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1 Introduction

Pharmaceuticals and personal care products (PPCPs) are a
group of emerging contaminants, which consist of
antibiotics, analgesics, steroids, antidepressants, antipyre-
tics, stimulants, antimicrobials, disinfectants, fragrances,
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H I G H L I G H T S

•Recent publications on PPCPs in surface water
environment in China were reviewed.

•Antibiotics received more attention than other
PPCPs in surface water environment.

•Uneven attention has been focused across
different study areas in China.

• Sulfamethoxazole showed the most significant
environmental risk in surface water.

•Higher risks were posed by PPCPs in sediments
than in surface water.
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G R A P H I C A B S T R A C T

A B S T R A C T

Pharmaceuticals and personal care products (PPCPs) have been regarded as an emerging problem in
the surface water environment in the past few decades. In China, although related studies were initiated
several years ago, an increasing number of studies on this topic have been conducted in recent years.
These studies have expanded knowledge of their occurrence, behavior and associated risk in the
surface water environment in China. This review compiles the most recent literature related to the
studies of PPCPs in the surface water environment in China. It includes PPCP occurrence in surface
water and sediments, their geographical distribution, and outcomes of the associated risk assessment. It
shows that antibiotics have received much more attention in both surface water and sediments than
other PPCPs. Compared to other countries; most antibiotics in the collected sediments in China
showed higher contamination levels. Many more study areas have been covered in recent years;
however, attention has been given to only specific areas. Environmental risk assessment based on risk
quotients indicated that sulfamethoxazole presents the most significant environmental risk to relevant
aquatic organisms; followed by ofloxacin, ciprofloxacin, enrofloxacin, 17α-ethynylestradiol, ibuprofen
and diclofenac. Despite limited research on the environmental risk assessment of PPCPs in sediments,
higher risks posed by PPCPs in the sediments rather than surface water were identified highlighting the
need for further risk assessment of PPCPs in sediment samples.
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cosmetics, and many other chemicals that are widely used
on a daily basis for various purposes [1]. With the
development of highly sensitive and quantitative analytical
techniques, PPCPs have been frequently reported in
different water environments, such as surface water and
groundwater. Although the detected concentrations in most
water environments fall in the range of ng$L–1 to mg$L–1,
the presence of several PPCPs has been found to cause
unexpected consequences and pose potential risks on non-
target species [2,3]. Therefore, in recent years, certain
regulations have been proposed to control or reduce the
possible risk posed by PPCPs. For instance, “Strategies
against pollution of water”, which was launched by Water
Framework Directive (WFD) [4], requires the establish-
ment of a list of priority substances presenting a significant
risk to the aquatic environment. Although PPCPs are not
included in this list, some of them, such as diclofenac, 17α-
ethinylestradiol, azithromycin, clarithromycin and erythro-
mycin, are considered as chemicals of possible concern in
a watch list, and there is a requirement for measurement in
water bodies to ascertain if there is a significant risk to the
aquatic environment [5].
The occurrence and behavior of PPCPs in the surface

water environment in Europe and US have been well-
documented [5–8], while in China, related studies were
only initiated in the past ten years. Several researchers have
summarized the occurrence, fate and risks assessment of
PPCPs in the surface water environment in China [9–12].
Liu and Wong reviewed the contamination status by
PPCPs in various environment samples in China, including
surface water and sediments, and suggested that more
information on the contamination in aquatic environment
in different areas of China was required [9]. Yanget al.
reported a short review on emerging contaminants (ECs),
including PPCPs, in surface waters in China. This review
summarized the occurrence, regulations and control
technologies for ECs in the surface waters, providing
both pollution status and options for removal of ECs in
China [11]. Buet al.collected occurrence data of PPCPs in
surface waters and sediments in China, compared their
concentrations with those reported worldwide, and identi-
fied six priority PPCPs in surface waters according to a
screening level risk assessment [10]. These reviews
provided a good overview of PPCPs in the surface water
environment in China; however, they were based on a
limited number of studies published mostly before 2012.
In recent years, an increasing number of studies have

been conducted to investigate PPCPs in various surface
water environments in China, largely expanding the
knowledge of new research topics [13–28]. For instance,
only 58 relevant papers published from 2006 to 2012 could
be identified by a universal literature search using ISI Web
of Knowledge, PubMed, Elsevier, Springer, Google
Scholar, and two major databases for Chinese research
papers [10]. While, in the next two years (2013 and 2014),
at least 48 papers regarding the PPCPs in the surface water

environment in China were published in the journals
included in the ISI Web of Knowledge. As another
example, PPCPs in sediments were occasionally reported
in several papers before 2012; on the contrary, more than
25 research papers published during 2012 to 2015
discussed their occurrence, distribution, behaviors and
risks in the various sediments collected in rivers, lakes,
estuaries, and coastal bays in China.
Therefore, in the present paper, we reviewed recent

publications related to PPCPs in the surface water
environment in China. Special consideration is given to
the progresses made in the occurrence of PPCPs in the
surface water environment. The geographical distribution
of the study areas is also discussed. Moreover, various
methods as well as the main outcome of the risk
assessment of PPCPs in both surface water and sediments
are summarized.

2 Occurrence

2.1 Surface water

Antibiotics have been continuously focused on in surface
waters. In our previous review, we sorted the PPCPs by
number of times reported in studies about the occurrence in
the surface water in China, identified 20 most reported
PPCPs, which were reported in more than five related
papers, and found antibiotics accounted for 50% of the
most reported PPCPs [29]. While in the research papers
published during 2012 to 2015, 39 PPCPs were reported
more than five times (Fig. 1), with antibiotics accounting
for 72% of them. This increased interest in antibiotics
might be associated with the increased awareness of
antibiotic resistance genes in the surface water environ-
ment of China [30–32]. The ubiquitous presence of
antibiotic resistance genes probably promoted the deter-
mination of antibiotics in the surface water environment.
Thirteen of the most reported antibiotics are sulfona-

mides (SAs), accounting for 46% of the 28 most reported
antibiotics. Five macrolides (MLs), four fluoroquinolones
(FQs) and four tetracyclines (TCs) were included,
contributing to52% of the most reported antibiotics.
Eleven PPCPs other than antibiotics were reported more
than five times during the last four years. Four of them are
anti-inflammatories (ibuprofen, diclofenac, naproxen,
ketoprofen), and others are carbamazepine, caffeine, N,
N-Diethyl-meta-toluamide(DEET), triclosan, triclocarban,
clofibric acid and sotalol.
More types of surface water samples were analyzed for

PPCPs in the studies carried out during the last four years.
Before 2012, most studies about PPCPs in the surface
water environment in China were carried out in rivers.
While during 2012 to 2015, surface water samples
collected from rivers, lakes, reservoirs, estuaries, bays
and seas, have been analyzed for PPCPs. For instance, ten
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research papers reported the occurrence of PPCPs in
different lakes, such as Baiyangdian Lake, Taihu Lake,
Dianchi Lake, Chaohu Lake and BostenLake [33–42]. In
addition, in at least six studies, contamination of PPCPs in
the coastal environment, i.e. Laizhou Bay, Beibu Gulf,
Bohai Sea and Yellow Sea, was determined [43–48].
The average concentrations of the most reported PPCPs

(as shown in Fig. 1) in individual research papers
published during 2012–2015 were employed to conduct

statistical analysis, as shown in Fig. 2. Caffeine,
trimethoprim, erythromycin, sulfamethoxazole and tetra-
cycline exhibited relatively high contamination levels in
surface waters in China. The mean values of their average
concentrations in individual research papers were above 50
ng$L–1. The high contamination of antibiotics, namely
trimethoprim, erythromycin,and tetracycline, is probably
due to their widespread application as human and
veterinary medicines. For caffeine, the high concentration

Fig. 1 Number of times that PPCPs was reported in the surface water of China in research papers published during 2012–2015 (only
PPCPs which were reported more than five times are shown)

Fig. 2 Statistical analysis of average concentrations of most reported PPCPs in the surface water of China in research papers published
during 2012–2015
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levels in the surface water reflects their widespread
consumption, consistent with their high concentrations in
the raw municipal wastewaters in China [49–54].
Large differences in PPCP concentrations were observed

in different surface water environments. Different types of
surface water samples were one of the reasons for the
different concentration levels. Generally, contamination
levels of PPCPs were lower in the seawater samples than
those in rivers and lakes. For instance, the lowest three
mean concentrations of sulfadiazine reported in 20 related
papers were all found in sea water samples, namely Bohai
Sea and Yellow Sea [44] (0.01 ng$L–1), Laizhou Bay [43]
(0.02 ng$L–1) and the coast of Dalian [47] (0.19 ng$L–1).
Normally, as urban cities were considered as hotspots of
PPCPs contamination, high concentration levels were
expected be observed in urban rivers. However, PPCPs
studied in urban rivers in several cities, such as Shanghai,
Beijing, Nanjing, Nanning, Shenzhen, Hong Kong,
exhibited diverse contamination levels even for the same
target compounds [55–60]. For example, mean concentra-
tions of erythromycin was found as high as 890 ng$L–1 in
the urban river of Shenzhen [56], but as low as< 20 ng$L–1

in Shanghai and Nanjing [58,59], probably due to the
different consumption patterns in the cities and the
sampling sites selected.
As some PPCPs in certain surface water environments

were investigated in several studies conducted in different
years, we can get some ideas of their temporal variation in
the area by comparing their reported concentrations in
these studies. Taking sulfonamides for example, an
increased trend of their contamination in Huangpu River
was exhibited. Jiang et al. [61], Chen and Zhou [58]
investigated antibiotics in Huangpu River in the summer of
2009 and 2012, respectively. The results observed in
Jiang’s report indicated that although sulfamethoxazole
(SMX) and sulfamethazine (SMZ) were found to be the
most abundant SAs, the maximum concentrations were
14.32 and 21.57 ng$L–1 [61]. On the contrary, in Chen’s
observation, the mean concentrations of SMX and SMZ
were 259.6 and 188.9 ng$L–1, respectively, in the water
samples collected in Huangpu River in 2012 [62]. The
comparison between Zhang et al. [43] and Lv et al.[48]
showed a decreased SA contamination level in Jiulong
River. Zhang et al. [43] conducted two sampling events in
August 2010 and January 2011, to determine the
antibiotics in the surface water of Jiulong River, and the
reported concentration ranges of SMX and SMZ were
0.05–58.3 ng$L–1 and< 0.28–775.5 ng$L–1, respectively.
However, according to Lv et al. [48], their concentrations
in Jiulong River during three sampling campaigns
(September 2012, January 2013 and June 2013) ranged
from below method detection limit (<MDL) to 9.0 ng$L–1

for SMX and from 0.5 to 34.1 ng$L–1 for SMZ. The
different contamination levels of PPCPs observed in the
same surface water environment in different sampling
years might reflect their temporal variation. Nevertheless,

since the observations were based on two independent
studies, the different sampling sites selected might also be
responsible for the different concentrations.

2.2 Sediments

Before 2012, only a few research papers studied PPCPs in
the sediment of Pearl River, Haihe River and Yangtze
Estuary [63–66], while during 2012 to 2015, much more
effort has been made to investigate their occurrences in the
sediment of various surface water environments, including
rivers, lakes, estuaries, and coastal bays in China.
Antibiotics received even more attention in the sedi-

ments than the aqueous phase, accounting for 20 out of the
22 most reported PPCPs reported in at least five locations,
as shown in Fig. 3. The most reported antibiotics in the
sediment are sulfamethoxazole, ofloxacin, oxytetracycline,
sulfadiazine, roxithromycin, and tetracycline. All of them
are also frequently reported in the surface water in recent
years. Only two PPCPs other than antibiotics, triclosan and
triclocarban, were included in the most reported PPCPs
from sediments. They are two commonly used antimicro-
bial agents in many household and personal care products
intended for everyday use, and could be present at high
concentrations in the wastewater or surface waters.
Besides, their moderate hydrophobic nature made them
prone to accumulation in sediments [67]. Less concern was
given to other non-antibiotic PPCPs, because most of them
are hydrophilic in the neutral pH environment of surface
waters.
Similarly, we collected the average concentrations of

most reported PPCPs in the sediments in individual
recently published research papers, and the result of a
statistical analysis was shown in Fig. 4. In general,
oxytetracycline, tetracycline and triclocarban exhibited
relatively high contamination levels in the sediments. The
mean values of their average concentrations in individual
research papers were above 200 mg$kg–1. Some of them,
namely tetracycline, also had high concentration levels in
the surface water samples. The interaction between the
surface water and sediment probably lead to high
concentrations in the sediment. Besides, oxytetracycline
and triclocarban are well known for their strong adsorption
onto sediments, of which the concentrations were several
orders of magnitude higher in the sediments than those in
surface waters [68]. Therefore, they tended to accumulate
in sediments.
Most antibiotics in sediment samples collected in China

showed relatively higher concentrations, compared to
those reported in other countries. For instance, oxytetracy-
cline had median or mean concentrations, ranging from
1.86 to 36148 mg$kg–1, in the sediment samples analyzed
in 11 studies conducted in different surface environment in
China, and was not detectable only in the sediment
sampled in the coast of Dalian (Table S1). On the contrary,
in the sediments collected in US and Spain, the
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concentrations were either<LOQ [69,70] or showed
much lower contamination levels of oxytetracycline [71]
(median value: 5.9 mg$kg–1). Similar phenomenon could
be observed for sulfamethazine. It was not detected in the
studies conducted in Cache la Poudre River in Northern
Colorado, US and South Africa [69,72], and ranged from 0
to 0.816 mg$kg–1 in another research carried out in
Maryland, US [70]; while in nine related studies in
China, all the reported maximum concentrations of
sulfamethazine (1.4–248 mg$kg–1, Table S2) were higher
than those found in other countries.

For most non-antibiotics, the limited data obtained in
China indicated that the contamination levels of non-
antibiotics in the sediments were comparable with those
obtained in other countries. For instance, the only reported
concentration of carbamazepine in the sediment in China
[36] was 4.6 mg$kg–1 (median concentration), slightly
higher than ones observed in the investigations conducted
in Spain [71] (0.9 mg$kg–1) and South Africa [72](1.16
mg$kg–1), and much lower than the maximum concentra-
tion found in UK [73] (46.5 mg$kg–1). Some non-
antibiotics, such as acetaminophen, were quantified at

Fig. 3 Number of times that PPCPs was reported in the sediments of China during 2012–2015 (only PPCPs which were reported more
than five times are shown)

Fig. 4 Statistical analysis of average concentrations of most reported PPCPs in the sediments of China in research papers published
during 2012–2015
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high concentration levels in the surface water in China;
were not quantified in the sediment samples. On the other
hand, considerable amount of them was observed in the
sediment samples of other countries [71,72], highlighted
the necessity for the investigations on these non-antibiotics
in the sediment.

3 Geographical distribution

Ascribed to the increased studies on the occurrence of
PPCPs in the surface water, more study areas have been
covered in recent years. Before 2012, PPCPs were
predominantly investigated in five main river basins [29].
During 2012 to 2015, some more inland river basins have
been surveyed. For instance, Wei et al. [37] quantified
several classes of antibiotics in water and sediments in
Dianchi Lake, which is located in the south-west China.
Another research focused on antibiotics in both water and
sediments was conducted in Bosten Lake, the largest
inland freshwater lake in north-western China [42].
Besides, within the same main river basins, more

sections have been investigated in recent years. Taking
Yangtze River, the largest river in China, as an example,
studies on PPCPs were only conducted in Yangtze River
Estuary and some rivers in Shanghai, belonging to Yangtze
River Basin, before the year of 2012 [65,74,75]. While
during 2012 to 2015, more independent studies were
carried out in different sections of Yangtze River Basin to
investigate the occurrence of PPCPs [59,62,75–78]. For
instance, surface water samples were taken in the area of
Three Gorges Reservoir, upper reach of Yangtze River, and
analyzed for organic trace substances, including PPCPs, in
order to assess its suitability as a raw water source for
drinking water production [76].Wu and coworkers inves-
tigated the occurrence of PPCPs in the central and lower
reach of Yangtze River, and also reported their concentra-
tions in four large freshwater lakes within Yangtze River
basin [77]. In the Yangtze Estuary and Huangpu River in
Shanghai, which were previously surveyed, knowledge on
the PPCPs in both aqueous phase and sediments was also
expanded in the past few years [62,78].
Although more areas were assessed for the PPCPs in the

surface water environment, uneven attention has been
given to different areas. The types of PPCPs reported in
surface water environment from different provinces are
shown in Fig. 5. In general, surface waters in the east and
south of China were more extensively studied, while other
areas, especially in the north-east and south-west of China,
needed more attention. Three provinces, namely Guang-
dong, Beijing, Fujian province, were most studied. The
numbers of PPCPs reported in these provinces were 57, 52
and 51, respectively, during 2012 to 2015. In contrast, no
surveys on PPCPs in the surface waters were conducted in
12 provinces, such as Sichuan, Shanxi, Qinghai and Tibet.
For the sediments, the studies of PPCPs were even more

concentrated to a few provinces, namely Guangdong,
Fujian, Zhejiang, Liaoning, Shanghai and Hebei provinces,
while no PPCPs were reported in majority of the provinces
in China (Fig. 5(b)). Bu and coworkers estimated the
distribution of antibiotic use at different spatial scales
across China, and found the western provinces (e.g.,
Qinghai and Tibet) had the lowest antibiotic uses, while
provinces located in the eastern regions usually have
higher antibiotic uses. In addition, moderate use was
observed in the central region [79]. The inhomogeneous
consumption of antibiotics in various provinces might be
one of the reasons that more related studies were conducted
to elucidate the occurrence of PPCPs in the surface water
environment of the provinces with higher consumption.
In addition, it was noteworthy that as far as we know the

occurrence of PPCPs in the other two main river basins in
China, Songhuajiang river basin and Huaihe River basin,
has not been reported.

4 Risk assessment

4.1 Surface water

Environmental risk assessment based on risk quotients
(RQ) are frequently adopted to evaluate the potential risks
of PPCPs to aquatic organisms in the surface water [80]. In
this study the RQ value was calculated through the
measured environmental concentration (MEC) divided by
predicted no-effect concentration (PNEC), and indicated a
high risk if it exceeded 1.
PNEC was obtained from the toxicity data and a

corresponding safety factor depending on the types of
available toxicity data. The toxicity data were collected
from the literature in most studies [41,43,81,82], while in a
few studies they were obtained from the Ecological
Structure Activity Relationships Class Program (ECO-
SAR) [78,83]. The different sources of toxicity data
significantly affected the results of environmental risk
assessment. Due to the worst-case scenario, the lowest
EC50 or NOEC found in the literatures was adopted to
predict PNEC, and in most cases, they were much lower
than that obtained by ECOSAR for the same PPCP. For
instance, the calculated EC50 or LC50 for SMX ranged
from 986 to 4783 mg$L–1 for fish, daphnid and algae,
leading to the PNEC values of 0.99–4.78 mg$L–1, much
higher than the measured concentrations of SMX in the
surface water samples [78,83]. However, the lowest EC50

of SMX found in the literatures was 0.027 mg$L–1 for S.
leopoliensisor and 0.03 mg$L–1 for algae [41,81]; which
gave PNEC values of SMX of approximately 30 ng$L–1,
five orders of magnitude lower than the ones estimated by
ECOSAR. Therefore, even though the MECs of PPCPs
were similar, a lower RQ maybe generated using toxicity
data from ECOSAR, resulting in an underestimation of
environmental risk caused by the target PPCPs.
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Fig. 5 PPCPs reported in the surface water environment ((a) surface water; (b) sediments) from different provinces during 2012–2015
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Despite the different sources of toxicity data, algae was a
more sensitive species to most PPCPs than invertebrates
and fish [33,41,59]. For instance, in Li’s report, the E(L)Cs
of antibiotics to algae and plants was 0.017–50.18 mg$L–1,
while the ones for invertebrate and fish were 0.95–562.6
mg$L–1 [33]. Li et al. [83] calculated the individual RQs of
29 antibiotics based on the E(L)Cs estimated by ECOSAR,
and found algae and daphnid were relatively susceptible to
antibiotics, whereas the RQs for fish were at least twofold
less. Similar results were also obtained for PPCPs other
than antibiotics [59]. A reason for the low fish toxicity of
human pharmaceuticals might be that fish are pharmaco-
logically closely related to humans [84], along with the
extensive evaluation for acute human toxicity of these
pharmaceuticals prior to marketing [59].
Besides, although both acute and chronic toxicity data

could be used to generate PNEC by dividing different
safety factors, Liu et al. [59] suggested that environmental
risk assessment based on the chronic toxicity data might be
more reliable for providing a better understanding of the
actual impact of pharmaceuticals in the aquatic environ-
ment.
It should be noted that antibiotic residues in the aquatic

environment may impose selective stress on the microbe
communities and promote the antibiotic resistance in
bacteria. However, in the environmental risk assessment,

the promotion of antibiotic resistance was not considered.
We summarized the results of environmental risk

assessment in different studies, and found SMX, among
all the investigated PPCPs, presented the most significant
environmental risk to relevant aquatic organisms, as it has
RQ values of >1.0 in the various surface waters, such as
Yongjiang River [55], Wangyang River [82], Baiyangdian
Lake [33], Lake Chaohu [41] and Laizhou Bay [43]. Other
antibiotics, i.e. ofloxacin, ciprofloxacin, enrofloxacin, also
showed potential adverse ecological consequences on
aquatic organisms, with the RQ higher than 1, in some
studies [33,41,82]. PPCPs belonging to other therapeutic
classes exhibited relatively lower environmental risks.
However, Liu et al. [59] reported that 17α-ethynylestradiol,
ibuprofen and diclofenac posed a high chronic risk at a few
sampling sites.
Most of the related studies assessed the environmental

risks of individual substances, although the single-
compound exposure scenarios are unrealistic in the real
environment [85]. Recently, two approaches for calculat-
ing the mixture risk quotient (MRQ) have been developed
to evaluate the environmental risks of pharmaceutical
mixtures. One of the approaches was based on the sum of
MEC/PNEC values, as shown in Eq. (1), and the other one
based on the sum of toxic units for the most sensitive
trophic level [86], as shown in Eq. (2).

MRQMEC=PNEC ¼
Xn

i¼1

MECi

PNECi
¼
Xn

i¼1

MECi

minðEC50,aglae,EC50,daphnids,EC50,f ishÞi � ð1=AFiÞ
, (1)

MRQSTU ¼maxðSTUaglae,STUdaphnids,STUfishÞ � AF

¼max
Xn

i¼1

MECi

EC50,aglae
,
Xn

i¼1

MECi

EC50,daphnids
,
Xn

i¼1

MECi

EC50,f ish

 !
� AF,

(2)

where TU and STU are the “toxic unit (MEC/EC50)” and
the “sum of toxic unit,” respectively, and AF is the
assessment factor.
Liu et al. [59] applied the two approaches to assess the

risk of a mixture of lipophilic pharmaceutically active
compounds in urban rivers in Nanjing, and obtained the
final mixture risk quotients of 0.034–1.282 at different
sampling sites. The study may provide a more reasonable
environmental risk assessment for surface water samples
considering the possible mixture effects.
Human health risk assessment was used as alternative to

assess the risk of PPCPs in the surface water, which was
adopted as the source water of drinking water treatment
plants. Wen et al. [87] derived the age-dependent RQ for
each five target pharmaceuticals (ibuprofen, ketoprofen,
naproxen, diclofenac and clofibric acid) as the ratio of
MEC to age-dependent drinking-water equivalent levels
(DWELs). The DWELs were developed on the basis of

available chronic mammalian toxicity data, minimum
inhibitory concentrations, or the lowest therapeutic doses.
The results indicated that all the target pharmaceuticals
exhibited very low risk in the Huangpu River to the human
body via drinking ingestion.

4.2 Sediment

Although extensive studies on the risk assessment of
PPCPs in the surface water have been conducted, reports
about their risk assessment in the sediment were limited,
probably because few toxicity data sets of PPCPs in
sediment (such as LC50 and EC50) are available from the
literature, leading to difficulties in assessment of PNEC
values. Nevertheless, Zhu et al. [36] and Xue et al.[52]
performed risk assessment for sediments by converting the
concentrations of these compounds into their correspond-
ing pore water concentrations using the following
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equation:

PNECsoild ¼ PNECwater � Kd

¼ PNECwater � Koc � foc, (3)

where Kd is the solid–water partition coefficient, Koc

represents the organic carbon partition coefficient and foc
represents the organic carbon fraction in sludge.
The results suggested that the environmental risk

produced by PPCPs in the sediment of Qingshan Lake
[36] and Yongjiang River [52] was significantly higher
than in the aqueous phase, highlighted the necessity to
further evaluate the risk of PPCPs in sediment samples.

5 Conclusions

1) Compared to other PPCPs, antibiotics received greater
attention in the investigations on the PPCPs in the surface
water environment of China. Generally, caffeine, trimetho-
prim, erythromycin, sulfamethoxazole and tetracycline
exhibited relatively high contamination levels in the
aqueous phase of surface water.
2) During 2012 to 2015, many more efforts have been

made to investigate the occurrences of PPCPs in the
sediment of various surface water environment, including
rivers, lakes, estuaries, and coastal bays, in China.
Antibiotics received even more attention in the sediments
than aqueous phase. In general, oxytetracycline, tetracy-
cline, ofloxacin and triclocarban exhibited relatively high
contamination levels in the sediments. Compared to other
countries, most antibiotics in the sediments collected in
China showed relatively higher contamination levels.
3) Ascribed to the increased studies on the occurrence of

PPCPs in the surface water, more study areas have been
covered in recent years, however, surface waters in the east
and south of China received much more attention than
those in other areas in China.
4) Environmental risk assessment based on risk

quotients was frequently adopted to evaluate the potential
risks of individual PPCPs or PPCP mixture to aquatic
organisms in the surface water. According to our summary
of the results of environmental risk assessment in various
studies, sulfamethoxazole presented the most significant
environmental risk to relevant aquatic organisms. Addi-
tionally, ofloxacin, ciprofloxacin, enrofloxacin, 17α-ethy-
nylestradiol, ibuprofen and diclofenac also have the
potential adverse ecological consequences on aquatic
organisms according to some studies. In contrast, reports
about their risk assessment in the sediment were limited.
However, a few results indicated that the environmental
risk produced by PPCPs in the sediment was significantly
higher than in the aqueous phase, highlighted the necessity
to further evaluate the risk of PPCPs in sediment samples.
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