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Abstract The k-nearest neighbor (k-NN) method was
evaluated to predict the influent flow rate and four water
qualities, namely chemical oxygen demand (COD),
suspended solid (SS), total nitrogen (T-N) and total
phosphorus (T-P) at a wastewater treatment plant
(WWTP). The search range and approach for determining
the number of nearest neighbors (NNs) under dry and wet
weather conditions were initially optimized based on the
root mean square error (RMSE). The optimum search
range for considering data size was one year. The square
root-based (SR) approach was superior to the distance
factor-based (DF) approach in determining the appropriate
number of NNs. However, the results for both approaches
varied slightly depending on the water quality and the
weather conditions. The influent flow rate was accurately
predicted within one standard deviation of measured
values. Influent water qualities were well predicted with
the mean absolute percentage error (MAPE) under both
wet and dry weather conditions. For the seven-day
prediction, the difference in predictive accuracy was less
than 5% in dry weather conditions and slightly worse in
wet weather conditions. Overall, the k-NN method was
verified to be useful for predicting WWTP influent
characteristics.

Keywords influent wastewater, prediction, data-driven
model, k-nearest neighbor method (k-NN)

1 Introduction

For the stable operation of a wastewater treatment plant
(WWTP), it is essential to consider major disturbances
such as fluctuations in the influent flow rate and water
qualities. The online monitoring of influent characteristics

is limited by a lack of adequate equipment and high costs.
Therefore, some mathematical models and data-driven
models have been developed to predict the influent flow
rate and the water quality. Traditionally, a few mathema-
tical models have been applied to simulate physical
phenomena such as the movement mechanism of con-
taminants in conduits [1]. The storm water management
model (SWMM) has been widely used as a comprehensive
package to predict the influent flow rate and quality
changes within conduits [2]. This model can simulate
hydraulic and hydrologic changes in runoff mechanisms in
urban areas. Studies have reported the development of
simple transfer functions that are simplified versions of
integrative model equations for conduits in the SWMM
[3]. Furthermore, the IWA (International Water Associa-
tion) developed its benchmark simulation model No. 2 to
predict WWTP influent characteristics [4]. For the model's
increased applicability, a simple phenomenological model
using only those parameters with significant effects on the
target area has been developed [5]. However, these
mathematical models require complicated parameter tun-
ing and large-scale monitoring. To overcome these
problems, many studies have investigated data-driven
models such as the autoregressive integrated moving-
average (ARIMA) model and the artificial neural network
(ANN) [6].
A data-driven model can be classified as a linear or

nonlinear time series model. The former uses a linear
function with an error term for predictions based on a
probability distribution. This group includes the autore-
gressive moving-average (ARMA), ARIMA, and seasonal
autoregressive integrated moving-average (SARIMA)
models, with the ARIMA model being the most widely
used one. Kim et al. [7] applied the ARIMA model to
forecast WWTP influent flow rate and compositions. Wang
et al. [8] used the ARIMAmodel to predict precipitation by
considering seasonal effects and stationarity. Valipour et al.
[9] suggested the ARMA and ARIMA models for
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forecasting the monthly inflow of a dam reservoir by
deriving an optimal model structure using an appropriate
number of parameters. These linear time series models
have also been applied to other research areas such as
hydrological processes [10]. To obtain the order of linear
time-series models and parameters, the autocorrelation
function (ACF) or the partial autocorrelation function
(PACF) should be used. If data do not appear to be
stationary, then a nonlinear time series model should be
considered instead of a linear time series model [11].
A nonlinear time series model can be developed using

either a global or local approach [12]. The global approach
is a method for developing a nonlinear time series model
by deriving a function based on the whole attractor. ANN
is a representative method in the global approach [13]. Kim
et al. [6] and Solaimany-Aminbad et al. [14] used ANN to
predict influent flow rate and compositions at WWTP.
Bagheri et al. [15] forecasted the occurrence of activated
sludge bulking using ANN with genetic algorithm to
reduce the prediction error. Many other researchers have
used ANN for monitoring, control, and predictions in
activated sludge processes [16]. ANN has been used to
establish model structures by selecting related input
variables to forecast the patterns of a target variable.
However, this method can lack objectivity because the
number of layers of the model structure is typically
determined based on subjective trial-and-error standards.
ANN can assign high weight values to input variables with
autocorrelation, resulting in a lag effect and the under-
estimation of information on major variables [17].
On the other hand, local approaches such as the k-

nearest neighbor (k-NN) method can be applied. The k-NN
method approaches a complex nonlinear time series by
applying the concept of chaos theory, which posits that
some part of a time series occurring in the past can occur in
the future with highly similar characteristics [18]. The k-
NN method at first selects data pairs among past data pairs
such that selected pairs show characteristics that are very
similar to those of past pairs located before the predicted
time point. Then the weight is assigned to those selected
data pairs, which are referred to as nearest neighbors
(NNs), and the prediction is made by summing up
weighted data pairs [19]. Therefore, the performance of
the k-NN method is affected by the search range based on
data size because the number of selected data pairs can
vary according to the search range based on data size [20].
In addition, the performance of the k-NN method is
affected by the approach used to determine the number of
NNs or data pairs. Here the two possible approaches are the
distance factor-based (DF) approach [21] and the square
root-based (SR) approach [22], which are explained in
detail later. The k-NN method can make predictions using
a relatively straight-forward calculation and thus differs
from the global approach. Therefore, unlike in mathema-
tical modeling, the k-NN method requires no model
development or verification and thus can be applied

without recomposing data, unlike in the case of general
data-based models. In addition, lag effects appear
relatively seldom. However, because this method make
predictions based on the current time period using past
data, these predictions can be limited for events that did not
occur in the past, such as certain peak influent flows [23].
WWTP influent flow rate and water qualities exhibit

characteristics of a nonlinear time series because some part
of the influent presents a periodical pattern of a linear time
series according to the human life cycle. Another part is
affected by irregular weather conditions showing a non-
linear time series. In addition, the influent exhibits
characteristics such as autocorrelation, which shows a
strong correlation between current, future, and past
situations [24]. The flow rate of rivers and the WWTP
influent show similar hydrological data, and therefore
predicted data on this flow rate exhibit autocorrelation.
Two studies reported that the k-NN method can predict the
river flow much better than ANN because of this
autocorrelation [25].
Therefore, this study evaluates the k-NN method by

selecting conditions to forecast influent flow rate and four
water qualities including COD, SS, T-N and T-P at a
WWTP. These conditions were considered based on the
following two factors: the search range based on data size
and the number of NNs. Four search ranges were selected
to consider weekly, monthly, seasonal, and annual
variations. To determine the optimum number of NNs,
the DF and SR approaches were taken. Then optimal
conditions were evaluated for their potential application to
a long-term of one week.

2 Material and methods

2.1 Data collection and performance evaluation

Target characteristics of the WWTP were the influent flow
rate and water qualities: COD (chemical oxygen demand),
SS (suspended solid), T-N (total nitrogen), and T-P (total
phosphorus). Relevant daily data on these measures were
collected from N WWTP in Busan, Korea, for three years
from January 2008 to December 2010. Some part of the
data were used for predictions, whereas the rest and
predicted values were used to evaluate prediction results
based on the root mean square error (RMSE). Because the
influent wastewater of N WWTP was collected by a
combined sewer system, influent characteristics were
strongly affected by the weather condition, especially
rain events.

2.2 Identification of the search range based on data size

The k-NN method was developed based on the assumption
that some part of a past time series reappears in the future
with similar patterns [26]. Therefore, NNs with a pattern
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most similar to that of the current data pair were selected
from past data.
The range of past data from which NNs were searched

was defined as the search range. This was crucial because
prediction results can be affected by data size based on the
search range. To select an appropriate search range, four
sets of data were tested: 30, 90, 365, and 731 day data.
These were determined to consider weekly, monthly,
seasonal, and annual variations, respectively, of influent
wastewater. The rainfall effect was considered under the
assumption of dry weather in January and February (59
days) and wet weather in July and August (62 days).

2.3 The calculation procedure for the k-NN method

First, within the pre-determined search range, the predic-
tion of future data on day st+ 1 (Yst + 1) is considered. The
current time as the base is indicated as “st.” Data for the
calculation base are Yst and Yst-1, which are data pairs at
times st and st-1, respectively. The past data pair, Yt-1 and
Yt-2, are selected to calculate the Euclidean distance (Dt) as
follows Eq. (1)

Dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðYst�1 – Yt�2Þ2 þ ðYst – Yt�1Þ2
q

, (1)

Then the value with the shortest distance (DMS) is
selected among all computed values ofDt, and some values
of Dt that are close to DMS are selected and named as NNs
(DNN). The number of selected DNN is determined by an
appropriate approach, as will be explained later.
Second, appropriate NNs that are selected to calculate

weight values (WNN,t) as follows:

WNN;t ¼ ðDNN;tÞ – 1=ð
X

t

1

DNN;tÞ – 1, (2)

Third, future data Yst + 1 are calculated using the
following equation by multiplying the weight value by
water quality data (Yt) that correspond to NNs in that group
and then summing up all results:

Ystþ1 ¼
X

t

1

ðWNN;t � YtÞ: (3)

2.4 A comparison of two approaches to determine an
appropriate number of NNs

The number of selected NNs affects predictive perfor-
mance. If too few NNs are selected, then the result is
sensitive to noise, whereas if too many NNs are selected,
then the predicted value is similar to that by linear
regression. Therefore, to select an appropriate number of
NNs, two approaches were applied in this study. In the DF
approach, DNN was selected such that it was located within
values obtained by multiplying a certain factor by DMS. In

the SR approach, data as much as the square root of the
number of past data provided were selected. These two
approaches are now explained in detail.
DF approach: The distance corresponding to NNs (DNN)

can be determined by multiplying certain factors by the
shortest Euclidean distance (DMS), and predictive accuracy
is affected by the selected number of NNs depending on
the factor. Therefore, an optimum number of NNs should
be considered before applying the developed k-NN
method. According to some studies, a large number of
NNs do not always increase predictive accuracy [27].
Similarly, other studies have reported that predictive
accuracy is not controlled by a small number of NNs
[28]. Therefore, seven tested factors were arbitrary selected
in this study by considering a small range and a large
range: the golden ratio (1.62 [29] and 2.0, 2.5, 5.0, 8.0,
15.0, and 30.0 [30]). The golden ratio of 1.62, the applied
base in previous studies, was used to apply the k-NN
method [31,32].
SR approach: This method selects the number of NNs

according to the square root of the number of data sets used
in the search range.
These two approaches differ as follows: In the DF

approach, the number of selected NNs differs every time it
is calculated. Therefore, predicted results are affected by
assigned weight values and water quality data on selected
NNs depending on various factors. In addition, additional
analyses and calculation times are required for changes in
final results. On the other hand, the SR approach uses a
fixed number of NNs, and results are calculated using
assigned weight values and water quality data on the fixed
number of NNs. Therefore, the result can be easily
understood if it is necessary to determine the estimation
procedure.

2.5 An evaluation of the applicability of the k-NN method
for long-term predictions

The aforementioned procedure predicts tomorrow’s data
based on past data, including data up to today. It is more
valuable for planningWWTP operations if this method can
be used for more long-term predictions. The k-NN method
can be extended to predict data the day after tomorrow and
beyond by incorporating predicted data for tomorrow into
the mother data group. This procedure was tested in this
study by expanding the prediction up to seven days.
Because the number of data points was insufficient to
consider any statistical analysis, accuracy was evaluated in
terms of percentage differences between measured and
predicted values.

2.6 An uncertainty analysis for the application of the k-NN
method

For the application of the k-NN method, exploring
uncertainty is required for understanding the selected
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approach such as the DF and SR approaches in the
calculation process. This is because a generated error in the
calculation process for a predicted value may vary
according to the applied approach. Therefore, an uncer-
tainty analysis of the k-NN method was conducted in this
study based on RMSE results for different data sizes and
the two approaches.

3 Results and discussion

3.1 Statistical features of the N WWTP influent

Statistical features of measured data are listed in Table 1.
The average influent flow rate was 306200 m3$d–1, ranging
from 242953 m3$d–1 to 406461 m3$d–1. To eliminate
statistical outliers in collected data, the lower and upper
limits were set as plus/minus three times the standard
deviation from the mean, respectively. Data located outside
these two limits were replaced by two limits obtained from
the straight-line interpolation.

3.2 Identification of an appropriate search range based on
data size in the influent flow rate

Four potential search ranges in the K-NN method were
tested to consider weekly, monthly, seasonal, and annual
variations in influent wastewater under dry and wet
weather conditions. One-day-ahead predictions were

made continuously by considering effects according to
the number of NNs. Predicted values were compared with
measured data, and the RMSE was calculated as the basis
for the evaluation. The results for dry and wet weather
conditions are summarized in Tables 2.
In the dry weather condition, when the DF approach was

applied with a factor of 1.62, the smallest search range of
30 days showed the best result. However, if the factor
increased in the search range from 5 to 30, then larger
search ranges such as one year (365 days) showed better
results. The SR approach showed better results than the DF
approach for all four search ranges, and it was also better in
the one-year search range.
In the wet weather condition, the DF approach showed

varying results. The SR approach showed better results
than the DF approach in all four search ranges and was
better in the one-year search range. The two-year (731
days) search range provided results no different from those
for the one-year search range. This indicates that the
influent flow rate had some annual pattern. Therefore, the
one-year search range was considered good enough to
predict the influent flow rate regardless of the weather
condition.

3.3 Evaluation of effects of the number of NNs in the
influent flow rate

Effects of the number of NNs were tested using both the
DF approach and the SR approach for the influent flow

Table 1 Statistical properties of influent wastewater flow rate and compositions for the N WWTP

item flow rate (m3$d–1) COD (mg∙L–1) SS (mg∙L–1) T-N (mg∙L–1) T-P (mg∙L–1)

maximum 406461.0 95.3 338.3 48.8 7.1

minimum 242953.0 36.9 56.7 13.9 1.8

average 306204.5 61.5 122.7 33.8 3.9

standard deviation 35681.7 10.3 25.6 5.9 0.8

Table 2 RMSE results of the effects by the search range considering the number of NNs in the influent flow rate under the dry and wet weather

conditions

weather
search

range (d)

DF approach
SR approach

1.62 2.0 2.5 5.0 8.0 15.0 30.0

dry

30 28528.9 28594.5 28623.7 28836.4 29428.1 29326.4 29280.2 27392.7

90 31260.2 30795.7 30975.7 29914.3 30673.9 31465.0 31628.0 28222.6

365 32280.4 31745.3 29986.7 27474.4 26769.9 27125.5 26992.9 26695.1

731 34096.6 33300.4 32185.0 28667.8 27586.2 27763.7 28422.4 27166.0

wet

30 29731.8 28852.9 29273.3 31968.7 32676.8 33064.5 33838.4 27571.3

90 29404.0 28898.4 29281.4 35437.7 37489.0 40878.6 44564.0 28683.9

365 33752.9 31768.6 27258.4 27483.7 31354.8 41215.1 53193.6 26038.8

731 31293.7 29472.2 28184.0 26949.2 27535.8 32491.2 45090.8 26280.7
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rate. Fig. 1 shows the results analyzed in terms of the
RMSE. In the dry weather condition, the two approaches
showed similar results in the one-year search range.
However, the number of NNs in the SR approach was
less than a third of that in the DF approach. Therefore, the
SR approach was better than the DF approach. These
results suggest that if the number of NNs is too large, then
the result may be closer to that obtained based on a linear
time series model, which is very different from the real
situation.
The optimal conditions for predicting future influent

flow rate by using the k-NN method were the one-year
search range and the number of NNs by the SR approach.
With these optimal conditions, the influent flow rate was
predicted for the period from January 1 to February 28 for
dry weather and from July 1 to August 31 for wet weather.
Then predicted outcomes were compared with measured
values, as shown in Fig. 2. Differences between these two
were within one standard deviation (35681.7 m3$d-1),
verifying that the k-NN method could predict the WWTP
influent flow rate.

3.4 Derivation of appropriate conditions in terms of the
search range and the number of NNs to predict influent water
qualities

To use the k-NN method to predict the four influent
qualities, the number of NNs based on the two approaches
was evaluated. Table 3 summarizes the results according to
the weather condition and the water quality. Because each
water quality had its own specific characteristic, the
appropriate condition was different for each water quality.
It was necessary to evaluate these conditions according to
the water quality and the flow rate. The influent flow rate
typically had an annual pattern, and the seasonal variation
was caused by infiltrated water through the combined
sewer system in the wet weather condition and by changes
in water consumption during summer months as the
temperature rose. Therefore, to predict the influent waste-
water quality, it was crucial to determine similar patterns
and investigate useful information from data collected over
past few days or a long period of time depending on the
condition.

Fig. 1 Effects of the number of NNs on forecasting the flow rate analyzed using the RMSE based on the DF approach (◆, ●, ▲, ▇)
and the SR approach (◇, ○, △, ,) in dry (a) and wet (b) weather conditions
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COD: In general, characteristics of organic matter
represented by influent COD are affected by variations in
compositions and concentrations of households and
industries and by seasonal variations in the influent flow

rate. COD predictions showed the best performance in the
one-year search range in dry weather and in the two-year
search range in wet weather. In dry and wet weather
forecasting, the average numbers of NNs were 74 and 64,

Fig. 2 Results for predicting the influent flow rate by using the k-NN method in dry and wet weather conditions

Table 3 Derivation of appropriate conditions for the search range and the number of NNs to predict influent water qualities (COD, SS, T-N, and T-P)

weather subject COD SS T-N T-P

dry

search range 365 days 90 days 30 days 731 days

approach DF (8) SR DF (2.5) SR

number of NNs 74.4* 9.0 7.2* 27.0

RMSE 3.91 7.69 2.02 0.15

wet

search range 731 days 365 days 731 days 365 days

approach DF (5) SR SR DF (8)

number of NNs 64.1* 19.0 27.0 137.6*

RMSE 5.82 8.91 2.17 0.34

Note: * Average number of NNs.
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respectively, with DF values of 8 and 5, respectively. The
size of the search range showed a difference of one year,
but the referenced number of NNs according to the applied
DF showed no substantial differences. This suggests that,
because the COD pattern varies annually, it may be better
to use long-term data (i.e., more than a year) for accurate
predictions.
SS: SS variations are influenced by accumulated

pollutants in the sewer system and streets according to
variations in rainfall intensity in addition to the wastewater
flow rate produced from various sources. In the case of SS,
like the influent flow rate, the SR approach exhibited better
performance. The four search ranges were quite different
from one another depending on the weather condition, with
90 days in dry weather and 365 days in wet weather. These
results indicate that the profile of dry-weather forecasting
did not deviate greatly from recent trends. For wet-weather
forecasting, past precipitation patterns were required, and
therefore long-term data were referenced to obtain good
prediction results.
T-N: Variations in T-N and T-P concentrations were

related to variations in the SS concentration and COD
variations. As in the case of SS, T-N recorded the lowest
RMSE, with the search range of 30 days in dry weather and
that of 731 days in wet weather. However, the DF approach
with 2.5 in dry weather recorded the lowest RMSE. In the
wet weather condition, the lowest RMSE was obtained by
the SR approach. Because the weather condition affected
variations in the T-N concentration, the search range was
set to only 30 days in dry weather. In the wet weather
condition, to minimize noise from the selection of data that
did not reflect climate characteristics, the search range was
extended to a longer period of about one year.
T-P: Absolute values and fluctuation ranges of con-

centration data were minimal. Therefore, the search range
was selected to be relatively long, with two years for dry
weather and one year for wet weather. In particular, the
average number of NNs in wet weather was 137 for the DF
of 8, which was larger than that in dry weather. This may
be due to the fact that T-P in wet weather varied much more
than that in dry weather. This case suggests that the
forecasting was heavily dependent on NNs including
fluctuation characteristics in the same year, not on those in
the long search range of two years.

3.5 The capability to predict influent water qualities using
the k-NN method

The k-NN method was used to predict influent water
qualities in dry and wet weather conditions based on
appropriate conditions that were derived as described
earlier. Measured data were obtained from January 1 to
February 28 and from July 1 to August 31, respectively.
Predicted outcomes were compared with measured values,
as shown in Fig. 3.
Predictions were statistically evaluated using the mean

absolute percentage error (MAPE), which measures the
difference between measured and estimated values [33].
All results were less than 8.9%, as shown in Fig. 3,
verifying their statistical precision and the acceptability of
using the k-NN method to predict WWTP influent
qualities.

3.6 An evaluation of the applicability of the k-NN method
to long-term predictions

Fig. 4 shows the results for the applicability of the k-NN
method to long-term predictions in terms of differences in
predictive accuracy. The results for the influent flow rate in
Fig. 4(a) show good accuracy with less than 5% variations
in dry weather. In wet weather, however, accuracy
deteriorated, with the highest variation of 11.6%. This
may be attributed to larger fluctuations in the influent flow
rate in wet weather as a result of precipitation. The COD
results in Fig. 4(b) show good accuracy, with less than 5%
variations in dry weather and an acceptable level of
accuracy of less than 6.5% in wet weather except for the
two-day case, which may be explained by precipitation.
According to the SS results in Fig. 4(c), predictive

accuracy in wet weather was better than that in dry
weather. In dry weather with 90-day data and climate-
change characteristics, the search range in dry weather was
narrower than that in wet weather. Therefore, the rain
occurrence within the search range influenced predictive
performance and extended accuracy differences in con-
tinuous predictions. However, because wet weather
employed 365-day data, it was considered to have lower
prediction error rates because of buffer effects of
referenced data because it reflected annual climate
characteristics.
T-N and T-P showed high accuracy in dry weather, as

shown in Fig. 4(d) and 4(e), respectively. In wet weather,
however, accuracy deteriorated when the search range was
more than a day.

3.7 An uncertainty analysis of the application of the k-NN
method

In this study, optimal search ranges and application options
for predicting influent flow rate and water qualities were
derived by considering different data sizes and approaches.
As demonstrated by the aforementioned results, predictive
accuracy was affected by the number of data points
selected as NNs. Any uncertainty in results may be due to
two factors: data size as NNs used to make predictions and
inherent uncertainty in data. Therefore, this section
provides an uncertainty analysis by comparing RMSE
results in dry and wet weather conditions to interpret data
characteristics and explore the uncertainty originating from
data. To explore the uncertainty from the number of NNs,
RMSE variations were analyzed in each trial case. If the
RMSE varies widely according to different factors in
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Fig. 3 A comparison of predicted influent qualities (COD, SS, T-N, and T-P) with measured data in dry and wet weather conditions
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selecting NNs, then the DF approach can be assumed to
reflect a high level of uncertainty.
Fig. 5 shows a box plot of RSME results for the two

approaches for influent flow rates and water qualities.
For the uncertainty originating from data, Fig. 5 shows

that the RMSE distribution varied between wet and dry
weather conditions. Although it may be possible to
determine an optimal approach, as discussed in Section
4, Fig. 5 shows that RMSE values can vary widely
according to factor size in the DF approach.
Because of characteristics of data on the influent flow

rate showing frequent peak values, the RMSE varied more
widely in wet weather than in dry weather. However, this
type of uncertainty was not observed in other variables.
This suggests that the SR approach is a robust method for
predicting the influent flow rate, whose RMSE remained
relatively constant and low. On the other hand, other
variables showed no distinct differences between dry and
wet weather conditions, implying that the uncertainty from
data was not a significant obstacle to using the k-NN
method to make wastewater influent predictions.
For the uncertainty from options for k-NN application,

namely the DF approach and the SR approach, both
options generally showed robust performance except for
influent flow rate predictions in wet weather. This implies
that the uncertainty of original data is a more important
factor than that of k-NN application conditions. However,
it should be noted that the uncertainty from such factors
can reduce RMSE variations but produce obvious
differences, making it possible to select an optimal
application condition.

4 Conclusions

The k-NN method was evaluated and applied to predict the

influent flow rate and four water qualities at a WWTP,
namely COD, SS, T-N, and T-P. To determine optimal
conditions for the method, optimal search ranges based on
data size and the number of NNs were examined.
Optimal search ranges varied depending on the influent

flow rate, the water quality, and the weather condition. In
most cases, at least one year of past data were required to
reflect seasonal variations. In the dry weather condition,
less-than-90-day data were useful. In terms of an
appropriate number of NNs, the SR approach showed
better results than the DF approach. However, different
water qualities showed somewhat different preferences.
Once optimal conditions for the k-NN method were set,

its prediction capability was evaluated. The influent flow
rate was accurately predicted such that predicted values
were located within one standard deviation of measured
values. The influent water quality was statistically well
predicted with a MAPE value of less than 8.9% for all four
water qualities and in both wet and dry weather conditions.
For seven-day predictions, the difference in predictive
accuracy in dry weather was less than 5%. This result
clearly demonstrates the applicability of this method to
ordinary situations. In wet weather, however, the differ-
ence in predictive accuracy deteriorated such that the
usefulness of predictions was limited.
Overall, the results suggest that the k-NN method may

be readily used to predict the WWTP influent flow rates
and water qualities in dry weather. In wet weather,
however, predictions should be made only with caution.
In addition, an uncertainty analysis was conducted using
two approaches and different data sizes. Predictive
performance was affected by inherent uncertainty in data
size and characteristics. However, the optimal approach
reduced the uncertainty of the k-NN method. In conclu-
sion, the results suggest that the k-NN method can predict
WWTP influent flow rates and water qualities.

Fig. 4 An evaluation of the accuracy of long-term predictions of influent flow rates and water qualities based on the k-NN method

Minsoo KIM et al. Evaluation of the k-nearest neighbor (k-NN) method 307



Fig. 5 A comparison of box plots for the application of two approaches in dry and wet weather conditions
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