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1 Introduction

Real water (e.g., surface water and wastewater) can
typically contain hundreds of organic micropollutants
(OMPs) that have widely varying molecular structures
and physicochemical properties (von Sonntag and von
Gunten, 2012; Lee et al., 2013; Loos et al., 2013; Li et al.,
2014; Zhao et al., 2016). Ozonation is one of the most
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H I G H L I G H T S

•Effect of converting ozonation to E-peroxone
was studied on pharmaceutical removal.

•A QSAR model was developed for selected 89
pharmaceuticals of special concern.

•Both processes abated the pharmaceuticals of
moderate and high kO3

quickly.
•E-peroxone process accelerated the elimination
of pharmaceuticals with low kO3

.
•Developed QSAR model reliably predicted kO3

of 418 out of 491 pharmaceuticals.

A R T I C L E I N F O

Article history:
Received 1 October 2020
Revised 13 December 2020
Accepted 18 December 2020
Available online 25 January 2021

Keywords:
Ozone
Electro-peroxone
Wastewater
Quantitative structure activity relationship
Advanced oxidation processes

G R A P H I C A B S T R A C T

A B S T R A C T

The abatements of 89 pharmaceuticals in secondary effluent by ozonation and the electro-peroxone (E-
peroxone) process were investigated. Based on the results, a quantitative structure-activity relationship
(QSAR) model was developed to explore relationship between chemical structure of pharmaceuticals
and their oxidation rates by ozone. The orthogonal projection to latent structure (OPLS) method was
used to identify relevant chemical descriptors of the pharmaceuticals, from large number of
descriptors, for model development. The resulting QSAR model, based on 44 molecular descriptors
related to the ozone reactivity of the pharmaceuticals, showed high goodness of fit (R2 = 0.963) and
predictive power (Q2 = 0.84). After validation, the model was used to predict second-order rate
constants of 491 pharmaceuticals of special concern (kO3

) including the 89 studied experimentally. The
predicted kO3

values and experimentally determined pseudo-first order rate constants of the
pharmaceuticals’ abatement during ozonation (kOZ) and the E-peroxone process (kEP) were then used
to assess effects of switching from ozonation to the E-peroxone process on removal of these
pharmaceuticals. The results indicate that the E-peroxone process could accelerate the abatement of
pharmaceuticals with relatively low ozone reactivity (kO3

< ~102 M–1$s–1) than ozonation (3–10 min
versus 5–20 min). The validated QSAR model predicted 66 pharmaceuticals to be highly O3-resistant.
The developed QSAR model may be used to estimate the ozone reactivity of pharmaceuticals of
diverse chemistry and thus predict their fate in ozone-based processes.
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studied treatment processes which has shown effective
removal for large number of OMPs from wastewater
effluents (Huber et al., 2003; Huber et al., 2005; Dodd
et al., 2006; von Sonntag and von Gunten, 2012).
Ozonation has also shown incomplete removal of many
persistent OMPs due to selective nature of ozone (O3)
(Huber et al., 2003; Lee et al., 2013). Thus, there is a need
of upgrading ozonation for better removal of structurally
diverse and persistent OMPs.
The electro-peroxone (E-peroxone) process is an emer-

ging ozone-based electrochemical advanced oxidation
process (EAOP) that has shown great potential for
removing emerging OMPs from contaminated water and
wastewater (Yao et al., 2016; Yao et al., 2017; Wang et al.,
2018b; Yao et al., 2018). It involves electrochemically
produced hydrogen peroxide (H2O2) from cathodic oxygen
(O2) reduction during ozonation to enhance the transfor-
mation of O3 to hydroxyl radicals (•OH). The enhanced
formation of hydroxyl radicals can improve removal of
OMPs that are resistant to O3 oxidation (e.g., ibuprofen,
clofibric acid, and chloramphenicol) compared to ozona-
tion (Yao et al., 2016; Wang et al., 2018a; Yao et al., 2018;
Li et al., 2021). In addition, unlike the conventional
peroxone (O3/H2O2) process which requires use of H2O2

stocks during ozonation, the E-peroxone process can
produce H2O2 in situ by using O2 that is always present in
excess in ozonation. E-peroxone shows advantages in
treatment window over ozonation, and therefore there is an
argument for moving to this process. However, before
widely applying the E-peroxone process in practice,
systematic evaluation of the effects of changing from
ozonation on abatement of a wide spectrum of OMPs is
needed. Previous studies have compared the abatement of
some OMPs by conventional ozonation and the E-
peroxone process (Yao et al., 2016; Yao et al., 2017;
Wang et al., 2018a; Yao et al., 2018; Li et al., 2019; Wang
et al., 2019). The results suggest that the effects may
depend on the OMPs’ ozone reactivity. For example, the E-
peroxone process reportedly eliminates ozone-resistant
ibuprofen and chloramphenicol more strongly than
ozonation, but may be less effective for eliminating
bezafibrate, which is moderately O3-reactive (Yao et al.,
2016; Wang et al., 2018a). Given these differences in
responses, and the small numbers of model OMPs tested in
previous studies (Yao et al., 2016; Wang et al., 2018a; Yao
et al., 2018), further clarification and generalization of the
relationship between OMPs’ ozone reactivity and their
fates in the E-peroxone process is required.
The ozone reactivity of OMPs can be judged from the

second-order rate constants of their reaction with O3 (kO3
).

However, kO3
values for many OMPs are still unknown.

Experimentally measuring the kO3
for each OMP is

prohibitively expensive and practically infeasible. A
practical alternative is to estimate kO3

by using various
computer based prediction approaches. One such approach

is quantum chemical molecular orbital calculations for
predictions of kO3

. Lee et al. (2015) developed quantum
chemical based models for aromatic compounds, olefins,
and amines which correlated well with the energy of a
delocalized molecular orbital on the aromatic ring, the
energy of a localized molecular orbital in the carbon-
carbon π bond, and the energy of the nitrogen lone-pair
electrons on amines, respectively. However, these models
are group specific local models with constrains in their
applicability domains (Lee et al., 2015). Alternatively, the
kO3

can also be predicted by quantitative structure-activity
relationship (QSAR) models based on a multitude of
physico-chemical descriptors capturing molecular features
related to reactivity. Such models are based on the
thoroughly validated assumption that molecules’ chemical
reactivity is intrinsically linked to their structures and
properties (Lei and Snyder, 2007; Jin et al., 2014; Jin et al.,
2015; Borhani et al., 2016; Ortiz et al., 2017). For example,
a univariate mechanistic QSAR model reported good
correlation between kO3

and the Hammett constants (σ) and
Taft constants (σ*) for aromatics and olefins, respectively
(Lee and von Gunten, 2012). However, applicability
domain of such models might be limited by the few
available Hammett and Taft constants and complexity of
the structures. QSAR models are also developed based on
several physico-chemical properties by using a multiple
linear regression (MLR) approach and have shown strong
correlation with kO3

(Sudhakaran et al., 2012). However,
MLR can not handle inter-correlation between large
number of physico-chemical properties (descriptors) and
thus requires correlation analysis. In addition, descriptors
also require separate assessment securing orthogonality by
e.g., principal component analysis (PCA) (Sudhakaran
et al., 2012). To overcome challenges in MLR, projections
to latent structures by means of the partial least squares
(PLS) method has been adopted. PLS is capable of
analyzing many, collinear and noisy physico-chemical
properties in relation to one or several response variables
(Eriksson et al., 2006). The possibility to use a battery of
physico-chemical properties for PLS based QSAR models
increases precision and applicability domain of the model
as many facets of chemical structure can be described.
However, the interpretation of PLS model with large
number of descriptors is complex due to structured noise in
descriptors as well as possible inclusion of descriptors not
correlated to the response studied (Eriksson et al., 2006).
This challenge can be solved by orthogonal-PLS (OPLS)
which is an extension of PLS (Wold et al., 2001; Trygg and
Wold, 2002).
OPLS was adopted to develop QSAR model in current

work. OPLS has the ability not only to handle inter-
correlation between descriptors, but importantly can also
reduce the number of descriptors relevant (predictive) to
the response variable. This can be achieved as OPLS
separates the descriptors into one part predictive to the

2 Front. Environ. Sci. Eng. 2021, 15(5): 106



response (here: kO3
) and an orthogonal part giving no

predictive power and thus not explaining reactivity. This
partitioning improves the model interpretability and
transparency. Consequently, a large number of physico-
chemical properties can be chosen initially to cover a broad
range of structurally diverse OMPs and OPLS is used to
identify the few most important predictive descriptors to
kO3

.
Thus, the main objective of this study was to explore the

relationship between pharmaceuticals’ ozone reactivity
and their fate in ozone and E-peroxone process with
support of QSARmodeling. A set of 89 pharmaceuticals of
special concern for aquatic wildlife was selected to
represent a broad range of relevant OMPs (Fick et al.,
2010; Grabic et al., 2012), and a QSAR model was
developed based on pharmaceuticals of known kO3

to
estimate unknown rate constants (kO3

) of 491 pharmaceu-
ticals including 89 in the target list. Special focus was on
identifying recalcitrant pharmaceuticals and their charac-
teristic physico-chemical features. The selected 89 phar-
maceuticals were spiked in a secondary wastewater
effluent and treated by ozonation and the E-peroxone
process. Effects of upgrading ozonation to the E-peroxone
process on removal of OMPs with varying ranges of ozone
reactivity were then assessed. For this, we examined
correlations between the kO3

values predicted by the QSAR
model and the experimentally determined pseudo-first
order rate constants for abatement of the pharmaceuticals
during ozonation (kOZ) and the E-peroxone process (kEP).

2 Materials and methods

2.1 Wastewater sample

A secondary wastewater effluent sample was collected
from a municipal wastewater treatment plant in Beijing,
China. The selected wastewater was stored at 4°C before it
was used for oxidation experiments within 7 days of
collection. Background concentrations of target pharma-
ceuticals in the wastewater were generally lower than their
level of quantification (LOQ, see Supporting Information
(SI) Table S1). To more accurately evaluate their
abatements, appropriate volumes of pharmaceutical stocks
(see SI Table S1 for names and structures of all studied 89
pharmaceuticals) were spiked in the selected wastewater
(see SI Table S2 for water quality parameters) to obtain a
nominal concentration of up to ~1 µg/L for each target
pharmaceutical, which is generally within the typical
concentration range of pharmaceuticals detected in waste-
water. The detailed information of chemicals and reagents
for this study can be found in SI Section S1.1, and the
sample pre-treatment and analytical procedures of target
pharmaceuticals are presented in SI Section S1.2 and
Table S3.

2.2 Ozonation and the E-peroxone treatment

Semi-batch ozonation and E-peroxone treatments with
continuous O3 sparging were conducted in an undivided
glass column reactor (250 mL, see SI Fig. S1) (Yao et al.,
2016). During ozonation, O3 was produced from pure O2

(99.9%) feed gas using an ozone generator (OL80F/DST,
Ozone Services, Canada). The ozone generator’s effluent
(O2 and O3 gas mixture) was then bubbled into the reactor
at a 0.35 L/min flow rate controlled by a flow meter. Gas
phase O3 concentration at the reactor inlet and outlet were
monitored using two ozone analyzers (BMT 964, Ozone
Systems Technology International Inc., Germany) and
used to calculate the amount of ozone consumed during
treatment (see SI Section S2.1 for calculation details).
Residual O3 in the off-gas was decomposed using an ozone
destructor. The reactor used for the E-peroxone process
was equipped with a platinum anode (2 cm � 2 cm) and
carbon-polytetrafluoroethylene (carbon-PTFE) cathode
(5 cm � 2 cm). The ozone generator effluent (4.8 mg/L
O3, 0.35 L/min) was bubbled in the reactor in the same way
as in conventional ozonation. Meanwhile, a constant
current of 35 mA was applied using a DC power source
to produce H2O2 from cathodic O2 reduction. The molar
ratio of O3:H2O2 during the E-peroxone process was
calculated based on the amounts of consumed O3 doses
and electro-generated H2O2 doses and found to be ~0.5–
1.7 (see SI Fig. S2), which is generally within the range of
O3:H2O2 ratios often applied in conventional peroxone
treatment of wastewater (e.g., O3:H2O2 = 0.5–2) (Bourgin
et al., 2017; Soltermann et al., 2017). All experiments were
repeated twice in a water bath at 15°C�1°C.

2.3 Quantitative structure-activity relationship (QSAR)
modeling

2.3.1 Data set of ozone rate constants and descriptors
computation

To explore the intrinsic relationship between ozone
reactivity and chemical structure, 30 of the set of 89
pharmaceuticals included in the analysis described above
(see SI Table S1) with known kO3

values were used for
QSAR model development. Only a few of this set of 30
pharmaceuticals (e.g., fluconazole and oxazepam) have
been reported as O3-resistant compounds (with kO3

< 100 M–1$s–1) (Lee et al., 2014). To cover the chemistry
of O3-resistant versus O3-reactive compounds, balance the
data set across a broad range of kO3

values, and increase the
applicability domain of the model, an additional 15 O3-
resistant pharmaceuticals (not included in the set of 89)
with known reported kO3

values were added for QSAR
model development (see SI Table S4). Thus, in total, 45
pharmaceuticals with reported kO3

were included in the
initial QSAR modeling.

Majid Mustafa et al. Relationship between ozone reactivity of pharmaceuticals and their removal 3



For descriptors computation, chemical structures of all
pharmaceuticals were obtained from simplified molecular
input line entry specification (SMILES). MOE (chem-
comp.com) and Dragon (talete.mi.it) software packages
were used to compute 2D and 3D chemical descriptors (as
numeric values) from their structures (by SMILES codes).
All structures were corrected for conformations by
minimizing energies and partial charges were corrected
by using the MMFF94-modified method (available in
MOE) before calculating descriptor values.
As the starting point in the QSAR modeling, a set of 266

calculated descriptors were selected to cover the diverse
physico-chemical properties (e.g., molecular, electronic,
and steric properties) and effect of fragments of the
pharmaceuticals. These included (inter alia) the octanol-
water partition coefficient (log Kow), molecular polariz-
ability, aqueous solubility, van der Waals surface area,
counts of specific atoms and bonds (single and aromatic
bonds), molecular shape, number of donors/acceptors,
polar positive/negative atoms in the structure, partial
charges, potential energy descriptors, conformation and
shape-dependent descriptors, dipole moment, and func-
tional groups of the target pharmaceuticals.

2.3.2 QSAR model development and validation

To develop the QSAR model, the calculated physico-
chemical descriptors (assigned as X-matrix) and available
kO3

of pharmaceuticals (assigned as Y-response) were
imported to the SIMCA 16 multivariate statistical software
package (Sartorius Stedim Data Analytics, Umeå, Swe-
den). The initial QSAR model was developed based on
training set of 45 pharmaceuticals (N = 45) and 266
descriptors (K = 266) to screen predictive information of
all 266 descriptors in relation to kO3

. The orthogonal
descriptors found by OPLS were removed due to
irrelevance to kO3

. Further, predictive descriptors that
were adding more noise than predictive power were also
removed by using variable (descriptor) influence on
projection (VIP) parameter. Descriptors with VIP> 1.0
show highest predictive power while descriptors with
VIP< 0.5 are responsible for noise with negligible
predictive power thus removed except three. However,
inclusion of descriptors with values ranging 0.5–1.0 and
outlier pharmaceuticals were decided by model diagnostics
such as R2 (goodness of fit), Q2 (internal validation),
DmodX (observation distance to the model in the X space),
DmodY (observation distance to the model in the Y space),
VIP plot, and normal probability graphs to achieve the final
model (SI Fig. S3 and Table S5) (Eriksson et al., 2006).
The final refined QSAR model was based on training set of
40 pharmaceuticals (N = 40) (see SI Tables S1 and S4) and
44 chemical descriptors (K = 44) (see Table S6). The
predictive power of the final QSAR model was validated
with an external test set (see SI Tables S7 and S8) and

collinearity by chance was investigated by a permutation
test (randomizing response variable (kO3

) by 100 itera-
tions) (see SI Fig. S4).

3 Results and discussion

3.1 Pharmaceutical abatement by ozonation and the
E-peroxone process

The abatement efficiencies of pharmaceuticals as a
function of treatment time during ozonation and the E-
peroxone treatment of the selected wastewater are shown
in Fig. 1.
Among the tested 89 pharmaceuticals, 42 and 37 could

be quickly abated to below their detection limits in the
selected wastewater within 1 and 3 min of ozonation,
respectively (Fig. 1(a)). However, elimination of 10
pharmaceuticals required at least 5 min or longer treatment
time. In particular, fluconazole, which has a low O3 rate
constant of< 1 M–1$s–1 and moderate •OH rate constant
(k•OH) of 4.6 � 109 M–1$s–1, was still detectable in the
wastewater even after 20 min of ozonation.
During ozonation, OMPs are abated mainly by oxidation

with O3 and/or •OH generated from natural O3 decom-
position with •OH-generating water constituents such as
phenols in dissolved organic matter (von Sonntag and von
Gunten, 2012). Their abatement can usually be described
by Eq. (1).

–
d½P�
dt

¼ kO3
½O3�½P� þ k•OH½•OH�½P�: (1)

According to their O3 rate constants (kO3
), OMPs can be

generally classified into three groups: 1) ozone-reactive
(kO3

> 104 M–1$s–1), 2) moderately ozone-reactive
(100< kO3

< 104 M–1$s–1), and 3) ozone-resistant
(kO3

< 100 M–1$s–1) (Lee et al., 2014; Zucker et al.,
2016). While the kO3

of various OMPs may vary over 8–10
orders of magnitude (e.g., from< 0.1 to> 107 M–1$s–1), the
k•OH of most OMPs are not significantly different, typically
varying within a factor of 3 in the range of 3 � 109 to 1 �
1010 M–1$s–1 (von Sonntag and von Gunten, 2012).
Therefore, OMPs with relatively high ozone rate constants
can usually be more quickly abated than those with lower
ozone rate constants during ozonation (von Sonntag and
von Gunten, 2012; Yao et al., 2016; Guo et al., 2018).
This is consistent with patterns shown in Table 1.

Previously published kO3
values of pharmaceuticals that

were eliminated within 1 min during ozonation generally
exceeded 1.9 � 104 M–1$s–1. Those of most of the
pharmaceuticals eliminated in 1–3 min ranged from 1.7 �
103 to 1.9 � 104 M–1$s–1 (with a few exceptions that were
abated by> 89% in 1 min, e.g., paracetamol and
clarithromycin, which have reported kO3

values of 2.7 �
106 and 4.0 � 104 M–1$s–1, respectively). Published kO3
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values of the pharmaceuticals that required≥5 min to
eliminate are substantially lower: generally in the range
of< 0.1–650 M–1$s–1. The sole exception is telmisartan,
which has a reported kO3

of 1.2 � 105 M–1$s–1 (Bourgin
et al., 2018), but required 5 min of ozonation to eliminate
(Fig. 1(a)). The reason for the slow abatement of
telmisartan during ozonation is unclear, but may be due
to its sorption to particles in the wastewater, which can
provide some protection against ozone attack (Huber et al.,
2005; Zucker et al., 2016).
The pharmaceuticals’ abatement kinetics during the E-

peroxone process differed in various ways (Fig. 1(b)).
Most ozone-reactive and moderately reactive pharmaceu-
ticals were quickly eliminated, within 1 and 3 min,
respectively, as they were in ozonation. However, the E-
peroxone process treatment time required to eliminate five
fast-reacting and seven moderately-reacting pharmaceuti-
cals was slightly higher (from 1 to 3 and 3 to 5 min ranges,
respectively). These pharmaceuticals are trimethoprim,
risperidone, hydroxyzine, cilazapril, beclomethazone,
flecainide, trihexyphenidyl, bisoprolol, biperiden, meto-
prolol, maprotiline, and atenolol. In contrast, abatement of
the 10 slow-reacting pharmaceuticals was considerably
accelerated by the E-peroxone process, as it eliminated
them more quickly from the wastewater (within 3–10 min)
than ozonation (5–20 min). This acceleration can be
mainly attributed to the faster decomposition of O3 to •OH
in the presence of electro-generated H2O2. Note that due to
the mass transfer limitation of micropollutants to the anode
surface, direct electrolysis usually plays a negligible role in
micropollutant removal during the E-peroxone process

(Wang et al., 2018a; Wang et al., 2019). OMPs with
relatively low kO3

values usually require longer reaction
times to eliminate than those with higher kO3

. Thus, the
overall effect is that the hydraulic residence time required
to abate the OMPs in real water matrices can be
considerably shortened by shifting from ozonation to the
E-peroxone process (see Fig. 1).
Due to its high efficiency for ozone-resistant micro-

pollutant abatement, the E-peroxone process usually will
not considerably increase, or can even reduce, the energy
consumption for OMP abatement during water and
wastewater treatment compared to ozonation (Yao et al.,
2016; Yao et al., 2018). Consistently, Fig. 1 shows that
ozonation and the E-peroxone process eliminated all
spiked pharmaceuticals (with the only exception of
fluconazole) in the selected wastewater in 10 and 5 min,
when 2.57� 10–5 and 2.80� 10–5 kWh were consumed by
the two processes, respectively (see SI Fig. S5). This result
suggests that during the E-peroxone process, the extra
energy demand for H2O2 electro-generation can be
compensated by the reduced energy demand for O3

generation; due to the enhanced •OH production from
the reaction of O3 with electro-generated H2O2, lower O3

doses are generally required to abate O3-resistant OMPs
during the E-peroxone process than during ozonation (see
SI Fig. S6 for discussion on pharmaceutical abatement as a
function of consumed ozone dose).
Kinetic analysis indicates that the abatement of

pharmaceuticals during both ozonation and the E-peroxone
process can be generally described by pseudo-first order
kinetics (Table 1). Note that the pseudo-first order rate

Table 1 pKa values, previously published and QSAR model-predicted ozone rate constants (kO3
), pseudo-first order rate constants obtained for

abatement during ozonation (kOZ) and the E-peroxone process (kEP), and kEP/kOZ ratios for the tested pharmaceuticals

Compound pKa

kO3
(M–1$s–1)

k�OH
b (M–1$ s–1) kOZ (min–1) kEP (min–1) kEP/kOZ

Reported a Predicted

Alfuzosin 1.11 � 105

Alprazolam 2.79 � 10-1 0.458 0.662 1.45

Amitriptyline 2.53 � 102 1.554 1.657 1.07

Atenolol 9.6 c 1.7 � 103 c 2.24 � 103 8 � 109 c 1.004 0.865 0.86

Atorvastatin 1.63 � 104 1.19 � 1010 d

*Atracurium 1.63 � 1011 3.028 3.291 1.09

Azelastine 5.62 � 101 1.499 2.214 1.48

Azithromycin 8.7, 9.5 e 1.1 � 105 e 1.24 � 105 2.9 � 109 e

Beclomethasone 2.49 � 103

Biperiden 2.14 � 103 1.304 0.963 0.74

Bisoprolol 1.83 � 104 1.694 1.189 0.70

Bromocriptine 6.90 � 101

Budesonide 5.10 � 102 0.508 0.583 1.15

Buprenorphine 1.70 � 105

Bupropion 2.16 � 102 3.3 � 109 f 0.779 0.808 1.04

Caffeine 6.5 � 102 g 5.9 � 102 5.9 � 109 h 0.490 0.709 1.45
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(Continued)

Compound pKa

kO3
(M–1$s–1)

k�OH
b (M–1$ s–1) kOZ (min–1) kEP (min–1) kEP/kOZ

Reported a Predicted

Carbamazepine 3 � 105 i 8.8 � 109 i 2.959 2.828 0.96

Cilazapril 5.14 � 102 2.056

Ciprofloxacin 6.2, 8.8 e 1.9 � 104 e 3.59 � 104 4.1 � 109 e 1.633 1.626 1.00

Citalopram 1.11 � 103 0.868 1.301 1.50

Clarithromycin 9.0 c 4.0 � 104 c 6.07 � 104 5 � 109 c 2.458 1.842 0.75

Clemastine 6.51 � 102 1.558 2.463 1.58

Clindamycin 7.6 c 4.3 � 106 c 4.97 � 105 1010 c

Clomipramine 1.32 � 102

Clonazepam 2.35 0.362 0.690 1.91

Clotrimazole 8.36 � 101 0.728 1.065 1.46

Codeine 4.82 � 104

Cyproheptadine 1.87 � 102

Desloratadine 4.07 � 101 0.904 1.033 1.14

Diclofenac 4.2 i 1 � 106 i 7.5 � 109 i

Dicycloverine 5.06 � 103

Dihydroergotamine 1.46 � 102

Diltiazem 8.2, 12.9 j 5.65 � 105 8.3 � 109

Diphenhydramine 3.27 � 103 5.42 � 109 d 1.993 1.942 0.97

*Dipyridamole 3.28 � 103

Donepezil 1.67 � 106 1.590 2.523 1.59

Duloxetine 9.7 3.04 � 105 9.72 � 109 f

Eprosartan 4.9 � 105 k 1.00 � 106

Erythromycin 8.4 c 7.9 � 104 c 5.21 � 104 5 � 109 c

Fexofenadine 9 l 9.0 � 103 l 2.26 � 104 0.860 1.016 1.18

Finasteride 1.97 � 102 1.334 1.185 0.89

Flecainide 1.17 � 104 1.714 1.261 0.74

Fluconazole < 1 c 0.69 4.6 � 109 c 0.207 0.501 2.43

Flunitrazepam 1.70 0.300 0.487 1.62

Fluoxetine 8.7 m 2.5 � 104 6.14 � 103 8.4 � 109 n 0.974 1.439 1.48

*Flupentixol 1.68 � 107

*Fluphenazine 3.24 � 107

*Glibenclamide 5.77 � 103 0.625

*Glimepiride 1.53 � 103 0.474 0.693 1.46

Haloperidol 6.39 � 103 2.440 2.190 0.90

*Hydroxyzine 2.87 � 103 2.376

Irbesartan 2.4 � 101 k 6.99 1010 0.326 0.631 1.93

Levomepromazine 2.07 � 107

Loperamide 1.29 � 102 2.650 2.391 0.90

Maprotiline 4.03 � 102 0.765 0.525 0.69

Memantine 7.75 0.474 0.843 1.78

Metoprolol 9.7 o 2.0 � 103 c 1.37 � 104 7.3 � 109 p 1.268 0.980 0.77

Mianserin 6.31 � 102

Mirtazapine 1.25 � 103
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constants for pharmaceuticals that were eliminated within
1 min are not reported because insufficient data points are
available for linear regression. Of the 43 pharmaceuticals
for which kOZ and kEP values could be calculated, 28
pharmaceuticals have a larger kEP than kOZ (kEP/kOZ> 1,
see Table 1), which indicates that their abatement will be
enhanced when ozonation is changed to the E-peroxone
process (Yao et al., 2016; Yao et al., 2017). However, the
kEP/kOZ ratio is slightly< 1 for 14 pharmaceuticals,
suggesting that their abatement may be decelerated by

changing ozonation to the E-peroxone process.
The differences in pharmaceutical abatement kinetics

between ozonation and the E-peroxone process can be
attributed to the enhanced transformation of O3 to •OH by
electro-generated H2O2 (Wang et al., 2018a). As shown in
SI Fig. S2(a), the electro-generation of H2O2 did not
markedly enhance O3 transfer during the E-peroxone
process compared to ozonation, especially in the first 5 min
when all pharmaceuticals had been abated to below their
detection limits during the E-peroxone process (with the

(Continued)

Compound pKa

kO3
(M–1$s–1)

k�OH
b (M–1$ s–1) kOZ (min–1) kEP (min–1) kEP/kOZ

Reported a Predicted

Naloxone 7.06 � 104

*Nefazodone 1.01 � 103

Norfloxacin 8.8 c 1.9 � 104 c 3.14 � 104 5 � 109 c 1.900 2.007 1.06

Ofloxacin 7.9 q 1.95 � 106 r 4.70 � 105 4.2 � 109 r 3.480 4.103 1.18

Orphenadrine 2.84 � 103 2.272 1.759 0.77

Oxazepam ~1 c 1.55 9.1 � 109 c 0.518 0.797 1.54

*Oxytetracycline 1.48 � 106 6.96 � 109 s 2.606

Paracetamol 2.57 � 106 t 4.94 � 109 t 4.472 4.635 1.04

Paroxetine 6.91 � 104 9.6 � 109 f

*Perphenazine 3.75 � 106

Pizotifen 6.44 � 103 2.545

*Promethazine 1.67 � 106

Propranolol 9.5 c 1 � 105 c 1.95 � 104 1010 p

Ranitidine 8.2 c 4.1 � 106 c 2.01 � 107 1010 c

Repaglinide 6.31 � 103

Risperidone 2.25 � 103 2.828

Rosuvastatin 5.02 � 104 0.785 0.918 1.17

Roxithromycin 9.2 e 6.3 � 104 e 3.88 � 104 5.4 � 109 e

Sertraline 1.60 � 101

Sotalol 9.4 c 1.9 � 104 c 6.06 � 104 ~1010 c

Sulfamethoxazole 5.6 o 5.5 � 105 e 1.72 � 105 5.5 � 109 e

Telmisartan 1.2 � 105 k 4.29 � 104 0.702 0.823 1.17

Terbutaline 8.6 u 1.23 � 105 6.87 � 109 j

*Tetracycline 3.3,7.7,9.7 e 1.9 � 106 e 1.63 � 106 7.7 � 109 e 3.205

Tramadol 9.4 c 4.0 � 103 c 1.57 � 104 6.3 � 109 v 0.856 0.981 1.15

Trihexyphenidyl 2.02 � 103 1.192 1.008 0.85

Trimethoprim 3.2, 7.1 o 4.1 � 105 c 4.57 � 105 6.9 � 109 e 3.398

Venlafaxine 9.4 c 8.5 � 103 c 1.60 �104 1010 c 0.842 0.977 1.16

Verapamil 9.7 c 2.7 � 106 c 3.74 � 106 1010 c

Zolpidem 1.01 � 103

Notes: *Pharmaceuticals with distance to model larger than 1.5 (outliers), a) kO3
is the apparent second-order rate constant of the indicated pharmaceutical with O3 at

pH 7 unless otherwise stated; b) k�OH is the apparent second-order rate constant of the indicated pharmaceutical with �OH at pH 7 unless otherwise stated; c) (Lee et al.,
2014); d) (Razavi et al., 2011); e) (Dodd et al., 2006); f) (Santoke et al., 2012); g) (Broséus et al., 2009); h) (Shi et al., 1991); i) (Huber et al., 2003); j) (Zhu et al., 2015);
k) (Bourgin et al., 2018); l) (Borowska et al., 2016); m) (Zhao et al., 2017); n) (Lam et al., 2005); o) (Bourgin et al., 2017); p) (Benner et al., 2008); q) (Okeri and
Arhewoh, 2008); r) (Rodríguezet al., 2013); s) (López-Peñalver et al., 2010); t) (Hamdi El Najjar et al., 2014); u) (Allen et al., 1998); v) (Zimmermann et al., 2012)
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only exception of fluconazole, see Fig. 1(b)). However, the
electro-generation of H2O2 considerably accelerated the
transformation of transferred O3, resulting in significantly
lower aqueous O3 concentrations during the E-peroxone
process than ozonation (see Fig. S2(b)). Besides enhancing
O3 decomposition, the reaction of H2O2 with O3 produces
•OH with a higher yield (~50%, i.e., 0.5 mol of •OH
produced per mole O3 consumed) than those from the
reaction of O3 with •OH-generating water constituents
(e.g., 24%–43% for phenols, 8%–17% for alkoxyben-
zenes, and 15% for tertiary amines) (Flyunt et al., 2003;
von Sonntag and von Gunten, 2012; Fischbacher et al.,
2013). Therefore, the electro-generation of H2O2 con-
siderably enhanced O3 transformation and •OH production
during the E-peroxone process compared to ozonation
(Yao et al., 2017; Yao et al., 2018). Consistently, SI Fig. S7
shows that the time-integrated concentration of •OH (i.e.,
•OH exposure) increased at significantly higher rates
during the E-peroxone process than during ozonation. This
observation confirms that higher •OH concentrations are
maintained during the E-peroxone treatment of the selected
wastewater. Due to the enhanced O3 transformation to •OH
when ozonation was changed to the E-peroxone process,
the •OH oxidation capacity (measured as •OH exposure)
increased considerably at the expense of decreasing the O3

oxidation capacity (measured as O3 exposure) (see SI
Fig. S7 and refer to (Wang et al., 2018a)). For ozone-
resistant OMPs (e.g., kO3

< 100 M–1$s–1), which are abated
solely by •OH oxidation during ozone-based processes
(von Sonntag and von Gunten, 2012), the increase of •OH
oxidation capacity can enhance their abatement during the
E-peroxone process (Yao et al., 2017; Wang et al., 2018a).
In addition, the decrease in O3 oxidation capacity will not
usually affect abatement of ozone-reactive pollutants (with
kO3

> 104 M–1$s–1) because very small O3 oxidation
capacities are required for their elimination (Guo et al.,
2018; Wang et al., 2018a). In contrast, OMPs with
moderate ozone reactivity (e.g., kO3

= ~102–104 M–1$s–1)
are usually abated by a combination of oxidation with O3

and •OH. Therefore, their abatement may be enhanced or
decreased, depending on whether the decrease in O3

oxidation capacity can be sufficiently compensated by the
increase in •OH oxidation capacity during the E-peroxone
process (Wang et al., 2018a). Overall, moderately ozone-
reactive OMPs can be eliminated at relatively high kinetics
by the E-peroxone process (Wang et al., 2018a), as shown
in Fig. 1(b).
To roughly estimate effects of changing from conven-

tional ozonation to E-peroxone process on the abatement
of OMPs, a relationship was developed between literature
reported kO3

and experimentally measured kEP/kOZ, as
shown in SI Figs. S8 and S9. It was found that E-peroxone
process can substantially accelerate the removal (kEP/kOZ =
~1.5–2.5) of pharmaceuticals with low ozone reactivity,
whereas no substantial acceleration (kEP/kOZ = ~1) was

observed for ozone-reactive pharmaceuticals (see SI
Fig. S9 for detailed discussion). However, this relationship
was based on few compounds because ozone rate constants
for most pharmaceuticals tested in this study are still
unknown. Therefore, a QSAR model was developed to
estimate the ozone rate constants of the pharmaceuticals to
further explore the relationship between OMPs’ ozone
reactivity and their fate in ozonation and the E-peroxone
process.

3.2 Development of QSAR model for ozone rate constants
(kO3

) estimation

3.2.1 QSAR model parameters

The final QSAR model based on 44 descriptors had a high
goodness of fit (R2 = 0.963) and good internal validation
(Q2 = 0.84, see SI Table S5). These results indicate that the
developed model is robust and has high predictive power.
The correlation between the literature-reported and QSAR
model-predicted ozone rate constants (kO3

) for the training
set of 40 pharmaceuticals is shown in Fig. 2. The kO3

values predicted by the model are generally within a factor
of 3 of the literature-reported values (see SI Fig. S10),
which is considered acceptable given the complex
chemistry of ozone reactions and uncertainty in ozone
rate constant measurements (Lee and von Gunten, 2012;
Lee et al., 2015). In addition, during model validation,
analysis showed that no collinearity by chance occurred in

Fig. 2 Correlation between the literature-reported and QSAR
model-predicted second-order rate constants for the reaction of O3

with compounds used for model training. The solid line represents
the linear regression line obtained, while the lower and upper
dashed lines represent the prediction error ranges of factors of 1/3
and 3, respectively.
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the data (shown in SI Fig. S4).
The second-order rate constants for the reaction of O3

with the remaining 60 pharmaceuticals (with unknown kO3

values) were then predicted using the developed QSAR
model (see Table 1). The predicted kO3

values for most
pharmaceuticals that were quickly eliminated (within 1–3
min) during ozonation are in the range of 102–107 M–1$s–1,
while predicted values for pharmaceuticals that required>
5 min to eliminate are in the range of 10–1–102 M–1$s–1.
The consistency between the predicted kO3

values and
experimentally observed abatement kinetics of pharma-
ceuticals shows that the model predicted the ozone
reactivity of most pharmaceuticals tested in this study
reasonably well.
However, several pharmaceuticals were quickly elimi-

nated (within 1–3 min) during ozonation, but had low
predicted kO3

values, in the range 101–102 M–1$s–1, for
example, azelastine, bromocriptine, clomipramine, and
sertraline (Fig. 1(a) and Table 1). This may be at least
partly because the ozone reactivity of some moieties (e.g.,
phenolic and amine groups) in OMPs can be dramatically
changed by protonation/deprotonation (Hoigné and Bader,
1983; von Sonntag and von Gunten, 2012). For example,
deprotonation of phenolic and amine moieties can often
increase OMPs’ kO3

values by ~4–6 orders of magnitude
(von Sonntag and von Gunten, 2012). Depending on the
solution pH and their pKa, pharmaceuticals may be present
in water mainly in either protonated or deprotonated forms,
so their ozone reactivity may significantly vary. The QSAR
model presented here estimates the kO3

for the pharma-
ceuticals’ molecular forms and does not consider the
protonating/deprotonating effects of pH. This may account
for at least some of the inconsistency between the low
predicted kO3

values and fast abatement kinetics observed
for few pharmaceuticals during ozonation.

3.2.2 Physico-chemical properties related to kO3

The VIP plot (shown in Fig. 3) indicates importance of
fraction of each variable in relation to kO3

. Out of the final
44 descriptors (shown in Table S6), 24 and 20 were
positively and negatively correlated with ozone reactivity
(kO3

), respectively. Detailed discussion on these correlated
descriptors to kO3

is provided in SI Section S2.9. Briefly
describing, the most strongly negatively correlated
descriptors, responsible for low O3 reactivity, are electron
withdrawing functionalities, partial charges descriptors,
high lowest unoccupied molecular orbital energies, shape,
and branching and atomic connectivity related descriptors.
On the other hand, the most important positively correlated
descriptors, associated with high ozone reactivity of
pharmaceuticals (high kO3

), include: the size-related
variable, highest occupied molecular orbital energy, the
conformation-dependent charge descriptors, surface area,
diameter, and electron rich/donating moieties or function-
alities.

3.3 Evaluation of pharmaceutical abatement by the QSAR
model

Next, correlations between the kO3
values predicted by the

QSAR model and the experimentally determined kEP/kOZ
ratios (Table 1) were examined to evaluate likely effects of
switching from ozonation to the E-peroxone process on
abatement of pharmaceuticals with varying ranges of
ozone reactivity. As shown in Fig. 4, kEP/kOZ ratio
generally decreases as the kO3

of pharmaceuticals increases
from 10–1 to 104 M–1$s–1. This trend is similar to that
observed in Fig. S9, which is plotted based on the
literature-reported kO3

of pharmaceuticals. Nevertheless,
thanks to the model predicted kO3

, more data points are

Fig. 3 VIP plot showing predictive descriptors (Table S6) in order from highest to lowest importance to kO3
. Descriptors shown as white

column bars were positively and descriptors as gray column bars were negatively correlated to kO3
.

10 Front. Environ. Sci. Eng. 2021, 15(5): 106



available on Fig. 4 to more reliably elucidate the relation-
ship between the ratio of kEP/kOZ of pharmaceuticals and
their kO3

. More specifically, for pharmaceuticals with
< 102, 102–104 and> 104 M–1$s–1kO3

values, the kEP/kOZ
ratios are generally> 1.5, ~0.7–1.6 and ~0.8–1.2, respec-
tively. These observations suggest that changing from
ozonation to the E-peroxone process can accelerate the
abatement of pharmaceuticals with relatively low ozone
reactivity (kO3

< 102 M–1$s–1), especially those that are
most resistant to O3 oxidation (kO3

< 10 M–1$s–1). In
contrast, the change will not substantially affect abatement
of pharmaceuticals with moderate and high ozone
reactivity, which were generally quickly eliminated during
both processes (see Fig. 1).
Based on the results obtained for the 89 pharmaceuticals

spanning a wide range of ozone reactivity (kO3
= ~10–1–107

M–1$s–1), it can be concluded that ozonation is an effective
process for abating OMPs with high and moderate ozone
reactivity (kO3

> ~102 M–1$s–1). However, OMPs with low
ozone reactivity (kO3

< ~102 M–1$s–1) are less efficiently
eliminated during ozonation, which limits the overall
efficiency of ozonation for OMP abatement in real water
matrices. By generating H2O2 in situ from cathodic O2

reduction to enhance O3 transformation to •OH, the E-
peroxone process can enhance abatement of O3-resistant
OMPs without compromising elimination of ozone-
reactive and moderately reactive OMPs. Therefore, chan-
ging from conventional ozonation to the E-peroxone
process is likely to improve overall abatement of OMPs
in water and wastewater treatment.

3.4 Predictions of kO3
and model applicability domain

To identify resistant pharmaceuticals, the established

QSAR model was used to predict the second-order rate
constants of 491 pharmaceuticals (including model
compounds) of potential concern (see Table S9) (Fick
et al., 2010). As many as 418 pharmaceuticals were inside
the applicability domain of developed QSAR, as evaluated
by their distance to model (DmodX) and shown in
Fig. S11. Predictions outside of the QSAR model
applicability domain (see Table S9 and Fig. S11) are
extrapolations connected with high uncertainty. Table 2
presents the 66 O3-resistant pharmaceuticals (excluding
additionally added O3-resistant pharmaceuticals for QSAR
model development) showing kO3

< 100 M–1$s–1 as
identified by the QSAR model and six compounds were
located outside the model applicability domain.
Among O3-resistant pharmaceuticals, two classes of

pharmaceuticals stand out, viz. the benzodiazepines and
the antifungal drugs. All benzodiazepines, drugs used to
treat anxiety, included in this study appeared in O3-
resistant class. These second-generation cephalosporin
antibiotics clearly indicate that the benzodiazepines have
common chemical features less reactive toward ozone. A
core chemical structure is the fusion of a benzene ring and
a diazepine ring (a seven-membered ring structure with
two nitrogen atoms), with chlorine or fluorine substituents
on the benzene ring. All azole anti-fungal drugs were also
in the O3-resistant class (kO3

< 100 M–1$s–1). All these
compounds have the azole-moiety in common, a five-
member ring with two or three nitrogen, and similarly to
the benzodiazepines, the azoles are halogenated. It is
noteworthy that as many as 32 of the 66 pharmaceuticals in
O3-resistant class are aromatic halogenated. It should also
be noted that even though antibiotics is the single, largest
class of pharmaceuticals, only two were classified as O3-
resistant, i.e., streptomycin and loracarbef. Streptomycin,
an aminoglycoside antibiotic, was extrapolated outside of
model applicability domain, and loracarbef, a second-
generation cephalosporin antibiotic, had a kO3

of 96.9, just
below the kO3

< 100 M–1$s–1 (see Table S9). For further
interpretation of physico-chemical features, see Section
3.2.2.
Only few pharmaceuticals were predicted outside of the

model domain showing low ozone reactivity as compared
to those showing high ozone reactivity. This can be
attributed to more specific chemistry of ozone resistant
pharmaceuticals than ozone reactive pharmaceuticals that
cover major proportion of the chemical space. In particular,
all 491 pharmaceuticals were classified based on their
QSAR model predicted kO3

as shown in Fig. S11 (see
Table S9 for predicted values of kO3

). In total, 73
pharmaceuticals appeared in O3-resistant class (kO3

< 100
M–1$s–1). The E-peroxone process is expected to accelerate
the removal kinetics of these O3-resistant pharmaceuticals
by increasing transformation of O3 into •OH as observed in
experiments results. On the other hand, 214 and 204
pharmaceuticals appeared in the range of moderately O3-

Fig. 4 The ratio of pseudo-first order rate constants for
pharmaceutical abatement during the E-peroxone process and
ozonation treatment (kEP/kOZ) in relation to the second-order rate
constant for pharmaceutical reaction with ozone (kO3

) predicted by
the QSAR model.
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reactive (102–104 M–1$s–1) and O3-reactive (kO3
> 104

M–1$s–1) classes, which can generally be effectively abated
in both ozonation and E-peroxone process. Considering
the large number of O3-resistant pharmaceuticals and other
classes of OMPs, the E-peroxone process may be an
appropriate choice for overall better removal of emerging
contaminants.

4 Conclusions

Based on the comparison of abatement kinetics of a large
set of pharmaceuticals during conventional ozonation and
the E-peroxone process, it is now clear that shifting from
ozonation to the E-peroxone process is likely to have
differing effects on pharmaceuticals’ abatement that are at
least partly dependent on their ozone reactivities. Pharma-
ceuticals with moderate and high ozone reactivities
(kO3

> 102 M–1$s–1) could typically be quickly eliminated
by both processes. In contrast, the abatement of pharma-
ceuticals with low ozone reactivity (kO3

< 102 M–1$s–1)
could be accelerated by the E-peroxone process. The

acceleration varies, due to effects of diverse factors, but the
shift is likely to be most beneficial for reducing levels of
the most resistant pharmaceuticals. The VIP plot and
model applicability domain plot clearly demonstrate that a
combination of descriptors is needed to capture the
chemical features related to ozone reactivity and increase
the applicability domain of the QSAR model. The QSAR
model showed high predictive capability and was able to
identify a large set of pharmaceuticals for which special
attention should be given in future studies of removal of
OMPs from wastewater. Thus, the developed QSARmodel
appears to be a useful tool for estimating the ozone
reactivity of OMPs and predicting their fate in ozonation
and the E-peroxone process.

Acknowledgements This study was supported by the NSFC (Grant No.
51878370), the National Special Program of Water Pollution Control and
Management (2017ZX07202), and the special fund of State Key Joint
Laboratory of Environment Simulation and Pollution Control (18L01ESPC).
The authors also thank the Industrial Doctoral School, Umeå University
(Sweden), for financial support. The authors also acknowledge support from
the Kempe Foundation (SJCKMS), Umeå University (Sweden) (for
providing travel grants to conduct experiments at the School of Environment,
Tsinghua University, Beijing, China), Ziye Zheng of Umeå University

Table 2 The 66 O3-resistant pharmaceuticals with kO3
< 100 M–1$s–1 predicted by the QSAR model

Pharmaceutical kO3
(M–1$s–1) Pharmaceutical kO3

(M–1$s–1) Pharmaceutical kO3
(M–1$s–1)

Ciclosporin 7.5 � 10-5* Ribavirin 6.58 Lomustine 42.1

Triazolam 0.0574 Praziquantel 6.60 Loratadine 47.6

Lorazepam 0.28 Irbesartan 6.99** Dihydroergotamine 52.0

Alprazolam 0.28** Ethosuximide 7.13 Guanethidine 55.0

Clobazam 0.67 Memantine 7.75** Azelastine 56.2**

Fluconazole 0.69** Felbamate 10.4 Itraconazole 60.8*

Anastrozole 1.23 Nitrazepam 13.0 Lisinopril 67.1

Oxazepam 1.55** Zidovudine 15.2 Piperacillin 68.0

Letrozole 1.69 Sertraline 16.0** Bromocriptine 69.0**

Flunitrazepam 1.70** Methohexital 16.2 Mercaptopurine 80.7

Methenamine 2.0* Levosimendan 16.9* Domperidone 81.5

Clonazepam 2.35** Phenobarbital 19.2 Clotrimazole 83.6**

Clonidine 2.52 Mitotane 20.7 Flucytosine 84.2

Carisoprodol 2.86 Moxonidine 20.9 Efavirenz 84.9

Amiloride 3.01 Dihydralazine 24.6 Baclofen 91.0

Amantadine 3.45 Chlordiazepoxide 29.3 Caspofungin 93.1*

Voriconazole 3.56 Streptomycin 29.3* Gemcitabine 93.1

Proguanil 3.88 Melagatran 33.4 Nortriptyline 93.8

Artemether 4.75 Pyrimethamine 36.4 Oxcarbazepine 94.4

Pentobarbital 4.88 Ketamine 39.2 Quinaprilate 94.4

Midazolam 5.46 Desloratadine 40.7** Alfentanil 96.2

Anagrelide 6.08 Isoflurane 41.9 Loracarbef 96.9

Notes: * Extrapolation outside of model applicability domain; ** OMP’s also included in Table 1.
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