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1 Introduction

Urban passenger transport is leading to a range of societal
and environmental externalities including congestion,
resource consumption, greenhouse gas emissions, and

localized pollution. Travel demand is derived from
individuals’ need for performing activities at different
geographic locations. A current trend of research in the
field of human mobility is activity-based analysis (Zhang
et al., 2013; Rieser et al., 2014; Wu et al., 2014), which
takes into account individual’s diverse travel demands
behind spatial movements. Broadly stated, activity-based
approaches pay close attention to the responses to the
common questions that each individual faces on a daily
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H I G H L I G H T S

•Check-in and survey data are explored to identify
personal activity-specific places.

•Ways for detecting and moderating sample bias
of Weibo check-in data is proposed.

•A graphic representation of urban activity
intensity in Beijing, China is presented.

•The potential application of Weibo check-in data
for urban analysis is introduced.
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G R A P H I C A B S T R A C T

A B S T R A C T

In this paper, we present a three-step methodological framework, including location identification, bias
modification, and out-of-sample validation, so as to promote human mobility analysis with social
media data. More specifically, we propose ways of identifying personal activity-specific places and
commuting patterns in Beijing, China, based on Weibo (China’s Twitter) check-in records, as well as
modifying sample bias of check-in data with population synthesis technique. An independent citywide
travel logistic survey is used as the benchmark for validating the results. Obvious differences are
discerned from Weibo users’ and survey respondents’ activity-mobility patterns, while there is a large
variation of population representativeness between data from the two sources. After bias modification,
the similarity coefficient between commuting distance distributions of Weibo data and survey
observations increases substantially from 23% to 63%. Synthetic data proves to be a satisfactory cost-
effective alternative source of mobility information. The proposed framework can inform many
applications related to human mobility, ranging from transportation, through urban planning to
transport emission modeling.
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basis: “what activity will I perform?”, “with whom?”,
“when?”, “for how long?”, “how do I get there?” and so on
(Ghauche, 2010). Such approach allows researchers to
examine, in detail, the diversity of travel demands that spur
movements, thus to dig into the driving forces of transport
energy consumption and emissions. Therefore, identifying
the purposes behind human movements becomes a crucial
part of understanding human mobility. Such analysis relies
heavily on the quality and representativeness of human
space-time data, which is traditionally obtained through
travel surveys. However, data collection is extremely time-
consuming and expensive, which in turn limits its
population coverage. Furthermore, such surveys are not
carried out on a continuously temporal basis. For example,
the most authoritative citywide travel survey in Beijing,
China is only conducted every five years.
Over the past decade, the introduction and penetration of

location-based services have profoundly changed the way
people live. People leave digital traces of their movements
everywhere, when swiping smart cards on public buses,
making phone calls with friends, or sharing activity related
choices on online social networks. This large-scale user-
generated data provide new perspectives for spatiotem-
poral analysis of travel behavior. Temporal, spatial, and
textual information in this data are revealed by users in
realistic situations, which makes them less prone to
cheating. Since such data have already been collected to
help operate systems or provide user-side services,
additional uses for analysis incur little marginal cost.
Different from Call Detail Records (CDR) (Isaacman et al.,
2011), Smart Card Data (SCD) (Yuan et al., 2013; Zhou
and Long, 2014), and trajectories derived from GPS
trackers (Zhang et al., 2013), check-in data have two
unique features, which make them more suitable for
activity-based mobility analysis. First, check-in records not
only contain geo- and time-tagged locations but also
include the Point of Interests (POI) categories of the
venues indicating the potential functionalities of such
locations (Hasan et al., 2013; Wu et al., 2014). Second,
users’ sociodemographic profiles are available, enabling
comparative analysis of travel behavior for different social
groups. Recently, a number of researchers have been using
check-in data to understand and model how individuals
move in time and space (Hasan et al., 2013; Hasan and
Ukkusuri, 2014; Wu et al., 2014; Wang et al., 2015; Yang
et al., 2015; Chen et al., 2016). However, these studies
limit the understanding of mobility dynamics due to the
lack of attention to the purposes behind human move-
ments. Hasan et al. (2013), Hasan and Ukkusuri (2014),
and Wu et al. (2014) simply identified activity based on the
POI category of each geo-tagged location. Potential
problems arise from this identification method. For
example, checking in at a shopping mall does not
necessarily indicate engaging in recreational activities; it

may also be a shop manager complaining about his/her
tedious day. Besides, each time users post a microblog,
they have the option to choose a location to share from
several nearby locations. Out of privacy and safety
concerns, people tend to provide misleading information.
Previous studies have demonstrated that human mobility

shows a high degree of regularity (Hasan and Ukkusuri,
2014; Wu et al., 2014; Wang et al., 2015). Far from
randomness, people spend much of their time at a few
important places, such as home and workplace, where they
visit regularly and often during the same period of the day
(Isaacman et al., 2011). An individual’s movements
typically will either be centered around home, work, or
somewhere in between the two locations as they commute
in between them (Cho et al., 2011). Some studies have
proposed suitable algorithms for predicting semantically
meaningful places in somebody’s life (especially home
locations), based on the spatial and temporal features of
movement records. The most commonly used method is a
“Most Check-ins” method. Home is assumed to be the
location from which people most frequently tweet (Pontes
et al., 2012; Bojic et al., 2015; Hossain et al., 2016), (or
make the maximum number of phone calls in the case of
CDR (Isaacman et al., 2011), or most frequently visit in the
case of SCD (Yuan et al., 2013)). In some cases, the
sequence of a location in a user’s daily movements (Zhou
and Long, 2014; Hossain et al., 2016) or surrounding land
use features (Zhou and Long, 2014) is used to determine
the likelihood of corresponding activity.
Despite the fascinating features mentioned above, it has

been argued that the limited population representativeness
would confine the scope of big data research on human
mobility (Wu et al., 2014; Chen et al., 2016). Travel survey
data, acquired through rigorous sampling methods, is
considered as a relatively representative sample of the real
population. However, only limited studies have conducted
out-of-sample validation of big data with such a data set,
quantitatively analyzing the effect of representativeness of
big data (Lenormand et al., 2014; Toole et al., 2015; Yang
et al., 2015). Most of the time, validation is performed on a
coarse-grained spatial scale, such as municipality (Lenor-
mand et al., 2014) or town (Toole et al., 2015), because raw
census data with high spatial resolution remains inacces-
sible to the public. It remains an interesting question to
ponder whether social media check-in data would be
suitable for regional activity-based travel analysis, whether
and what mobility measures are sensitive toward sample
bias (Chen et al., 2016), and most importantly, how to
modify such bias.
Population synthesis is a widely-adopted technique for

creating a full population microdata based on limited
number of observations, to enable analyzing estimates of
variables at different spatial scales. It was first developed in
the field of economics in the 1960s, and has since been
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introduced to the fields of geography and social sciences
(Hermes and Poulsen, 2012; Ma et al., 2014), for example,
to analyze social policy and population changes (Haase
et al., 2010), transportation (Beckman et al., 1996; Zhang
et al., 2013; Ma et al., 2014), building energy consumption
(Subbiah et al., 2013) and so on. In the transport-related
field, the pioneering attempt of population synthesis goes
back to 1996, when Beckman et al. (1996) applied Iterative
Proportional Fitting (IPF) to create a baseline synthetic
population of individuals and households, so as to estimate
future travel demand. After years of implementation and
testing, population synthesis has become a popular and
cost-effective way for creating disaggregated data for
spatial analysis and simulation, generating long-term
forecasts, and examining the geographical effects of
government policies (Subbiah et al., 2013; Zhang et al.,
2013; Ma et al., 2014). In this article, we explore the
potential application of this technique for sample bias
modification. A critical review on current algorithms to
generate synthetic spatial microdata can be found in the
references (Müller and Axhausen, 2010; Hermes and
Poulsen, 2012).
In this study, we introduce how to identify home, work/

school, and destination choices for non-commuting
activities based on multi source data in a simple and
straightforward way and apply classical methods of
population synthesis to solve the bias-modifying problem
of social media data in a provably promising way.
Compared with existing studies on activity-based mobility
analysis with check-in data, we go one-step further to
detect and moderate the impact of sample representative-
ness on mobility measures at sufficiently high spatial
granularity.

2 Materials

2.1 Study area

As the capital city of China, Beijing was selected as our
case study area. The city can be divided into four zones
including inner area, functional extended area, new urban
district, and ecological conservation area. The inner-city
districts of Dongcheng and Xicheng represent the tradi-
tional business districts. The functional extended area
includes the Chaoyang district in the north-east (which is
home to the Beijing International Airport, and Beijing’s
growing central business district), Haidian in the north-
west (which was deliberately developed as a university
area, with most of the universities, research institutes, and
hi-tech firms located there), Fengtai in the south-west
(which is the interflow center of goods in the south-west
Beijing), and Shijingshan in the far west (which is the

heavy industry center in this city) (Ma et al., 2014). The
new urban district composes Tongzhou in the east (where a
new administrative sub-center is emerging), as well as
districts of Shunyi, Daxing, Changping, and Fangshan.
The ecological conservation area refers to the remote
counties and villages.

2.2 The mobility data sets

1) User profiles and location check-ins
This data set contains 11961502 geo- and time-tagged
check-in records from 135736 venues in Beijing by
1670968 registered Sina Weibo users from Mar. 2011 to
Sep. 2013, which was crawled through Sina Weibo API
(Zhang et al., 2012). Each check-in contains the user ID,
check-in time, the venue’s geo-coordinates, and POI
category. When registering for an account in Weibo,
users can choose to share some of their personal
information on their home pages, including gender,
birthday, education background, and marital status etc.
After removing users with less than 15 check-ins, we
obtain 7324014 check-ins at 111955 venues from 161015
users where each user has 45 check-in records on average.
2) Fourth survey of citywide travel logistics of Beijing
This survey tracks more than one hundred thousand

respondents’ socio-economic attributes, as well as their
detailed 24 h travel diaries in a generic workday or
weekend, including a list of activities participated and
corresponding trips along with temporal, spatial and travel
mode information. Traffic analysis zone (TAZ) is the unit
of geography most commonly used in travel surveys. In the
Forth Survey of Citywide Travel Logistics of Beijing, the
metropolitan area was divided into 1911 TAZs, with the
zonal area ranging from 0.13 km2 to 382.03 km2, among
which 87% is smaller than 5 km2. Individuals’ activity
locations are denoted by TAZ codes.

2.3 User profiles

In our Weibo sample, almost all the users provide their
gender information, 46% users provide age information,
and 53% users provide educational background. We found
that Weibo is more popular among females, young people
and people with high levels of education. Obvious
differences exist in the age and education profiles of
population covered by these two data sets (c.f. Fig. 1);
whereas, only a slight difference of 4% is discovered in the
gender profiles.

2.4 Categorizing travel demands

To ease the analysis, daily activities are first classified into
a limited number of categories. In this research, consider-
ing the temporal characteristics of travel demand inferred
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from trip records in survey data (c.f. Appendix Fig. A1),
we group activity-travel purpose into home, work (work/
school), entertainment (eating out, shopping and other
leisure activities), and other (personal business, business
trip, visiting friends/relatives, etc.).

3 Methods

3.1 Ground truth for home and workplace identification

Building the ground truth is challenging, because it
involves identifying a Weibo user’s home and workplace
from several locations the user checked-in without being
told. Intuitively, if someone visits the same residential
building frequently, this place holds a big change to be a
living place. Similarly, an office building where someone
recursively checks-in, is more likely to be a working place.
Besides, reading a Weibo content that says “enjoying my
new working station”, one can easily tell that it might be
sent from a workplace. Weibo content that says “Good
night, Beijing” is most likely sent from home. In this
research, we rely on POI category and content information
together to build the ground truth for the home and work
location identification algorithm.
First, we construct the ground truth for home by first

filtering the locations each individual checks in for 4 days
or above long, and with a POI category of residential place.
Similarly, ground truth for workplace is filtered from
locations each individual checks in for 4 days or above
long, and with a POI category of corporation, school or
industrial park. Then location with largest check-in days in
each case is labeled as “home” and “work” respectively.
Secondly, to improve the reliability, we further crawl the

Weibo contents posted from these labeled locations, linked
by user ID and geo-coordinates. Then, we select a set of 20

keywords (e.g. “home”, “dormitory”, “sleep”, “office”,
“work”, etc.) which are most likely to be mentioned in
Weibo contents sent from home or workplace (c.f.
Supporting materials, Table S1). Next, based on these
keywords, we label “home” or “work” tag to each user’s
potential locations. For example, if at least one of the
home-related words is contained in any of the Weibo
contents posted from user’s filtered locations, then this
location would be labeled as “home”.
Finally, we only retain the filtered locations, which have

been tagged the same label from the two steps.
As a result, we obtain a training data set containing

90284 check-ins from 377 users, among which 296 users’
homes and 180 users’ workplaces are labeled. Here, the
labeled location is represented by the geo-coordinates of
the corresponding venue. As can be seen from Fig. 2
below, the frequency of home-based activity in ground
truth data are much lower during early morning hours,
when people are typically inactive. While, the frequency of
work-based activity in ground truth is much higher during
late night, which is probably because, people who work
overtime tend to check-in at workplace more frequently,
thus overestimating the frequency of work-based activity
at night. Apart from these, the basic temporal distribution
patterns of home-based and work-based activity from
ground truth data are consistent with those from survey
data. It means that, even as a small portion in the Weibo
data, this ground truth data would be sufficient for
representing the regularity of the temporal patterns of
home-based and work-based activities and is scalable to
the whole Weibo data as well.
It has to be mentioned that, the small size of ground truth

data are largely due to the limitation of inferring home and
work locations by POI category. Therefore, the labeling
method introduced here is just for building the ground truth
for training our proposed identification algorithm.

Fig. 1 User profiles. (a) Education background, (b) Age. Here, education background is classified into three categories; including
primary (junior school and below), secondary (senior high school), and tertiary (college and above).
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3.2 Purpose-specific location identification

3.2.1 Identification algorithm

We propose a threefold approach for home and work
location identification adopted from Isaacman et al. (2011)
on location identification with CDR, which has shown to
be able to find users’ important locations to within 3 miles
88% of the time. Existing studies have found strong
agreement and robustness in human mobility patterns
between CDR and check-in data (Cho et al., 2011;
Lenormand et al., 2014). The factors used are listed below.
� Days: The number of days on which the venue is geo-

tagged.
� Cluster Days: The number of days on which any

venue in the cluster is geo-tagged. If two or more venues
are geo-tagged on the same day, the day is counted only
once.
� Timespan: The number of days interval between the

first and the last check-in with any venue in the cluster.
� Total Days: The number of days between the first

record and the last record in the data set.
�Work Event: The number of check-ins in the cluster on

weekdays from 9 am to 12 pm and from 1 pm to 6 pm.
� Home Event: The number of check-ins in the cluster

on weekdays or weekends from 10 pm to 7 am.
� Work/ Home Event Percentage: The percentage of

“Work/ Home Event” of each cluster in all clusters.
We first spatially cluster the venues that appear in a

user’s check-in records. Because we do not have any prior
knowledge regarding the number of clusters in each user’s
traces, which is probably different from one to another. As
a result, we choose a distance-based clustering method
(Isaacman et al., 2011; Chen et al., 2016). We first sort the
unique venues in a user’s check-in records in descending
order based on “Days”. Relative importance of a certain
venue in an individual’s traces is represented by the days
this venue is checked-in, instead of the total number of
check-ins. Because, “Days” helps to decrease the influence
of venues that are visited only on a few days, but that has a
burst of events on those days (Isaacman et al., 2011).
Clustering starts with the first venue in the sorted list and

makes this the centroid of the first cluster. For each
subsequent venue, the algorithm would assign it to a
corresponding cluster if it falls within a predetermined
threshold radius, r, of any existing cluster centroid, or

Fig. 2 Temporal pattern of home-based (a and c) and work-based activity (b and d) from ground truth (a and b) and survey data (c and d).
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make this the centroid of a new cluster otherwise. When a
new venue is added to any existing cluster, the centroid of
that cluster will be moved to the days-weighted center of
all the venues within the cluster. The algorithm continues
until all the venues in the sorted list have been visited.
Then our identification algorithm runs to the second

stage of filtering important clusters. Intuitively, important
places in people’s lives should be those that people visit
frequently and recursively. A cluster will be assumed as
important if it has been visited on more than a certain
percentage of the total days, and the timespan in this cluster
is more than a certain percentage of the total days. These
translate to Eqs. (1)–(2) listed below. Here,a, b are decision
boundary values.

Cluster Days=Total Days³a, (1)

Timespan=Total Days³b: (2)

Finally, given all the important clusters, we infer where
people live or work based on frequency of check-ins
during pre-defined “home” or “work” event hours. As
demonstrated in previous studies, for home identification,
the most dominating factor is “Home Event” (Isaacman
et al., 2011) or number of check-ins (Hossain et al., 2016).
For workplace identification, there are two dominating
factors; location with higher “Work Event” and lower
“Home Event” is more likely to be one’s workplace
(Isaacman et al., 2011). Rules for home and work
identification are illustrated as the flowchart in Fig. 3.
Here, k1 and k2 are decision boundary values.

The algorithm for entertainment and other place
identification starts with check-in records of a user with
home or workplace identified. For whom, our identifica-
tion algorithm has already differentiated places where one
visits on a regular temporal basis from those one visits
flexibly. After removing geo-tagged locations in the
clusters defined as “Home” or “Work”, we can simply
label each remaining location as “Entertainment”, “Other”
or “Unknown” based on their venue categories.

3.2.2 Controlled random search algorithm

We need to adjust the five tuning parameters,r,a,b,k1,k2,
constantly until most individuals’ resulting identified
locations give the best possible fitting to the labeled ones
in ground truth. A global optimization procedure called
Controlled Random Search (CRS) is used for parameter
calibration (Hendrix et al., 2002).
In the context of minimization problems, CRS algorithm

generates p uniformly distributed random points through
Θ, defined by the value ranges of parameter vector �,
and stores the points and corresponding function
valuesðf1,:::,fpÞ. Let fmax and fmin be the largest and smallest
function values in the storage, and �max and �min be the
corresponding points. At each iteration, CRS randomly
selects a subset f�1,:::,�m,�mþ1g of mþ 1 points from the
storage. Then a new point �* is generated by reflecting a
randomly selected point from the subset through the
centroid of the otherm points. If the function value f ð�*Þ at

Fig. 3 Flowchart for identification of home location and work place.

6 Front. Environ. Sci. Eng. 2018, 12(5): 7



�* is smaller than fmax, then �* and f ð�*Þ replace �max and
fmax in the storage respectively. Then the algorithm updates
the corresponding values of fmin and �min as well. The
process stops when the maximum number of iteration
stages N has been reached.
The objective function is defined by Eqs. (3)–(5), which

take both the identification accuracy and coverage into
consideration, resulting in a number in [0, 1].

f ¼ 1=2� 1=M*2 �
XM*

i¼1

disðH*
i ,HiÞ

dHmax

 

þ1=N*2 �
XN*

j¼1

disðW *
j ,WjÞ

dWmax
 1A, (3)

dHmax ¼ maxðdisðH*
i ,HiÞÞ, i 2 M *, (4)

dWmax ¼ maxðdisðW *
j ,WjÞÞ, j 2 N*, (5)

where, H*
i and Hi represents the geo-coordinates of the

labeled and identified home location of individual i from
ground truth. Similarly, W *

j and Wj represents the labeled
and identified work location of individual j respectively.
M* and N* are the number of users from ground truth
whose home and work can be identified with our
identification algorithm. disðH*

i ,HiÞ, disðW *
j ,WjÞ calculate

the spherical distance between identified and labeled
locations, which are used as a measure of identification
error. The error is normalized through dividing by its
corresponding maximum value, dHmax and dWmax. Mean
distance error is then weighted by the reciprocal of M*
or N* to compensate for the accuracy gains at the cost of
low coverage.
In this study, clustering radius r is set to be 20 m, 50 m,

70 m, 100 m, 200 m, 300 m, and 500 m. Under each setting
of r, we use CRS algorithm to find the best estimates of the
other four parameters. By numerical test, the settings of p
and N in this study are 200 and 20000 respectively.

3.3 Sample reconstruction

As is shown in Fig. 1, there is a large variation of
population representativeness between Weibo and survey
data. Considering the strong influence of socio-demo-
graphics on people’s activity participation and destination
choices (Ma et al., 2014), the limitation of population

coverage of Weibo data can only give us a biased
understanding of human mobility. Therefore, we introduce
a method for correcting population bias of check-in data by
linking personal mobility patterns to these socio-demo-
graphics.
The basic idea behind sample reconstruction is to select

an optimal configuration from the partial sample of Weibo
data, according to the known distributions of character-
istics, such as age, gender, from aggregated constraints
calculated with travel surveys. Then the reconstructed
sample is a more representative configuration of the real
population, whose sociodemographic is aligning closely to
that of survey respondents, while maintaining the rich
variety of its original activity mobility patterns.
To proceed with a reliable sample reconstruction, an

appropriate selection of constraint variables is crucial.
First, the variables used need to be both included in the two
data sources to enable the sampling process (Kirk, 2013;
Ma et al., 2014). Second, they should cover or at least be
strongly related to the variables of interest (Kirk, 2013).
Kruskal–Wallis test, a non-parametric method for testing
whether samples originate from distributions with the same
median, is used to select attributes strongly related to travel
behavior. Results show that, commuting distances vary
significantly among people in different age groups and
among people living in different regions (c.f. Supporting
materials, Table S2). People aged 30–40, and people living
in suburban areas tend to commute further. While, gender
and education background only have slight influences on
individuals’ commuting distances. In this study, we
conduct sample reconstruction for commuters and non-
commuters separately to account for the influence of
employment status on individuals’ mobility patterns. For
each case, we use the tabulations of age, gender, and home
district, as well as the cross-tabulations of age and gender
at the TAZs level as constraints. Home district is defined as
the district that Weibo users’ identified home locations
belong to. Besides, the difference between commuters and
non-commuters are determined by whether their work
locations can be identified or not.
Flexible Modeling Framework (FMF), developed and

tested at the University of Leeds since 2005, is an open
source software framework for spatial population synthesis
(Ma et al., 2014). It incorporates a static spatial simulation
algorithm based on Simulated Annealing, which proves to
be one of the most popular and effective methods for
generating synthetic spatial microdata at different geogra-
phical scales (Kirk, 2013). In addition to the FMF
population synthesizer, the traditional IPF and Combina-

Table 1 Constraint configuration for commuters/non-commuters

Constraint Variables Gender Age Home District

Categories Male (m), Female (f) 15–24, 25–26, 27–28, 29–30, 31–33, 34–39,
40–49, 50+

Dongcheng, Xicheng, Chaoyang, Haidian, Fengtai,
Shijingshan, Changping, Shunyi, Tongzhou, Daxing

Yilan Cui et al. Social media and mobility landscape 7



torial Optimization (CO) methods are still very popular
(though they have drawbacks), especially in those cases
where a simple and easy population synthesizer is
adequate. The choice of FMF in our study is largely due
to the availability of the open source software package that
is relatively feasible to implement.
Simulated Annealing approach is executed for each TAZ

individually. Individuals from each zone will first be given
a unique person ID. The algorithm then clones, adjusts,
and tests individuals in the generated population repeatedly
until an appropriate set of individuals is established whose
tabulated constraint variables give the best possible fit to
the target aggregated sums. The goodness-of-fit level is
measured as Total Absolute Error (Eq. (6)).

TAE ¼
XN
i¼1

XM
j¼1

jTij –Eijj, (6)

where, Tij is the count of individuals in category j living in
zone i in survey data; Eij is the count of individuals in
category j living in zone i in the generated population. N is
the number of TAZs. j refers to one specific category in
Table 1. M is the total number of categories.
After sample reconstruction, activity-specific location

choices of Weibo samples can be attached to the generated
population based on the unique person ID.

3.4 Out-of-sample validation

Here we select three indexes for evaluating the perfor-
mance of our method, through out-of-sample validation
with survey data, regarding spatial distribution pattern of
activity-specific locations and distribution of commuting
distance. In travel surveys, respondents’ activity locations
are mostly recorded using the TAZs code since GPS
devices are rarely used to track the precise locations of
individuals during surveys. Therefore, in this study, we use
TAZ as the geographical unit for cross-validation between
two data sources.
Cosine Similarity (CS) is a measure of similarity

between two nonzero high-dimensional vectors of an
inner product space that measures the cosine of the angle
between them (Wikipedia contributors, 2017). In our study,
each TAZ represents a unique dimension, and the region is
characterized by a vector where the value of each
dimension corresponds to the percentage of users with
identified purpose-specific places located in corresponding
TAZ. CS then can be used to measure how similar two
spatial distribution maps are likely to be, which is defined
as Eq. (7). CS takes the value in [0, 1]. A larger CS
indicates a better fit.

CS ¼
XN

i¼1
pCi � pSiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðpCi Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1
ðpSi Þ2

q , (7)

where:
pCi : The percentage of Weibo users with identified

purpose-specific places located in TAZ i;
pSi : The percentage of survey respondents with recorded

purpose-specific places located in TAZ i;
N: The number of TAZs.
As a supplement to CS, we also calculate the Distance

between Centers of Gravity (DC) of identified locations
with check-ins and recorded locations in surveys. In this
case, the Centers of Gravity of purpose-specific activity
distribution maps is defined as Eq. (8). The spherical
distance between two centers is calculated from their
longitudes and latitudes.

Centers¼
Xn

j¼1
Xj �

NjXn

i¼1
Ni

,
Xn

j¼1
Yj �

NjXn

i¼1
Ni

 !
,

(8)

where:
Xi: The latitude of centroid of TAZ i;
Yi: The longitude of centroid of TAZ i;
Ni: The number of activity-specific destination choices

located in TAZ i summed across all the individuals, and n
is the number of TAZs.
We further compare the distribution of commuters by

commuting distance traveled (one-way) from residence
location to workplace, for Weibo’s identified commuters
and survey’s self-reported commuters. Commuting dis-
tance is calculated as the spherical distance between
individual’s residence and work location. Coincidence
Ratio (CR) measures the percent of the area that
“coincides” for the two curves of distribution to compare
(Yang et al., 2015), as defined in Eq. (9). The maximum
commuting distance in our data set is about 120 km long,
thus the length interval is identified as 0.24 km, which
results in 500 intervals. CR ranges from 0 to 1, with a
higher value indicating a better fit.

CR ¼
XN

i¼1
minðpCi ,pSi ÞXN

i¼1
maxðpCi ,pSi Þ

, (9)

where:
pCi : The percentage of commuting distance in interval i

in check-in data;
pSi : The percentage of commuting distance in interval i in

travel log survey;
N: The number of intervals.

4 Results

4.1 Activity-mobility pattern

The calibration results show that, all of the four
parameters, concretely,a,b,k1,k2 give the best converging
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performance at the radius of 300 m (c.f. Supporting
materials Fig. S1 and Table S3), which is thus set to be the
radius for our clustering algorithm; and, the best estimates
of a,b,k1,k2 are set to be the means of the best 200 points in
storage, which are 0.93%, 9.25%, 6.1%, and 1.92%
respectively.
Running the calibrated identification algorithm on the

whole Weibo data set, generates a newly labeled sample in
which 65450 users’ home and 63399 users’work place can

be identified. The CS index for home spatial layout is 0.48.
Hot spots for the residences of Weibo users are mostly
distributed in the districts of Haidian and Chaoyang, where
most schools and universities are located; whereas, hot
spots for survey respondents’ home locations are dis-
tributed in inner area and southern suburban regions (c.f.
Figs. 4 a1 and 4 a2). This is probably because Weibo users
are mainly students, whose major residences are within the
“School District”. A high similarity of 0.65 for spatial

Fig. 4 Validation of activity-specific locations identified from check-ins with independent travel logistic surveys. The base map shows
the spatial layout of Beijing’s ring roads. Kernel density estimation is conducted to obtain a smooth distribution. (a1 and a2). The
identified-home and recorded-home density maps for major metropolitan districts in Beijing. (b1 and b2) The identified and recorded
workplace density maps of Beijing. (c1 and c2) The identified and recorded entertainment density maps of Beijing.
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distribution exists between Weibo users’ and survey
respondents’ workplaces (c.f. Figs. 4 b1 and 4 b2). In
Beijing, the city center is still attractive regarding work
opportunities and commercial infrastructure, where most
employment is concentrated now, which may account
partially for the strong coincidence between work
distributions discerned from the two data sets. Compared
to commuting locations, less consistency appears in the
spatial distributions of locations for entertainment and
other activities, which is around 0.30–0.35. As inferred
from Figs. 4 c1 and 4 c2, Weibo users’ leisure areas are
mostly toward the districts of Dongcheng and Chaoyang,
whereas survey respondents tend to go to the inner areas
for entertainment. This is probably because Weibo users,
representative of young population in a city, prefer
commercial facilities such as shopping centers and bars
that mostly located in the north and east of Beijing to
public parks in the city center. Intuitively, one would not
travel long distances to a shopping mall far away from
home, when similar facilities are available nearby. There-
fore, it is highly possible that most places where people
participate in non-commuting activities are distributed
around their living places. Therefore, hot spots for non-
commuting activities are concentrated in the same region
where most people live (for other density maps, see
Supporting materials, Fig. S2).
We further evaluate the commuting distance distribution

of identified local commuters. Obvious difference exists
between the two cumulative distribution curves, with the
CR index of only 0.28; check-in data overestimate the
frequency of zero-distance commuting. In reality, some
people may work at home or live at their workplace. For
those individuals, our algorithm would end up with the
same location identified as both home and workplace. The
facts that students constitute a significant portion of Weibo
users, and home-based workers would not be treated as
commuters in travel surveys, are probably the reasons for
this mismatch.

4.2 Sample reconstruction

We perform sample reconstruction on the central three
zones of inner area, functional extended area and new
urban district to represent urban Beijing, because, as
shown in our data set, these zones account for 91% of all
the population and over 99% of working opportunities of
Beijing. Fangshan district is excluded for the limited
number of sample data there. Based on the constraint
variables we specify, only the Weibo samples whose age
and gender information are available, and home locations
can be identified as well as located within the selected
districts, would be used for sample reconstruction. These
specifications give us a data set composed of 24518
samples.
Our analysis shows that all the constraining features at

the TAZ level are reproduced with no misclassification (c.f.
Supporting materials, Table S4). The reconstructed
population can be seen as an artificial sample as
representative as survey respondents under the constraints
we formulate. The results show that socio-demographics
and commuting patterns of the reconstructed population
matches well with those of survey respondents, with the CS
index for the spatial distribution of population and
workplace as 100% and 65% respectively. A good match
is achieved for the spatial distributions of the destinations
for entertainment (54%) and for other activity (54%).
Besides, all the centers of gravity migrate south-west after
sample reconstruction; the resulting new activity-specific
centers move closer toward the corresponding centers
discerned from survey data (c.f. Fig. 5).
Generally, our proposed sample reconstruction techni-

que for correcting sample bias works relatively better for
commuting activities than for non-commuting activities.
There are two main reasons. First, working opportunities in
Beijing are center-toward; meanwhile, the age profiles of
commuters are normally concentrated within a specific age
range, like 27 to 50, which is covered relatively sufficiently
in both data sets. For non-commuting activities, the active
participants are usually people aged 50 and above, who
have more leisure time available after retirement. However,
these people are under-represented in check-in data.
Reconstructing a population with “unbiased” age profiles
will result in cloning just a limited number of elderly
persons multiple times, which could only bring small
modifications to the resulting activity spatial distributions.
Second, compared with commuting activities, individuals
usually have much more freedom when choosing recrea-
tional destinations. Therefore, it is quite likely that the
discrepancies result from individual diversities.
Furthermore, we examine at the sub-district level how

the commuting distance distribution patterns change after
sample reconstruction. In general, as compared with
identified commuters from Weibo data, the commuting
distance distribution curve of synthetic commuters from
reconstructed population is more consistent with that of
survey respondents (c.f. Fig. 6). More specifically, after
sample reconstruction, the CR index is increased substan-
tially from 0.23 to 0.63. Furthermore, in inner zone and
functional extended zone, the district-specific CR index of
the synthetic commuters are all approximately 0.50 or
above (c.f. Supporting materials, Table S5). Commuting
distance distributions of commuters from new urban
districts are only improved to a limited degree. This is
probably because in these areas, much bigger diversity
exists in residents’ travel behaviors, while available data
there may not be sufficient to reflect fully this large
diversity.
Based on the above analysis, we have demonstrated that

sample reconstruction can be a useful sampling bias
correction method to adjust the bias in social media data.
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However, discrepancies still exist between spatial mobility
patterns discerned from synthetic and survey data. First,
there are still other socio-demographics assumed to be
influential on travel behavior, such as employment,
occupation, housing area, and housing tenure (Ma et al.,

2014), which are absent in Weibo users’ profiles and thus
can not be included in our synthesis process. As a result,
the generated population may not match well with survey
respondents under these attributes. Second, check-in data
and travel logistic survey data are both a representative

Fig. 5 Performance of sample reconstruction. (a) Distance between Centers of Gravity index before and after sample reconstruction for
activity category of Home (H), Work (W), Entertainment (E) and Other (O). The transparent bars with un-bold data labels indicate the
check-in data’s baseline accuracy, expressed in terms of Weibo microdata-survey similarity. (b) Centers of Gravity of activity-specific
spatial distribution maps. We refer to the check-in data as “microdata”, and reconstructed data as “syn”. Movements of centers are denoted
by arrows. Here, synthetic center coincides with survey center for home distributions.

Fig. 6 Commuting distance distributions. The direct and cumulative distribution curves of commuting distance. Here, “Survey” refers to
survey data; “Microdata” refers to Weibo data after location identification; “Synthesis” refers to generated population after sample
reconstruction. After sample reconstruction, the frequency of zero-distance commuting has been largely reduced. The synthetic
distribution curve is more consistent with survey data though it slightly overestimates the frequency of commuting distance longer than
3 km.
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sample from the total population and each just reflects one
component of the entire array of complicated daily human
behavior. Considering that the data we use are only a
subset of all geo-tagged check-in records available on
Weibo, when a sufficiently large data set is utilized, the
inferred results would improve further.

5 Conclusions and discussion

In this research, we explored the capacity of social media
data for human mobility analysis. A three-step methodo-
logical framework, including purpose-specific location
identification, bias modification, and out-of-sample valida-
tion, was proposed and then tested using check-in records
crawled from Sina Weibo. An independent citywide travel
survey was used as the benchmark data set for validating
the results. Our analysis shows that Weibo users’ and
survey respondents’ demographic profiles and mobility
patterns have distinct features. This implies a strong
influence of socio-demographics on people’s activity
participation and destination choices. We first tested the
possibility of using a spatial population synthesis techni-
que to solve the bias-modifying problem of check-in data.
Our results showed that socio-demographics and activity-
specific spatial layouts of the reconstructed population
match satisfactorily with those of survey respondents.
Comparing the inferred results from big data to aggregated
results from an independent travel survey represents a very
important step toward big data validation. However, it
should be noted that the inferred results at the individual
level could have great uncertainty even though a high level
of accuracy is observed at the aggregate level (Chen et al.,
2016). Besides, the target distribution used for sample
reconstruction in our study was extracted from the survey
data. The extent to which the resulting synthetic population
could represent the real one largely depends on the quality
of the survey data. In general, such survey data have a
relatively small sample size, compared with the whole
population, and thus the data might not be representative
enough in some cases. Another thing to keep in mind is
that, check-in data and travel log survey data are both
sampled from the total population, and each only presents a
certain configuration of the reality. Therefore, combining
knowledge learned from multi-source data would lead us
much closer to the real system. The method we proposed in
this research would also be a straightforward and easy-
undertaking technique for cross-domain integration of
heterogeneous human spatiotemporal data.
Another remaining challenge of using check-in data for

transport-related analysis, especially in advanced travel
demand models, is that it has missing activities, since users
share their activities voluntarily. Moreover, information on
the mode of transport is also missing. However, these are
not the focus of this article. An attempt in this domain can
be found in Hasan and Ukkusuri (2018), where they

applied Continuous-Time Bayesian Network model to
extract the true transition and duration distributions from
the incomplete trajectories of Twitter users. Transportation
mode can also be extracted from Weibo text using text
mining and natural language processing approaches. As
suggested by Rashidi et al. (2017), constructing a
dictionary for this purpose is not as complicated.
Social media check-in data opens up a novel data set for

urban analysis. Compared with traditional surveys, this
data set apparently has more advantages, including larger
sample size, real-time updating, less-prone to cheating, and
a much lower acquisition cost. Especially in new urban
districts, where population size, structure, and mobility
patterns are significantly changing, whereas the survey
data are not available or too expensive to collect, this study
has validated that through a proper way for analyzing
Weibo data, such data can be a moderate and cost-effective
alternative source of mobility information. The proposed
framework can be extended in several directions. Relying
on the commuting mode shares and emission intensities of
each mode from supplementary databases, the commute
estimates in our work can be easily extended to carbon
footprints analysis. Another potential extension is to fill the
missing activities in check-in sequences with the help of
activity transition probabilities and purpose-specific trip
distance distributions from travel surveys. Such models
will provide valuable information for transportation
emission modeling. For instance, the activity-location
sequences generated can be integrated with state-of-the-art
network assignment model to obtain dynamic traffic flows
on the road network, and then feed them to transport
emission model, which will be able to infer the gas
consumption and pollution emissions incurred by passen-
ger travel at a high temporal and spatial scale. Most
importantly, Weibo data makes a detailed activity-based
travel analysis possible as geo-tagged venues are categor-
ized based on the POI type of the visited places.
Incorporating such information enables urban planners
and environmental specialists to estimate the volume of air
pollutants that would be generated during certain time
intervals, between specific regions, and to fulfill different
needs. This can facilitate a better understanding of urban
organization and its environmental effects. The long-
itudinal nature of social media data could also enable
planners to deal with valuable questions like “how does
human mobility evolve over a year?”, “what is the role of
the underlying built environment in forming human
mobility and further transportation emission?”
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