based on
scientific evidence and local conditions, as reported in
previous studies (Yin et al., 2018; Yang et al., 2019). In
this study, the best model fit was observed when adopting
the heatwave definition in which the threshold of the
daily mean temperature was = 95th percentile and the
duration was = 3 days, which indicated that this
definition could best capture the health impact from heat.
In contrast, a poor model fit was observed when the
definition established by the CMA was adopted. In
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contrast to the results of this study, Yang et al. (2019)
used the daily maximum temperature as the metric to
determine the optimal heatwave definition in 31 cities in
China, and obtained the best results when the threshold of
the daily maximum temperature was = 92.5th percentile
and the duration was = 3 days. Similarly, both the World
Meteorological Organization (WMO) and CMA use the
daily maximum temperature to define the heatwave.
However, to better capture the impact of heatwaves on
health, we conducted a trial test using four temperature
metrics (daily mean temperature, daily maximum
temperature, daily minimum temperature, and apparent
temperature) in the exposure-response function with the
same parameters introduced in the two-stage analysis
strategy in Section 2.4.1, and compared the model fits
using Q-AIC, which is presented in detail in Table S7.
The results of this trial test showed that daily mean
temperature was the optimal metric. It is worth noting
that the temperature metrics used in heatwave-related
studies vary across the literature (Gasparrini and
Armstrong, 2011; Chen et al., 2015; Dong et al., 2016;
Lee et al., 2016; Yin et al., 2018; Heo et al., 2019; Yang
et al., 2019). Guo et al. (2017) found that the exposure-
response relationships between heatwaves and mortality
were similar when using the daily mean temperature and
the daily maximum temperature in their definition of a
heatwave, but better than that when using the daily
minimum temperature. Moreover, several thermal
comfort indices, which quantify the combined effect of a
series of meteorological factors (e.g., air temperature,
humidity, and wind speed) on perceived temperature,
were compared for health risks using the heatwave
definition (Heo et al., 2019). They found that web-bulb
globe temperature (WBGT) was better associated with a
significant risk of mortality than air temperature and heat
index (HI). Furthermore, Nori-Sarma et al. highlighted
the issue of whether to use an absolute metric or a relative
metric as the temperature metric when assessing the
relationship between heat and health (Nori-Sarma et al.,
2019). However, the choice of heatwave definition
depends on the tradeoffs of many factors, and will need to
be updated as humans change their ability to adapt to
extreme heat (Heo et al., 2019; Yang et al., 2019). In this
study, except for the heatwave definitions used by the
CMA, four temperature metrics, four temperature
thresholds, and three durations of heatwaves were
combined to develop different heatwave definitions,
providing insights into the significance of the definition
of heatwaves when assessing the health effects of heat.

In this study, the main effect showed a rising trend with
an increase in the threshold temperature and a prolonged
duration, while the added effect increased with the
increase in threshold temperature but decreased slightly
with the extension of duration when the temperature
threshold was relatively high. Similar to our findings, Yin
et al. (2018) found that the added effect of heatwaves in

China increased with an increase in the temperature
threshold, but a relationship between the added effect and
the duration of heatwaves was not observed. Another
study (Guo et al., 2017) also supported this conclusion.
However, some studies (Diaz et al., 2002; Anderson and
Bell, 2011; Son et al., 2012; Dong et al., 2016) have
indicated that the temperature threshold and duration in
the heatwave definition could modify the health impact of
heat. These differences among studies may be caused by
the lack of full consideration of the lag effect of heatw-
aves in the models (Yin et al., 2018), which should be
given more attention in the future.

This study had some limitations. First, the data on daily
deaths were limited to cities, but influencing factors, such
as the economic development level, medical condition,
and protective awareness of the residents, may lead to
differences in the health effects of heat between urban
and rural areas (Hu et al., 2019). Therefore, whether the
conclusions of this study are suitable for rural regions will
need to be studied further. Second, the meteorological
data used in this study were obtained from the reanalysis
dataset, which does not represent the actual exposure
level of individuals, such that exposure measurement
error is inevitable. Finally, the study failed to control for
influencing factors at the individual level, such as the use
of air conditioning and hygiene level, which may have
caused biases in the results.

5 Conclusions

The main and added effects of heat co-exist in China,
both of which could increase the mortality risk in
populations exposed to extreme heat events, wherein the
main effect had a greater impact. Females, the elderly,
populations with low educational levels, and individuals
living inland in China were the most vulnerable to
extreme heat. These findings highlight the need for public
health departments to accelerate the establishment and
improvement of early warning systems for heatwaves and
strengthen health education and health promotion,
especially among the vulnerable groups identified in this
study.
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