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H I G H L I G H T S

•Charge neutralization and sweep flocculation
were the major mechanisms.

•Effect of process parameters was investigated.
•Optimal coagulation conditions were studied by
response surface methodology.

•ANN models presented more robust and accurate
prediction than RSM.

A R T I C L E I N F O

Article history:
Received 7 May 2019
Revised 22 August 2019
Accepted 23 August 2019
Available online 13 October 2019

Keywords:
Algae
Coagulation-flocculation
Response surface methodology
Artificial neural networks

G R A P H I C A B S T R A C T

A B S T R A C T

Seasonal algal blooms of Lake Yangcheng highlight the necessity to develop an effective and optimal
water treatment process to enhance the removal of algae and dissolved organic matter (DOM). In the
present study, the coagulation performance for the removal of algae, turbidity, dissolved organic
carbon (DOC) and ultraviolet absorbance at 254 nm (UV254) was investigated systematically by
central composite design (CCD) using response surface methodology (RSM). The regression models
were developed to illustrate the relationships between coagulation performance and experimental
variables. Analysis of variance (ANOVA) was performed to test the significance of the response
surface models. It can be concluded that the major mechanisms of coagulation to remove algae and
DOM were charge neutralization and sweep flocculation at a pH range of 4.66–6.34. The optimal
coagulation conditions with coagulant dosage of 7.57 mg Al/L, pH of 5.42 and initial algal cell density
of 3.83 � 106 cell/mL led to removal of 96.76%, 97.64%, 40.23% and 30.12% in term of cell density,
turbidity, DOC and UV254 absorbance, respectively, which were in good agreement with the validation
experimental results. A comparison between the modeling results derived through both ANOVA and
artificial neural networks (ANN) based on experimental data showed a high correlation coefficient,
which indicated that the models were significant and fitted well with experimental results. The results
proposed a valuable reference for the treatment of algae-laden surface water in practical application by
the optimal coagulation-flocculation process.

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019



1 Introduction

A persistent worldwide concern in drinking water treat-
ment is the proliferation of algae and the resultant
metabolites in source water. Rivers, lakes and reservoirs
as the important freshwater reserves in China are facing
increasing threat of eutrophication (Wang et al., 2017).
According to the “China’s Ecological Environment
Statements Bulletin of 2017”, about 30% of China’s
lakes and reservoirs suffer from mild to moderate level of
eutrophication (Li, 2018). Lake Taihu is one of the largest
freshwater lakes in eastern China affected by algal bloom
periodically due to non-point nutrient run-off sources,
while Lake Dianchi, a heavily polluted lake in Yunnan
Province shows both algal and fungi pollution. Algae
bloom not only affects the ecology and aesthetic value of
the aquatic system (Lee et al., 2017), it also derives
multiple problems and poses many challenges to drinking
water production, such as increasing coagulant demand,
clogging filters (Campinas and Rosa, 2010; Zhang et al.,
2011), taste and odor issues (Westrick et al., 2010) and
disinfection byproduct formation (Engelage et al., 2009;
Shen et al., 2011; Gough et al., 2015) in drinking water
treatment plants. Blooms involving toxin-producing algal
species even can pose serious threats to human health
(Oyama et al., 2015; Zamyadi et al., 2015). The
increasingly water eutrophication caused by cyanobacteria
outbreak, resulted in several serious threats to local
residential, commercial, industrial and agricultural produc-
tion. Many countries and the World Health Organization
(WHO) have established a guideline 1–1.5 mg/L) for
microcystin-LR (MC-LR), which is one of the most toxic
cyanotoxin produced by Microcystis aeruginosa (Merel et
al., 2013). In 2007, the large-scale cyanobacteria outbreak
in Lake Taihu from May to June caused serious safety
threat to drinking water and led to the disruption of water
supplies to millions of people in Wuxi and its surrounding
areas. Lake Yangcheng is the third largest freshwater lake
on the Taihu Plain. It is also the main drinking water source
for Suzhou and Kunshan urban areas. As the second
drinking water source for the city of Wuxi, Lake
Yangcheng has been affected by severe eutrophication
(Wang et al., 2018), which has resulted in the cyanobac-
teria blooms. Therefore, it is of vital importance to enhance
the removal of algae and dissolved organic matter in water
treatment process. Among the conventional water treat-
ment processes, coagulation-flocculation is one of the
economical methods to deal with “algal bloom” caused by
the outbreak of microalgae (Zheng et al., 2015). As the
primary barrier for the algal removal in conventional
drinking water treatment, several studies have focused on
the investigations of coagulation with/without pre-treat-
ment for algae cells and the metabolites removal from raw
water. It has been found that the removal of algal cells is

easier than the removal of dissolved algal organic matter
(AOM) (Henderson et al., 2010; Ma et al., 2016). More
than 98% of algal cells could be removed with aluminum
chloride dosage of 13 mg/L when the initial cell density
less than 1.0�106 cell/L (Shen et al., 2011). However, for
the combined coagulation and peroxidation processes, a
poor removal of Microcystis aeruginosa cells and larger
amount of trihalomethane (THM) formation occurred due
to the release of AOM after peroxidation (Lin et al., 2017).
Considering the maximum of algae removal and avoiding
the lysis of algal cells to release AOM, it is necessary to
enhance the coagulation conditions for maximum removal
of algal cells and AOM without causing cell lysis. The
success of this process implementation depends on how
precisely pH and coagulant dosage are chosen with respect
to the specific initial water quality.
Response surface methodology (RSM), as a combina-

tion of mathematical and statistical methods, has been
widely applied for solving multivariable problems to
optimize the process parameters with a less number of
experimental runs and analyzing the interaction between
the parameters. The objectives of RSM are: 1) to develop
approximating functions for predicting responses, and 2) to
optimize the responses based on the factors of interests
(Javadi et al., 2014). The advantages of RSM method
include low number of tests, high precision of regression
equations, and continuous analysis of various levels of test
factors. It has been widely applied in engineering fields
such as biology, medicine and environment (Wang et al.,
2007; Trinh and Kang, 2011; Halder et al., 2015; Li et al.,
2015; Kim, 2016). The most commonly used RSMmethod
is the central composite design (CCD), which includes
center points, factorial points and axial points. From the
CCD design, a quadratic approximation can be employed
to develop a second-order response surface model for
predicting the optimal point for a certain set of variables as
follows (Eq. (1)):

Ŷ ¼ β0 þ Σ3
i¼1βixi þ Σ3

i¼1βiix
2
i þ Σ3

i<jβijxixj þ ε, (1)

where Ŷ is the predicted response; β0, βi, βii and βij are the
coefficients for the intercept, linear, square, and interaction
term of regression, respectively, which can be derived from
ordinary least squares (OLS) or multiple linear regression
(MLR) method, xi and xj represent the coded values of
independent variables, ε indicates the statistical error.
Artificial Neural Networks (ANN) are computing

systems with learning algorithms and architectures
inspired by the working and structure of the human
brain. Although there is a considerable amount of
researches on various scenarios using both RSM and
ANN techniques in the literature (Khayet et al., 2011;
Bingöl et al., 2012), only a few studies on the coagulation-
flocculation process were presented with the methods of
both RSM and ANN techniques. Gadekar developed an
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artificial neural networks to predict color removal using
aluminum-based coagulant to remove color from a
disperse dye solution, the performance of the model was
found with correlation coefficient (R2) values greater than
0.90 (Gadekar and Ahammed, 2016). To minimize settled
water turbidity, It was reported that artificial neural
networks (ANNs) can been applied to predict both the
optimum carbon dioxide and coagulation dosages with
correlation (R2) values of 0.68 and 0.90, respectively.
(McArthur and Andrews, 2015).
Hence, the key motivation behind this study was to

develop an approach to evaluate and predict coagulation
process efficiency for the removal of turbidity, cell density,
DOC and UV254 absorbance of algae and organic matter
using both RSM and ANN techniques. A two-level, three-
factors central composite design (CCD) was applied to
investigate the correlation between experimental variables
and responses as the removals of microalgae, turbidity and
dissolved organic carbon (DOC) in a real surface water
body to provide solutions for the treatment of algae and
algal matter-rich raw water.

2 Materials and methodologies

2.1 Study site and sample collection

Lake Yangcheng (31°25′N, 120°48′E), located between
Lake Tai and the Yangtze River, has a surface area of about
20 square kilometers and mean depth of 1.9 m with an
annual average temperature of 16°C–18°C. As the third
largest freshwater lake on the Taihu Plain, Lake Yangcheng
is the major drinking water source in Suzhou and Kunshan
urban areas, and the second drinking water source of Wuxi
City. The water samples from the Lake Yangcheng were
collected twice per month in a 25 L plastic container from
July 15 to September 10, 2017. All samples were preserved
in the fridge before use within two weeks. The character-
istics of raw water during the test period are shown in
Table 1.

Quantitative characterization of algae species in water
was carried out using alga counter (Algae C model from
Wansheng Ltd., China) and an automatic identification
software.

2.2 Coagulation-flocculation

Coagulant aluminum sulfate hydrate (Al2(SO4)3$18H2O),
sodium hydroxide and hydrochloric acid for pH adjust-
ment, were all of analytical grade and commercially
available from Shanghai Lujie Chemical Reagent Co.,
Ltd., China. Coagulation tests were conducted using model
ZR4-6 joint coagulation experiment mixer (Shenzhen
Zhongshui Co., Ltd, China). Hemocytometer (Dark Line
(0650010), Paul Marienfeld GmbH & Co., Germany) and
microscope (CX-23, Olympus Co. Japan) were used for
counting the algal cell before and after coagulation. The
turbidity was measured using a Turbidity meter, (Hach
2100Q, Hach Company, USA). The DOC and UV254

absorbance of water samples were measured using a
Shimadzu TOC-L analyzer (CPH TOC , Shimadzu
Scientific Instruments Ltd., Japan) and the UV-Vis
spectrophotometer (Model V-1200, Shanghai Meipuda
instrument Ltd., China), respectively.
Coagulation-flocculation experiments of 2 L algae-laden

water were performed at room temperature, various pH,
alum doses (mg Al/L) and initial cell densities. The pH of
the test solution was adjusted by adding pre-determined
amount of 0.1 mol/L hydrochloric acid or 0.1 mol/L
sodium hydroxide solution prior to the coagulation.
The algal suspension was mixed at the agitation speed
(150 r/min) for 2 min followed by a low mix/flocculation
of 25 r/min for 20 min, and finally a 30 min settling. The
supernatant was taken from 2 cm below the water surface
for analysis of remaining cell density and turbidity. The
DOC and UV254 absorbance were measured after filtering
the supernatant through 0.45 µm membrane filter (Tianjin
JINTENG Co., Ltd., China). The error analysis of
duplicate experiments indicated an error£5%.

2.3 Response surface methodology with central composite
design

Preliminary experiments indicated that three major vari-
ables affected coagulation-flocculation performance, i.e.
coagulant dosage, pH and initial algal cell density.
Preliminary experiments with single factor investigations
narrowed the range of variables prior to experimental
design. Based on those results, a complete set of three-
factor central composite design (CCD) shown in Table 2
was applied to investigate the effects of individual
variables and their interactions on the removal of algal
cell, turbidity, DOC and UV254 absorbance to determine
the response pattern and optimum combination of
variables. Fourteen experiments were augmented with six
replications at the center values (zero level) to evaluate the
experimental error. The significance of each variable’s
effect on responses can only be compared with coded
pattern because of their different units and limits of
variation. For statistical calculations, the variable Xi was
coded as xi according to the following equation (Eq. (2)):

Table 1 Water quality characteristics of Lake Yangcheng

Parameters Range Mean

pH 7.08–8.45 7.48

Temperature (°C) 25–28 27

Cell density (106 cell/mL) 4.2–5.8 4.6

Turbidity (NTU) 198–252 223

DOC (mg/L) 10.2–13.5 12.41

UV254 absorbance (m
–1) 0.083–0.094 0.089
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xi ¼ ðxi – x0Þ=δX , (2)

where Xi is the uncoded value of the ith independent
variable, X0 is the value of i

th variable at the center point of
the experimental range and dX is the step change (Wang et
al., 2014).
Analysis of variance (ANOVA) was applied for data

analyses to obtain the interactions between the variables
and the responses. The fit quality of polynomial regression
models were demonstrated by the coefficient of determina-
tion R2, and F-test and p-value (probability) evaluation
were applied to check statistical significance with 95%
confidence level.

2.4 Artificial neural network model

A feed-forward backpropagation neural network algorithm
(BPNN) with three layers was developed by neural
network tool box of MATLAB software version 9.2.0
(The Mathworks Inc., USA). Mathematically, the structure
of a 3-layer ANN with n, m, and p the number of input,
hidden and output nodes respectively, is shown as Fig. 1:
Where Yk are the output values (responses) and Xi are the

input values (variables) of the network; Wij are the
connection weights between the input layer and the hidden
layer; Wjk are the connection weights between the hidden
layer and the output layer; S is a transfer function. At each

node, the weighted input signals are summed with a bias
value (Wj). The combined input (Hi) then passes through
the transfer function (S) to produce the output node (Yk) as
demonstrated in Fig. 1 (Al-Abri et al., 2010). The
Levenberg- Marquardt back propagation algorithm was
used for ANN model training. The proposed neural
networks had two transfer functions, of which the first
transfer function was tansig and the second one was linear
transfer function (purelin) (Gadekar and Ahammed, 2016).
A total of 44 data points, including the results from CCD

experiments and single variable (alum dose, pH and initial
cell density) and validation investigations, were used in
ANN modelling. These data points were split randomly
into training (70%), validation (15%), and test (15%)
subsets. All experimental variables data were normalized
in the limits from – 1 to+ 1 using the following equation
(Eq. (3)) (Zhao et al., 2010; Piuleac et al., 2013):

Normalized data ¼ 2XAC – ðXmin þ XmaxÞ
Xmax –Xmin

, (3)

To match the tangent sigmoid function applied in ANN
modeling, where XAC, Xmin and Xmax are the actual,
minimum, and maximum data, respectively. A minimum
mean squared error (MSE) is shown as the following
Eq. (4), where Yi and Ŷ i are the ith experimental and
predicted values were computed. The ANN model and the

Table 2 Analytical factors and levels for RSM experimental design

Independent variables
Coded and actual levels

– α/ – 1.682 – 1 0 1 + α/1.682

X1 Alum dose (mg Al/L) 4.57 5.67 7.29 8.91 10.02

X2 pH 4.66 5.00 5.50 6.00 6.34

X3 Initial cell density (106 cell/mL) 2.32 3.00 4.00 5.00 5.68

Fig. 1 Architecture of the three layers backpropagation artificial neural network (BPNN).
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variation of parameters were evaluated based on the
minimum value of the MSE of the training and prediction
set.

MSE ¼ 1

n
Σn
i¼1 Y i – Ŷ i

� �2
, (4)

The training parameters were used with three input
nodes, 8 to 10 hidden neurons and one output node with
respect to one response each time, learning rule:
Levenberg–Marquardt, number of epochs: 1000, error
goal: 0.0001 in this study.

3 Results and discussion

3.1 Algae species distribution

As shown in Fig. 2, more than 98% of the microalgae in the
investigated water body were cyanobacteria (mainly
microcystis), only 0.1% and 0.34% of algae belonged to
oscillatoria in the two samples, while the concentration of
Nitzschia palea, a diatom, was 1.55% and 1.67%,
respectively in the two samples. The amount of protosi-
phon, a chlorophyta detected in sample 2 shown in
Fig. 2(b), was only 0.03%. Considering the average cell
density of 4.6 � 106 cell/mL, water sample was seriously
contaminated by cyanobacterial bloom, which may be due
to the surrounding municipal and industrial wastewater
discharge containing high total phosphorus and total
nitrogen into water under mild hydrological and weather
condition (Ma et al., 2013). Therefore, as shown in Fig. 2,
microcystis dominated the phytoplankton community and
produced enormous biomass. The average specific UV
absorbance (SUVA) of 0.72 L/(m$mg C) indicated that the
dissolved organic matter in algae-laden water was
predominately hydrophilic, with low SUVA value (0.34–
1.7 L/(m$mg C)) (Goslan et al., 2017).

3.2 Effect of alum dose on the coagulation performance

Aluminum sulfate (alum) is one of the most commonly

applied coagulants in drinking water plants, due to its cost-
effectivity and widespread availability (Carty et al. 2002).
The dosage of coagulant is the most vital parameter for
algae and dissolved organic matter removal. The effects of
alum dosed from 3.24–8.10 mg Al/L on the coagulation
performance under initial cell density of (4.85�0.26) �
106 cell/mL were presented in Fig. 3.
The coagulation performance increased with the increas-

ing of coagulant dose for the removal of turbidity, DOC
and UV254 absorbance, which was consistent with
previous results of increased DOM removal with the
increasing alum dose to a certain point (Lanciné et al.,
2008). However, higher alum dosage will contribute to
relatively high aluminum residuals causing possible health
hazard, although this can be remediated, even be avoided
by pH control in the finished water (Matilainen et al.,
2010). It can be noted that the cell removal efficiency
reached a plateau at dosage≥4.86 mg Al/L with the
maximum algal cell removal of 81.56%�5.81%. With the
increase of alum dose, the removal efficiency of turbidity,
DOC and UV254 absorbance increased up to 97.02%�
1.38%, 56.25%�3.08% and 42.96%�0.08%, respectively,
which can be explained by the higher charge neutralization
ability with the increase of alum dose (Aktas et al., 2013).
However, at a higher dose, charge reversal may occur and
result in a reduction of the removal efficiency. Considering
the potential health risk of high alum dosage, 7.3 mg Al/L
was chosen as the appropriate alum dose for further
experiments.

3.3 Effect of pH on the coagulation performance

The effect of pH on the coagulation performance
was tested at different pH between 4.5 and 7.0 with
the same initial algal cell density and coagulant dosage of
7.3 mg Al/L (Fig. 4). It can be noted that higher removal of
all four responses occurred at lower pH of 4.5–6.0. The
maximum algal cell removal of 94.22%�1.57% occurred
at pH 6.0, however, for turbidity, DOC and UV254

absorbance removal, the maximum coagulation perfor-
mance of 97.36%�0.21%, 53.20%�1.81%, and

Fig. 2 Algal species distribution on the raw water.
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47.71%�1.20% occurred at pH 5.5, 5.0 and 5.5,
respectively. At pH lower than 5.5, positive hydrolyzates,
such as Al(OH)2+, Al2(OH)2

4+ were formed by alum,
which neutralize the exterior negative charges of cell and
colloids to promote the floc growth by physical or
chemical adsorption of destabilized cell and DOM colloids
(Yang et al., 2010). At pH≥6.0, Al(OH)4

– formed which
was not beneficial for negative charge neutralization of the
cells (Zhang et al., 2008).
It also indicated that the cationic H+ to neutralize the

surface charge of algal cell required was less than DOM in
water, so that algal cell reached the maximum removal
efficiency at a relatively higher pH of 6 compared to DOM
(represented by DOC). The pH value of 5.5 was chosen as
the most suitable pH for the removal of cell density,
turbidity, DOC, and UV254 absorbance.

3.4 Effect of initial cell density on the coagulation
performance

It was noticed that the removal performance at various
initial cell densities and the constant coagulant dosage
resulted in different removal efficiencies. Thus, the relation-
ship between initial cell density and required coagulant
dosages on removal efficiency was further investigated at
different cell density with fixed coagulation dosage and
initial pH. It was indicated that the four responses of
coagulation performance increased initially then decreased
with the increase of cell density as shown in Fig. 5.

For the water sample with low cell density (less than 2�
106 cell/L) and concentration of DOM, the dosage of
7.3 mg Al/L coagulant was considered an overdose, as the
re-stabilization of cell and organic matter occurred and
resulted in lower removal efficiency of cell density,
turbidity, DOC and UV254 absorbance. Once the cell
density increased further with the increase of the concen-
tration of DOM in water, the dosage of 7.3 mg Al/L
coagulant demonstrated the maximum removal efficiency
of the cell density of 3.3 � 106 cell/mL. The removal
percentage decreased with the increase of cell density due
to relatively insufficient coagulant dosage.

3.5 Response surface model and analysis of variance
(ANOVA)

Due to the aforementioned factors, a central composite
design (CCD) experiments for optimization of parameters,
such as alum dose, coagulation pH, and initial cell density
were performed to locate the maximum removal efficiency
of cell density, turbidity, DOC and UV254 absorbance by
Design Expert 7.0 (trial version) from the experimental
data shown in Table 3.

Fig. 3 Effect of alum dosage on coagulation performance for the
water samples with cell density of 4.55 � 106 cell/mL without pH
adjustment (error bars represent the standard deviation from
duplicate experiments)

Fig. 4 Effect of pH on coagulation performance for the water
samples with cell density of 4.5 � 106 cell/mL under the
coagulation dosage 7.30 mg Al/L (error bars represent the standard
deviation from duplicate experiments).

Fig. 5 Effect of initial cell density on coagulation performance
under the coagulation dosage 7.30 mg Al/L and pH of 5.5
(error bars represent the standard deviation from duplicate
experiments).
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Based on the experimental and ANOVA results, the
quadratic regression equations were developed on the basis
of CCD experimental sets and input variables, where X1,
X2, X3, are the alum dosage (mg/L), coagulation pH and
initial cell density (106 cell/mL), respectively, only
significant items were presented in the regression equation
presented in the Eqs. (5)–(8).

Cell removal=%

¼ – 168:33þ 6:07X 1 þ 89:05X 2 þ 1:26X3

þ 1:64X1X 3 – 0:79X1
2 – 8:32X2

2 – 1:72X3
2, (5)

Turbidity removal=% ¼ – 217:01þ 30:65X1

þ72:01X2 – 1:92X1
2 – 6:77X2

2, (6)

DOC removal=% ¼ – 176:01þ 14:15X 1 þ 76:27X2

– 16:25X3 þ 1:17X1X3 þ 4:21X2X3

– 1:21X 1
2 – 8:59X2

2 – 2:07X3
2, (7)

UV254 absorbance removal=% ¼ – 137:84 – 3:35X 1

þ47:32X2 þ 28:18X3 þ 3:89X1X2 – 1:42X1X3

– 0:90X1
2 – 6:92X2

2 – 2:36X3
2: (8)

To validate the response surface model from statistical
standpoint, the significance of the regression model and the
lack-of-fit need to be addressed (Khayet et al., 2011).
Generally, F-value or p-value (also called the Prob>F
value) are commonly used to evaluate the significance of
the models. The larger F-value and correspondingly
smaller p- value, indicate significance of the established
regression model. A p-value less than 0.05 represents that
the design model is statistically significant. The p- value
for each regression model was less than 0.05 with the
lowest values of 0.0006, which indicated that each of the
regression model obtained above was significant. The
precision of the model can be demonstrated by the
determination of the coefficient (R2) to quantify the
strength of the correlation between the observed and
predicted values and calculated as the following Eq. 9
(Xiao et al., 2017):

Table 3 CCD experimental design and experimental results

Run

Experimental variables Removal percentage (%)

Alum dosage/X1

(mg Al/L)
pH/X2

Initial cell density/
X3(E+ 06 cell/mL)

Cell
density

Turbidity DOC UV254

1 5.67 5 3 93.90 81.25 48.63 28.29

2 8.91 5 3 92.84 92.12 46.35 20.61

3 5.67 6 3 89.50 78.69 41.64 19.24

4 8.91 6 3 91.54 91.26 40.86 28.85

5 5.67 5 5 86.05 85.05 38.88 27.18

6 8.91 5 5 96.86 91.47 44.02 15.01

7 5.67 6 5 83.24 87.06 40.15 24.36

8 8.91 6 5 94.67 92.81 47.12 20.11

9 4.57 5.5 4 91.69 76.71 37.67 25.85

10 10.02 5.5 4 92.17 89.37 47.63 23.99

11 7.29 4.66 4 93.73 97.42 45.88 28.09

12 7.29 6.34 4 90.12 87.68 45.29 25.43

13 7.29 5.5 2.32 93.13 97.25 48.19 26.01

14 7.29 5.5 5.68 92.74 93.69 43.40 23.96

15 7.29 5.5 4 96.92 95.94 50.75 30.43

16 7.29 5.5 4 97.53 95.93 51.55 29.95

17 7.29 5.5 4 97.35 96.21 51.24 30.13

18 7.29 5.5 4 97.78 96.02 51.40 30.42

19 7.29 5.5 4 96.98 96.00 50.96 30.61

20 7.29 5.5 4 97.06 95.94 51.04 30.04

Ziming Zhao et al. Optimization and modeling of coagulation to remove algae and organic matter 7



R ¼
Σn
i¼1 Y i – Y l

� �
Y l – Ŷ l

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σn
i¼1 Y i – Y l

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σn
i¼1 Ŷ l – Ŷ l

� �2
r , (9)

where i is the data number, Y i is observed value, Ŷ l is

predicted value, Y l and Ŷ l are the means of Y i and Ŷ l,
respectively.
The R2 values for turbidity, DOC, UV254 absorbance,

and cell removal efficiencies were determined as 0.9089,
0.9521, 0.8931 and 0.8895, respectively. The values of the
coefficient of determination (R2≥0.89) indicated that more
than 89% of the variability in the responses could be
explained by the models. The obtained adequate precision
(AP) of the models compares the range of the predicted
values at the design points with the average prediction
error, which indicates the signal-to-noise ratio and a ratio
greater than 4 is desirable (Olmez-Hanci et al., 2011). In
the present study, the obtained values with the minimum of
10.99 as shown in Table 4 indicated an adequate signal and
suggested that the models can explain the relationship of
variables and responses successfully.

The coefficient of variation (C.V.%) represents the ratio
of the standard deviation to the average response value in
the model. The smaller the value is, the smaller the
dispersion in data. In this study, the maximum C.V.%
value of 7.31% was less than 15% removal efficiency of
UV254 absorbance, which indicated that the reliability of
the data was very high, and the experiment had high
reproducibility. These findings revealed that the accuracy
and ability of the polynomial models obtained for observed
responses were appropriate and satisfactory.
Response surfaces for removal efficiency of the

coagulation process for algae-laden lake water were
created by Design-Expert 8.0 as shown in Fig. 6. Based
on ANOVA results, there was no interaction effect of the
variables for turbidity removal. It was indicated that alum
dose and pH had the dominant effects on turbidity removal,
initial cell density had insignificant effects even though
turbidity increased with the increase of initial cell density
in the experimental range. Figures 6(a) and 6(b) showed
the response surface and contour plots for cell density and

turbidity removal efficiency as a function of alum dose and
pH at an initial cell density of 4.0 � 106 cell/mL. The
highest removal efficiency (97.78%, 97.42% for cell
density and turbidity, respectively) occurred at the alum
dosage of 7.29 mg Al/L and pH of 5.5. The lowest removal
occurred at the higher pH of 6.0 and a low coagulant dose
of 5.67 mg Al/L. It was found that the cell density and
turbidity removal efficiency presented the same pattern,
which decreased with increasing pH up to 6.0 at the low
coagulant dose of 5.67 mg Al/L.
The interaction surface of DOC removal percentage

(Fig. 6(c)) showed a saddle shape, axial steepness and
surface curvature increase, which indicated that interaction
effect of coagulant dose and pH had a significant response
to DOC removal efficiency. The response surface of UV254

absorbance removal efficiency was shown in Fig. 6(d); the
UV254 absorbance removal efficiency decreased signifi-
cantly with the increase of initial cell density even at a high
coagulation dose of 8.91 mg Al/L and pH of 5.5, which
indicated that the alum applied could not remove aromatic
compounds of water efficiently, and higher cell density
competed with aromatics of water for coagulant dosage.
Using the optimization module by Design-Expert soft-

ware, the optimum parameters of coagulation process were
obtained for the removal of cell density, turbidity, DOC
and UV254 absorbance. With these multiple responses, the
overlaid contour plot (Fig. 7) was used to visually
demonstrate the optimal conditions range which the
required responses can be simultaneously reached.
The optimum parameters of coagulation process were

obtained as follows: the dosage of coagulation 7.57 mg Al/
L, pH of 5.42 and the initial algae concentration 3.83� 106

cell/mL. The predicated removal percentage for cell
density, turbidity, DOC and UV254 absorbance was
97.31%�1.65%, 95.50%�2.68%, 51.18%�1.30% and
30.34%�2.68%, respectively.
The validation test were conducted under the optimized

conditions with the coagulant dosage of 7.5 mg Al/L, pH
of 5.5 and the initial algae concentration of 4 � 106 cell/
mL. The actual removal performances for cell density,
turbidity, DOC, and UV254 absorbance were 97.27%,
95.43%, 48.65%, and 28.34%, respectively. Although the
equivalent alum dosage of 1.97 � 10–9 mg Al/cell is less
than that of 4.3 � 10–9 mg Al/cell presented by Gonzalez-
Torres et al. (Gonzalez-Torres et al., 2014) who used a
higher pH of 7.0 in their study, the optimized condition in
the current study for algae-laden water treatment obtained
a relatively higher alum dose than usual 2.5–4.0 mg Al/L
for drinking water treatment (Trinh and Kang, 2011). This
indicated that polymer coagulant or coagulation aid may be
needed to reduce the alum dosage or a combination with
other treatment, for instance, air flotation may be used.

3.6 Artificial neural network

The ANN model has been applied extensively to predict

Table 4 ANOVA results for regression models

ANOVA
Response

Turbidity DOC UV254 Cell density

R2 0.9089 0.9521 0.8931 0.8895

p-value 0.0006 < 0.0001 0.0002 < 0.0001

Std. dev. 2.73 1.35 1.90 1.65

Mean 90.89 46.13 25.93 93.29

C.V.% 3.00 2.81 7.31 1.77

PRESS 564.49 104.23 216.66 157.11

AP 11.13 15.82 10.99 11.58
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nonlinear systems due to the cost and time effectivity and
high precision (Moghaddari et al., 2018). Table 5
demonstrated the ANN modelling performance in term
of correlation coefficient (R2) and standard deviation for
individual and overall dependent responses with respect to
different data section under its specific ANN topological
structure.
The topology selected was based on the performance of

networks, which gave minimum MSE and R2 close to one.
The training R2 in all cases of models presented the highest
value because the majority of the dataset (70%) were used
for training repeatedly several times for adjusting the
weights of the network. ANN-predicted values of removal
efficiencies for cell density, turbidity, DOC and UV254

absorbance versus experimental data were presented in
Fig. 8. The linear regression analysis between ANN-
predicted and observed individual removal efficiency
showed the minimum linear regression coefficient (R2) of
0.8855 for cell removal. The overall R2 of the models is

Fig. 6 Surface plots of removal efficiency with the interaction of coagulant dosage and pH with initial cell density of 4.0� 106 cell/mL,
(a) Cell removal; (b) Turbidity removal; (c) DOC removal; (d) UV254 removal.

Fig. 7 Overlaid contour plot for cell density, turbidity, DOC and
UV254 removal percentage by alum coagulation. Data fitted by
three-factor central composite design.
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larger than 0.8 representing that the developed models are
robust (Kundu et al., 2013).
Linear regression analysis was carried out between the

variables (coagulation dose, pH and initial cell density) and
removal performance (cell density, Turbidity, DOC and
UV254 absorbance) values calculated by ANN and RSM
models with their corresponding observed values. The

largest standard deviation of these four responses from
RSM and ANN was 2.73 and 1.64, respectively, which
indicated that RSM model prediction presented a greater
deviation than ANN predication. Both models presented
stable responses, but the ANN models were better in data
fitting and estimation capabilities. In comparison with
RSM, ANN was easier to obtain the relatively higher

Table 5 Performance of ANN network models

Dependent responses Topology
Correlation coefficient (R2)

Std. dev.
Training Validation Testing All

Cell density 3: 8: 1 0.9069 0.9188 0.8652 0.8855 1.3106

Turbidity 3: 10: 1 0.9741 0.9579 0.9647 0.9713 1.6387

DOC 3: 10: 1 0.9785 0.9010 0.9938 0.9731 1.2188

UV254 3: 10: 1 0.9469 0.9431 0.8133 0.8980 1.3675

Total 3: 10: 4 0.9903 0.9705 0.9735 0.9814 1.7859

Fig. 8 The plots of predicted vs. actual values of removal efficiency by BPNN: (a) cell density; (b) Turbidity; (c) DOC; (d) UV254.
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average regression coefficient of 0.93 than 0.91 from
RSM. The modeling results indicated that ANN was
slightly more accurate for estimating the values of
dependent variables as compared with the RSM models.
However, the RSM can be applied to analyze the factor
effects (main and interactional) and propose regression
equations for responses. Also, RSM can identify the
significant main and interaction factors or insignificant
terms in the model and thereby can reduce the complexity
of the problem with assumption of quadratic non-linear
correlation. However, ANN can easily overcome the
limitations of RSM, inherently capture almost any form
of non-linearity without the requirement of a standard
experimental design to build the model (Bingöl et al.,
2012).

3.7 Mechanism of algae and DOM removal by alum

It is well-known that four mechanisms of charge
neutralization, adsorption, bridging, and sweep floccula-
tion might be involved in coagulation process of natural
colloids (Guo et al., 2017). Alum undergoes hydrolysis to
form variable mononuclear and polynuclear species
depending on pH as shown by Eq. (10).

AlðH2OÞ3þ6 ↔ AlðOHÞðH2OÞ2þ5 ↕ ↓

Al13O4ðOHÞ7þ24 ↕ ↓AlðOHÞ3ðSÞ ↔ AlðOHÞ –4 (10)

Based on the applied dosage of 4.57–10.02 mg Al/L,
concentration of Al2(SO4)3$14.3H2O was about 50.7–
111.2 mg/L in the experiments. From the results presented
in Table 3, it can be seen that the maximum cell removal of
97.78% occurred at pH 5.5. According to the coagulation
domain diagram for alum dosage at various pH presented
by Amirtharajah and Mills (1982), the region corresponds
to the dosage of 50.7–111.2 mg/L at pH 5.5 is in the sweep
coagulation zone. In the pH range of 6–8, algal surfaces are
negatively charged (Gonçalves et al., 2015). On the other
hand, for alum coagulant, the dominant species of
aluminum possibly are Al13O4ðOHÞ7þ24 and AlðOHÞ3ðSÞ
at this pH range. The optimal coagulation for algae-laden
natural water occurred around the pH 5–6, for which both
algal cell and DOM are negatively charged, so that
electrostatic interaction occurred between cationic alumi-
num species and cell/DOM. Therefore, both charge
neutralization and sweep flocculation are possible mechan-
isms for the removal of algae and organic matter in this
investigation. Guo et al. (2017) also mentioned charge
neutralization and sweep flocculation to be the dominant
mechanisms for DOM removal. The reduced electrostatic
repulsion between DOM colloidal particles/cells may
facilitate initial aggregation of colloidal and fine suspended
particulate to form microflocs (Agbovi and Wilson, 2017),
in addition, the attached polyanions of DOM onto negative

cell surface may also favor the agglomeration formation
(Baresova et al., 2017).

4 Conclusions

In the present study, the coagulation performance was
investigated and optimized for the removal of algal cells
and DOM from the eutrophic water sample of Lake
Yangcheng. Based on the response surface analysis
designed by CCD, the regression models for the coagula-
tion performance were developed. A dosage of 7.57 mg Al/
L and pH 5.42 were determined as optimal condition of
coagulation for initial algal concentration of 3.83�106 cell/
mL and an average initial DOC of 12.41 mg/L. Charge
neutralization and sweep coagulation were the dominate
mechanisms for the treatment of algae-laden natural water.
The variance analysis of regression models and

verification tests showed that the regression models were
effective in fitting the experimental data. The ANN model
were relatively more accurate to estimate the values of the
dependent variables. The models developed in this study
may provide useful treatment suggestions for water plants
to treat surface water affected by algal blooms.
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