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1 Introduction

Anaerobic degradation or digestion (AD) is a microbial-
mediated process in which organic carbon is converted, by
subsequent oxidations and reductions, to its most oxidized
state (CO2), and to its most reduced form (CH4). This
biological route is catalyzed by a wide range of
microorganisms acting synergistically in the absence of
oxygen. It is well known that AD is responsible for carbon
recycling in different environments, including wetlands,
rice fields, animals’ intestines, aquatic sediments and
manures. This process is also extensively applied in
industrial scale for valorisation of organic residues. Waste

and wastewater treatment has become a political priority in
several countries. Biowastes, i.e. sludge, manures, agri-
cultural or industrial organic wastes, as well as contami-
nated soils etc., have been traditionally applied in soils
untreated as biofertilisers or deposited in landfills or even
in worst cases dumped into the environment. However,
environmental awareness has introduced strict legislations
preventing such practices. For example, European Union
set specific permitting rules for disposal of biodegradable
organic matter to landfills. Treatment of biowastes by AD
processes is in many cases the optimal way to convert
organic waste into useful products such as energy (in the
form of biogas) and soil conditioner (fertilizer). This
practically means that after stabilizing the biowastes, by
extraction of the energy potential, the remaining residues,
can be returned to the agricultural soils providing all the
necessary beneficial nutrients and maintaining humus and
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H I G H L I G H T S

•A comprehensive description of the biogas
process is presented.

•Main operational parameters influencing the
biogas process are reviewed.

•A historical overview of the biogas development
is extensively presented.

•The current status of anaerobic digestion for
biogas production is discussed.

•New horizons for exploitation and utilisation of
biogas are proposed.
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G R A P H I C A B S T R A C T

A B S T R A C T

Biogas production is a well-established technology primarily for the generation of renewable energy
and also for the valorization of organic residues. Biogas is the end product of a biological mediated
process, the so called anaerobic digestion, in which different microorganisms, follow diverse
metabolic pathways to decompose the organic matter. The process has been known since ancient times
and was widely applied at domestic households providing heat and power for hundreds of years.
Nowadays, the biogas sector is rapidly growing and novel achievements create the foundation for
constituting biogas plants as advanced bioenergy factories. In this context, the biogas plants are the
basis of a circular economy concept targeting nutrients recycling, reduction of greenhouse gas
emissions and biorefinery purposes. This review summarizes the current state-of-the-art and presents
future perspectives related to the anaerobic digestion process for biogas production. Moreover, a
historical retrospective of biogas sector from the early years of its development till its recent
advancements gives an outlook of the opportunities that are opening up for process optimisation.
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structure in soils. The main advantages of the industrial
AD process rely on the production of a versatile energy
carrier and the high degree of organic matter reduction
with small increase-in comparison to the aerobic process-
of the bacterial biomass.
This review aims to summarize the current knowledge

on biogas production process and to describe innovative
trends that are envisioned to have a strategic role in the
near future.

2 Biogas and its utilization for energy
production

2.1 Feedstock strategies

There are different ways to classify the operation mode of
biogas plants depending on the influent feedstock, the
applied temperature and reactor configuration. The reactor
type for anaerobic digestion is largely determined by the
consistence and dry matter content of the influent to be
treated. For influent substrates below 500 mg/L Total
Suspended Solids (TSS) reactors with flocculent sludge
can be used. For higher TSS content in the influent
substrates (0.5 to 2–3 g TSS/L) immobilised granular
sludge type reactors such as UASB, or EGSB can be used.

Finally, Continuous Stirred Tank Reactors (CSTR) are
most commonly employed for slurries, such as manures,
with TSS in the range of 30 to 70–80 g/L). For higher dry
matter content substrates (>100 g/L) special types of rector
configurations have been developed taking into account
mixing and transportation of the solid influents. An initial
variation can be defined among dry and wet fermentation.
The term “dry fermentation” describes the degradation
process, which is characterized by high solids content
ranging from 15% to 35% (or even higher for batch garage
type reactors using solid waste), while on contrary, during
“wet fermentation”, the solids content is up to 10%, and
thus the liquid content is comparatively higher [1]. The
initial design of the plant’s configuration is dependent on
the selection between these two fermentation processes. It
has to be noted that the methane yield varies significantly
among different substrates based on their chemical
composition (Table 1).
The theoretical methane yields of typical substances

suitable for anaerobic digestion are presented in Table 2.
Very few biogas plants apply a mono-digestion operation
(i.e. the digester processes only a single feedstock). The
majority of the biogas plants follow co-digestion feeding
strategies due to poor methane potential, high concentra-
tion of inhibitors (e.g. phenols, ammonia etc.) or seasonal
availability of specific substrates. During the co-digestion

Table 1 Methane yield of various organic residues

Category Substrate Methane yielda) (mL-CH4/g VS) Reference

Livestock manure Cattle manure 242–399 [2–5]

Mink manure 239–428 [2,6]

Pig manure 313–322 [3,7,8]

Poultry manure 107–438 [2,8–10]

Agricultural wastes Barley 322–335 [3]

Corn silage 270–298 [5,11]

Fruit & Vegetable waste 153–342 [8,12]

Meadow grass 282–388 [2,3,7]

Palm Oil Mill Effluents 378–503 [12]

Rice straw 279–280 [8,13]

Ryegrass 140–360 [3,11]

Switchgrass 122–246 [5,8]

Wheat 245–319 [3,8]

Oil/LCFA Rapeseed oil 704�13 [14]

Oleic acid 837�0.3 [14]

Household/
Municipal/
Industrial wastes

Kitchen waste 541–683 [8,15]

Organic fraction of municipal solid waste 300–570 [16,17]

Solid cattle slaughterhouse wastes 561–657 [16]

Sewage sludge 249–274 [18,19]

Macroalgae Laminaria digitata 359�5 [20]

Saccharina latissima 285�19 [20]

Notes: a) Results are based on biochemical methane potential tests. Differences in values may be attributed to the specific chemical composition of the tested substrates
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concept, various organic residues, which usually have
dissimilar characteristics, are simultaneously treated in the
same anaerobic digester. The advantages of the co-
digestion process can be summarized as follows:
� Increases loading of readily biodegradable matter

depending on the chemical composition of the used
substrates [12,18].
� Improves buffer capacity of the influent mixture

maintaining the pH levels within the range for methano-
genesis [21,22].
� Provides better nutrient balance, especially for

improving the C/N ratio [7,23,24].
� Dilutes inhibitory compounds avoiding deterioration

of the anaerobic digestion process [2,25].
� Leads to higher volumetric methane production [3,26].
� Promotes synergistic effects leading to advanced

biodegradation [14,16,27].
� Contributes in solving problems related to the

digesters’ stirring or pumping, especially while processing
solid wastes [28].
� Improves the economics of biogas plants [29,30].
� Provides better hygienic stabilization [31].

2.2 Main operational parameters influencing the biogas
process

2.2.1 Temperature

The overall digestion process occurs in anaerobic reactors
that operate under mesophilic (30°C–40°C, mainly 35°C–
37°C) or thermophilic (50°C–60°C, mainly 52°C–55°C)
temperature conditions. The selection of the operating
temperature and its control at stable levels is of outmost
importance as these parameters are strongly affecting the
development of the digesters’ microbial structure [32–34].

Temperature fluctuations cause process imbalances asso-
ciated with accumulation of Volatile Fatty Acids (VFA)
and concomitant decrease in biogas production [35]. It is
well known that thermophilic conditions present a number
of advantages compared to mesophilic ones, namely:
� Can withstand higher organic loads due to faster

reaction rates [36,37].
� Shorter hydraulic retention time (HRT) of the reactor

which typically lasts 15 days at thermophilic and 20–25
days at mesophilic conditions [28].
� Can achieve better degradation of Long Chain Fatty

Acids (LCFA) [38].
� Produces lower amount and more qualitative effluent

digestate depending on the chemical composition of the
used substrates [37].
� Improves the energy balance of the process and lowers

the initial capital cost for investment due to the smaller
reactor size [37,39].
� Achieve better sanitation of the effluents [40,41]. This

is the main reason for choosing thermophilic temperatures.
For ensuring good effluent quality certain regulations have
to be fulfilled such as a minimum guaranteed holding time
at a specific thermophilic temperature. Therefore, many
thermophilic biogas plants are leading the effluents
through a holding tank where the effluents are retained
for number of hours to ensure good sanitation.
On the contrary, the drawbacks of thermophilic opera-

tion are associated with the requirement of more energy for
covering the increased thermal needs. The energy needs
are significantly reduced with good insulation of the tanks
and efficient heat exchanging. Other drawbacks are higher
risk of process instability especially in case of high
ammonia loads and reduced dewaterability [42,43].
Finally, another issue that was considered to prevent the
thermophilic operation of biogas plants was related to the

Table 2 Theoretical methane yield of typical compounds

Compounds
COD/VS
(g/g)

CH4 yield
a)

(mL-CH4/g VS)
CH4 yield

a)

(mL-CH4/gCOD)
CH4 content

a)

(%)

Carbohydrate
(C6H10O5)n

1.19 417 350 50

Proteinb)

C5H7NO2

1.42 497 350 50

Lipids
C57H104O6

2.90 1015 350 70

Ethanol 2.09 732 350 75

Acetate 1.07 375 350 50

Propionate 1.51 529 350 58

Iso-butyrate/Butyrate 1.82 637 350 63

Iso-valerate/Valerate 2.04 714 350 65

Notes: a) Methane yields are calculated at standard temperature and pressure conditions, i.e. 0°C and 1 atm. It is assumed that all the organic matter is converted to
methane and carbon dioxide. b) Nitrogen is converted to ammonia (NH3 or NH4

+)
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inoculation and start-up process [28,44]. Nevertheless,
nowadays, improved start-up strategies are developed to
alleviate this problem [34,43,45].

2.2.2 pH and volatile fatty acids

The biogas production process occurs in a defined narrow
pH interval ranging from approximately 6 to 8.5. In case
the pH of the reactor exceeds these limits then the process
is deteriorated resulting in a dramatic decrease in methane
production. Changes in the pH values can be correlated
with other operational parameters; thus, an accumulation
of organic acids (acidification) will typically lower the pH,
while increased ammonia concentrations or CO2 removal
will lead to an increment of pH values. It has to be
mentioned that the pH drop due to VFA accumulation is
additionally dependent on the used substrate. Some
organic residues, as for example cattle manure, have high
buffer capacity, and thus, are able to maintain the pH of the
system balanced. A pH drop will occur only in cases that
the concentration of VFA is remarkably high exceeding a
certain point and frequently the process is already severely
influenced. Therefore, the VFA accumulation can be seen
as a result of an already inhibited process, and is not
considered as the actual reason.
Currently, it is widely accepted that the VFA are

recognized as one of the state indicators for the biogas
process [46]. More specifically, the concentration profile of
individual VFA and especially the ratio between them can
provide essential information for process monitoring and
can serve as early indicators for potential imbalances. For
example, in a deliberate inhibitory shock of a manure-
based biogas reactor with Long Chain Fatty Acids (LCFA),
it was shown that the acetate to propionate ratio was
reversed shortly after the LCFA injection, reflecting the
process disturbance [47]. Neither the concentration of the
total VFA nor the pH was found to be changed highlighting
the importance of individual fatty acids as key inter-
mediates for detection of upsets during the biogas
production process [46,47].

2.2.3 Inhibitors of the process

During AD, there are some compounds that, if their
concentration exceeds certain limits, can reduce the biogas
production or in worst conditions can cause fatal
deterioration of the process. These compounds are either
toxic substances or intermediate metabolic products. In
general, methanogens are considered to be more sensitive
to a potential exposure to toxicants compared to bacteria.
One of the most common inhibitors of AD process is the

increased ammonia concentration. Ammonia is present in a
wide variety of organic residues, as for example swine or
poultry manure and high proteinaceous sludge [9,10,48].
Moreover, ammonia can also be formed during protein

degradation or can originate from other compounds, such
as urea [49,50]. It is well documented that the inhibitory
effects are attributed to the free ammonia (NH3) and not to
the ammonium ion (NH4

+). In general, it is reported that a
concentration of total ammonia nitrogen between 1.7 to 14
g/L can cause 50% reduction in the methane production
[51]. However, the absolute concentration value above
which ammonia leads to process inhibition is difficult to be
quoted as this is additionally dependent on other factors,
such as temperature, pH or inoculum source. More
specifically, free ammonia is in equilibrium with ammo-
nium ion and its concentration depends on the pH value.
Similarly, the equilibrium is affected by the operational
temperature; higher temperature leads to higher concentra-
tion of free ammonia, resulting in more intense toxicity
phenomena. Ammonia inhibition causes also VFA accu-
mulation, which will in turn decrease the pH of the reactor.
The lowering of the pH will partially alleviate the toxicity
effect of ammonia as the concentration of free ammonia
will be decreased. However, this homeostatic mechanism
will maintain the operation of the reactor in a relapsed
phase, which is called “inhibited steady state” condition. It
has been previously reported that many full-scale biogas
plants that operate under inhibited steady-state conditions
due to high ammonia loads are losing up to 30% of their
maximum methane production yield, which obviously lead
in serious operational problems and significant economic
losses [52].
Another compound that is associated with toxicity

effects of biogas production process is the Long Chain
Fatty Acids (LCFA). Various agro-industrial residues, as
for example slaughterhouse wastes, food wastes and olive-
mill wastewater, contain high concentrations of LCFA. The
inhibition caused by LCFA is attributed to the accumula-
tion of compounds produced during β-oxidation, which
can not be further oxidised as the required reactions are
thermodynamically unfavorable [38]. Therefore, it has
been previously reported that LCFA affect negatively the
activity of hydrolytic, acidogenic, acetogenic bacteria and
methanogenic archaea [53,54]. It was found that methano-
gens are more tolerant to the inhibitory effect of LCFA
compared to the bacterial community [55]. Moreover,
hydrogenotrophic methanogens are more resilient to LCFA
toxicity than acetoclastic methanogens [53]. It has been
proven that LCFA inhibition does not necessarily lead to a
fatal deterioration of the process, but is rather a reversed
phenomenon [47,54]. A recent metagenomic study
demonstrated that a biogas microbial community, which
is previously exposed to LCFA, recovers faster from the
inhibitory shock compared to a non- adapted microbial
consortium and also that the process is less deteriorated
[47].
Finally, another problem of biogas plants is related to

foaming incidents, which are caused by operational
problems (e.g. poor mixing, organic overload etc.) or by
specific biosurfactants produced during AD process
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[14,56]. A survey reported that foaming incidents in full-
scale biogas plants often lasted from one day to three
weeks, resulting in 20%–50% biogas production loss [57].
Foaming is not leading to VFA accumulation or acidifica-
tion of the rector like the other inhibitors. However, the
process imbalance is attributed to the thick layer that is
formed on the reactors surface, entrapping the produced
biogas, reducing the reactor active volume and thus
creating dead zones. Several strategies, mainly based on
the addition of chemical agents, have been employed to
counteract foaming incidents either by preventing the
formation of foam or by destructing it once it is created
[58].

2.3 End-use of biogas in the energy sector

Biogas is mainly composed by carbon dioxide (25%–50%)
and methane (50%–75%); however, minor quantities of
nitrogen, hydrogen, ammonia and hydrogen sulphide
(usually less than 1% of the total gas volume) are also
present [59].
Traditionally, biogas is exploited for generation of heat

or combined heat and power (CHP). Especially in
developing countries, in which electrical power is limited
and people rely on biomass utilization for covering their
energy needs, biogas is extensively employed for fuelling
cooking stoves [60,61] and for providing lightning [62].
The biogas reactors in these areas are household scaled
with a typical size of only 2–10 m3, which does not allow
the accommodation of CHP or purification processes [63].
On the contrary, in farm-scale or centralised biogas plants,
the generated gas is burned in a CHP unit, and depending
on the efficiency of the engine, is transformed to
approximately 35%–40% electrical energy, 45%–50%
heat, while 15% are energy losses. It has to be noted that
the impurities contained in biogas, and especially hydro-
gen sulphide, must be removed to avoid any damage or
corrosion of the combustion engines. Moreover, as a result
of carbon transformation, organic bound minerals and salts
are released and contained in the reactor’s effluent stream,
which can be further utilized as soil conditioners (i.e.
biofertilisers). As it will be further discussed, more
attention is given nowadays to the expansion of biogas
utilization as transportation fuel or as substitute to natural
gas. To do so, the contained impurities in the biogas and
mainly the CO2 have to be removed. This led to an
increment of cleaning and purification processes contribut-
ing to a greater market potential for biogas sector [64].

3 Anaerobic digestion—Past

The biogas process has been recognized since ancient
times. The first reference related to biogas was mentioned
by Plinius, and was referring to mysterious flames

appearing from swamps or other subsurface locations. At
those times, this observation was considered to be caused
by dragons or other mythical phenomena [65]. Moreover,
anecdotal evidence suggests that biogas was used in
Assyria during the 10th century before Christ (BC) in order
to heat bath water [61]. The first attempt to describe biogas
was made by the Italian physicist and chemist Alessandro
Volta in 1777, who found methane in the marshes of
Maggiore Lake [66]. Afterwards Cruikshank in 1801
proved the absence of oxygen molecules in methane, while
Dalton provided the correct methane formula in 1804 [65].
Systematic investigations initiated in the second half of the
nineteenth century, during which the microbiological basis
for the AD process was founded. The first one that
demonstrated that methane was derived from a micro-
biological process was Béchamp in 1868 [67]. Shortly
after, it was established that the polymers were hydrolysed
by enzymatic activity, and that organic acids were
produced as intermediates. In the beginning of the 20th
century, and more specifically in 1906, Omelianski [68]
and particularly the Dutch microbiologist Söhngen [69]
showed that methane-reducing bacteria can directly utilize
the products from cellulose fermentation (e.g. formate,
acetate, ethanol, hydrogen and carbon dioxide). Some
attempt was also given to establish knowledge about the
microorganisms responsible for the different steps of the
AD food chain. It is impressive that the mechanisms of
recent trends in anaerobic digestion related with the biogas
upgrade were first formulated more than a 100 years ago;
Söhngen’s experiments in 1910 using enriched cultures
[67] concluded to the formulation of stoichiometric
equation of hydrogenotrophic methanogenesis:

CO2 þ 4H2↕ ↓CH2 þ 2H2O

Later, in 1933, with the work of Buswell and Boruff [70]
theoretical calculations of the methane potential were
established. The first methane producing microorganisms
were isolated in 1936 and were Mathanobacillus ome-
lianskii, Methanobacterium formicicum, Methanosarcina
barkerii, and Methanococcus vannielli [67]. Since then, a
much deeper knowledge about the AD process has
emerged.
Back to the technological progresses, it is known that

since 1860, septic tanks were introduced for sewage
stabilization. It is reported that in 1890 a septic tank was
designed by Donald Cameron from which the produced
biogas was collected and used for street lightning in the
city of Exeter, England [71]. The first AD plant was built in
a leper colony in 1859 at Bombay, India [72]. In China, the
commercial use of biogas was attributed to Guorui Luo
who constructed in 1921 a 8 m3 biogas tank fed with
garbage to supply the energy for cooking and lighting his
family house [73]. The same period started the commer-
cialisation of biogas utilization in the western world. In
1920, the first sewage treatment plant in Germany was
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supplying the gas grid with biogas [61]. However, the
biogas momentum occurred in the 1970s, as a result of
high oil prices that motivated research work in finding new
alternative energy sources [61]. Increasing trend was also
seen in research activities, which started growing after the
first energy crisis mid-seventies, but mainly, when the
awareness to climate changes and renewable energy at the
end-nineties was settled. This can be verified by the
number of research articles that are annually published in
scientific journals as illustrated in Fig. 1.

4 Anaerobic digestion—Current status

4.1 Fundamentals about the AD process

The general model for anaerobic degradation of organic
matter includes four consecutive steps, namely hydrolysis,
acidogenesis, acetogenesis and methanogenesis. Initially,
fermentative bacteria hydrolyze the organic polymers to
soluble oligomers and monomers by the action of
extracellular enzymes. Subsequently, the dissolved pro-
ducts are further utilized by bacterial species in order to
form short-chain fatty acids (i.e. lower than 6 carbons),
acetate, alcohols, hydrogen and carbon dioxide. Short-
chain fatty acids with more carbons than acetate and
alcohols are oxidised by acetogenic bacteria resulting in
the production of acetate, formate, hydrogen and carbon
dioxide. Finally, the latter compounds are utilized by
archaea (or by syntrophic interaction between syntrophic
acetate oxidising bacteria and hydrogenotrophic archaea)
to produce methane. This flow depicts a simplified
representation of the process, which still requires intensive
research so as to be fully elucidated.
Nevertheless, the knowledge about the biogas process

has significantly increased during the recent years. New
substrates (e.g. algae [74]), novel applications (e.g. biogas
upgrading [75–77]), solutions of AD problems (e.g.

ammonia toxicity [78,79], accumulation of Long Chain
Faty Acids [80,81]), new tools for process monitoring (e.g.
VFA sensors [82], modeling [83]), different reactor
configurations (e.g. serial [35], membrane reactors [84])
are among the technological and methodological advance-
ments that have been recently achieved. Especially, the
significant reduction in the cost and required time of high
throughput sequencing techniques enabled a rapid pro-
gression in understanding the complex AD microbial
process. Not only information about the complex microbial
composition, but also about the expression of the different
genes at various environmental conditions has been
enlightened, giving enormous possibilities which can be
explored in the future. Nowadays, advanced –omic tools
are employed to decipher the AD black box. Thus,
genome-centic metagenomics coupled with metatranscrip-
tomics, metaproteomics, metabolomics or stable isotope
probing are used in order to associate specific metabolic
processes with microbial species [85–91]. Apart from the
syntrophic interactions between members of the AD
microbiome, it was recently demonstrated that the AD
food chain resembles a funnel concept (Fig. 2), involving
novel microbes with broad functional roles at the initial
steps of the process; subsequently, the community
becomes steadily more specialized while reaching the
last step of methanogenesis [88].

4.2 Statistics of biogas plants

The biogas process has been known and utilized for many
years, but especially after the rise of energy prices during
the 1970s, the process has received renewed attention due
to the wish of finding alternative energy sources to reduce
the dependency on fossil fuels. Although the price of fossil
fuels decreased in 1985, and since 2015, the interest in the
biogas process still remains due to the environmental
benefits of anaerobic waste degradation. The main
applications of biogas are in the area of treatment of

Fig. 1 Annual number of scientific articles indexed in “Scopus” and “Web of Science” databases based on the keyword “biogas”. The
decreased number of “Web of Science” for year 2017 is attributed to the time needed for the database to be updated
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primary and secondary sludge from domestic wastewaters,
household solid wastes, manures, industrial wastes and
agricultural residues. In respect to the energy output, the
main contributors are however, mainly manures, industrial
wastes, and agricultural residues, while municipal bio-
masses (sludges and household wastes) are playing only a
minor role and the biogas process can be more seen as
waste treatment methods for these waste streams, rather
than bioenergy production factories.
Biogas plants are constantly proliferating in most parts

of the world. Nowadays, the main contributor in biogas is
China. China has an impressive number of biogas plants. It
is estimated that there are around 50 million family scale,
4000 farm scale around, 2500 industrial (mainly for high-
strength wastewater), and a few biogas plants treating
wastewater sludge. Moreover, India has a considerable
number of biogas plants mostly small scale and family
owned. In Europe there is an increasing tendency in
construction and expansion of biogas plants (Fig. 3). This
is strongly motivated by the EU legislation which set as
target 20% renewable energy contribution by year 2020.

5 Anaerobic digestion— Future perspec-
tives

Despite AD has been known and applied for hundreds of
years, both the technology and the applications are still
relatively simple. So far, the process has been largely seen
as a “black box” and the microbiology behind the process
was taken as given, not able to manipulate. However, with
the recent progress in microbial ecology, taking advantage
of the huge development in sequencing technologies and
by using bioinformatics, the biogas microbiome has started
to be deciphered. Currently, several studies identify novel
uncultivated microbes along with clarification of several of
their metabolic interactions. It is certain that new
information is progressively gained in tremendous high
speed. This new knowledge will be used in the future for
steering the AD in a more specialized way, tailored to the
specific needs of the process. It is envisioned that the
biogas sector will soon be in the era, in which advanced
microbial resource management, interventions in microbial
composition, and in some cases, entirely customised

Fig. 2 Representation of the functional roles of the microbial species involved in the different steps of AD process resembles a funnel as
reported by Campanaro and collaborators [88]. The species involved at each step of AD can be found at the original Figure of the cited
article [88]
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microbial consortia will be applied. This will result in more
efficient AD process with enhanced utilization of biomass.
Moreover, it can not be disputed that microbiology will
play a great role in diagnostics and monitoring of AD
process by the exploitation of specific biomarkers.
Currently, there is a lack of automatic control in biogas

plants and the process is mainly laying on empirical
practices and man-made decisions. Therefore, the biogas
digesters are occasionally overloaded or sometimes the
biogas plant operators decide to follow a more conserva-
tive feeding strategy; in both cases, the profitability of the
biogas plant is reduced due to the loss of potential methane
production or due to imbalances. Advanced monitoring
and control is going to play an essential role in the future
biogas plants contributing significantly in process optimi-
sation. Several monitoring sensors are already emerging
and it is foreseen that their coupling with control models
and algorithms will dominate the decision making process
of the biogas plants.
Based on existing statistical data, it is projected that the

number and the energy capacity of the full scale biogas
plants will increase. Also, standardised family scale biogas
reactors are going to be deployed in rural areas, avoiding
the frequently occurring cases of abandoned digesters. It is
estimated that around 50% of these household scale biogas
reactors were abandoned in the past due to either poor
construction or improper operation. Therefore, there is an
increased market potential for the construction of turn-key
biogas facilities with standardised plug-in modules.
In respect to novel applications, biogas will play a

significant role in the creation of a sustainable circular
economy where not only the organic matter but also
nutrients (N, P) are recycled, returning the organic residues
back to the societal community as energy, fuels and
bioproducts. Therefore, besides heat and electricity biogas
is going to be widely applied (after upgrading to
biomethane) as vehicle fuel and will be added into the
natural gas grid. To fulfil this goal, synergies with other
renewable energy systems (e.g. wind or solar) through
Power-to-Gas (P2G) concepts are projected, supported by

the sharp decrease in the production cost of renewable
electricity, which has been recorded during the last decade.
The new P2G technologies will aim to balance the on-
demand electricity supply and also to provide cost effective
solutions for the development of autonomous smart grids,
especially in areas (e.g. islands) that are disconnected from
the centralised electricity grid. The time frame in which
such concepts will be demonstrated at full-scale is
depending on various parameters, as for example the
fluctuating electricity price, the CAPEX of the technolo-
gies and incentives provided by the local governments (e.g.
energy strategy, feed-in tariff policies etc).
Moreover, apart from the conversion of CO2 to

biomethane, it expected that biogas will be exploited for
the production of more advanced molecules. Under these
concepts methane will be used as source for specific
microorganisms (e.g. methanotrophic bacteria) to generate
valuable compounds. High value added products like
proteins (single cell proteins; both microalgae, methylo-
trophic bacteria and hydrogen oxidising bacteria), extra-
cellular polysaccharides, bioplastics (e.g. polyhydroxy-
alkanoates), platform chemicals (e.g. biosuccinic acid,
hexanol, lactic acid) are going to be targeted. Again, the
implementation of the aforementioned processes at
industrial scale relies on the successful addressing of
biotechnological challenges, which can be overcome by
interdisciplinary research. Thereby, the wastes and organic
residues will get much higher economic value compared to
their conventional conversion to biogas and in turn, biogas
production will open new horizons for expanding its end
use.

6 Conclusions

Biogas production process is an established technology for
energy generation. However, recent trends open new
horizons for exploitation of biogas, expanding its potential
applications. Since the biogas market is facing rapid
development, it is envisioned that more advanced

Fig. 3 Biogas plants in Europe by end 2015 [92]
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monitoring and control of the process is going to provide
better utilization of the treated biomasses. A deeper
understanding of microbial insights is going to play a
more important role for tailoring the biogas process and for
deciphering the anaerobic digestion “black box”. Finally, it
is foreseen that in the future the biogas plants are going to
constitute advanced bioenergy factories with more secure
and stable operation.
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