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Abstract This study evaluated the temporal and spatial
variations of water quality data sets for the Xin'anjiang
River through the use of multivariate statistical techniques,
including cluster analysis (CA), discriminant analysis
(DA), correlation analysis, and principal component
analysis (PCA). The water samples, measured by ten
parameters, were collected every month for three years
(2008–2010) from eight sampling stations located along
the river. The hierarchical CA classified the 12 months into
three periods (First, Second and Third Period) and the eight
sampling sites into three groups (Groups 1, 2 and 3) based
on seasonal differences and various pollution levels caused
by physicochemical properties and anthropogenic activ-
ities. DA identified three significant parameters (tempera-
ture, pH and E.coli) to distinguish temporal groups with
close to 76% correct assignment. The DA also discovered
five parameters (temperature, electricity conductivity, total
nitrogen, chemical oxygen demand and total phosphorus)
for spatial variation analysis, with 80.56% correct assign-
ment. The non–parametric correlation coefficient (Spear-
man R) explained the relationship between the water
quality parameters and the basin characteristics, and the
GIS made the results visual and direct. The PCA identified
four PCs for Groups 1 and 2, and three PCs for Group 3.
These PCs captured 68.94%, 67.48% and 70.35% of the
total variance of Groups 1, 2 and 3, respectively. Although
natural pollution affects the Xin'anjiang River, the main
sources of pollution included agricultural activities,
industrial waste, and domestic wastewater.

Keywords Xin'anjiang River, multivariable statistical
analysis, temporal variation, spatial variation, water quality

1 Introduction

Most Chinese rivers and groundwater sources have poor
and declining water quality. Industrial and municipal
wastewater discharges cause widespread water pollution.
Agricultural run–offs, including fertilizers, pesticides,
manure, and increasing amounts of wastewater, also
cause water pollution [1]. According to the data published
by the Chinese Academy of Science in 2007: two–thirds of
the 669 cities in China have water shortages, more than
40% of China’s rivers are severely polluted, 80% of
China’s lakes suffer from eutrophication, and about 300
million rural residents in China lack access to safe drinking
water [2].
To begin to improve water quality, China needs to build

an integrated network to monitor surface water and
groundwater, and then use the network to assess and set
water policies through an integrated water–resource
management system [3]. According to the Regulation for
Water Environmental Monitoring [4], the water quality of
all the major river systems in China is regularly monitored
at several sites for a great number of physicochemical,
bacteriological and hydrological parameters, leading to the
creation of tremendous and complex databases. Therefore,
it is necessary to optimize the monitoring network so that it
recognizes the representative parameters and extracts only
the most meaningful information from large, complicated
data sets, without missing any useful information. A model
that combined end–member mixing with Principal Com-
ponent Analysis (PCA) was developed to estimate mixing
proportions through computation and knowledge of a
given hydrological system [5–7]; however, the model
cannot be adapted for our study given the obtained sets of
data. Multivariate statistical and exploratory data analysis
techniques are appropriate tools for the treatment of
analytical and environmental data and are currently being
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used more frequently in experiments [7–12].
The objective of this study is to determine seasonal and

spatial variations in the quality of the surface water of the
Xin'anjiang River. This study also aims to examine the
impact of physical and climatic basin characteristics on
typical water quality parameters. In recent years, multi-
variate statistical techniques, including cluster analysis
(CA), principal component analysis (PCA) and discrimi-
nant analysis (DA), have been used widely to assess
surface water quality. Multivariate statistical techniques
have also been used to evaluate spatial or temporal
variations caused by natural or anthropogenic factors and
possibly linked to seasonality [13]. Multivariate statistical
techniques were used to examine the large data set
obtained from the Xin'anjiang River to determine the
spatio–temporal distributions of water contamination and
to ascertain the correlations between basin characteristics
and water quality parameters in a GIS environment. The
results could help to deduce the potential pollution sources
for the Xin'anjiang River and could provide a valuable
method for water quality agencies to effectively focus their
resources on severe water pollution at the watershed scale.

2 Data and methods

2.1 The study area

The Thousand Island Lake was formed by the construction
of the Xin'anjiang dam in 1958. When water in the dam
reached its highest level (108 m), an area of approximately
580 km2 was inundated and 1,078 islands larger than 0.25
ha were created out of former hilltops, creating the
Thousand Island Lake [14]. The Thousand Island Lake is
a large artificial reservoir, located in the western Zhejiang
Province (29°22′–29°50′ N, 118°34′–119°15′ E), created
for the purpose of generating hydroelectricity [15]. The
economic development and drinking water safety of the
Zhejiang Province, especially Hangzhou City, is closely
connected to the water quality of this lake. This study
focuses on the Xin'anjiang River, not only because it is the
source of drinking water for the one million people living
in Huangshan City, but also because the river is the most
important water source flowing into the Thousand Island
Lake.
Located north–eastern of the Thousand Island Lake

between 117°39′ and 118°54′ east longitude and 29°28′
and 30°14′ north latitude, the study watershed had an area
of 5860.49 km2 and covered the south–eastern region of
Huangshan City, including the Tunxi District, She County,
and part of Xiuning County. Pollutants enter the
Xin'anjiang River from both point and non–point sources
either directly through its vast catchment area or indirectly
through its tributaries. Due to a sub–tropical, wet monsoon
climate and 236 frost–free days per year, the mean annual

temperature is approximately 16°C and the average
precipitation is 1700 mm, with the majority of the
precipitation occurring between May and August. In this
study, the water quality data were obtained from eight sites
along the Xin'anjiang River (Fig. 1), including Huang Shan
Lin Xiao (Site 1), Heng Jiang Da Qiao (Site 2), Huang Kou
Du (Site 3), Huang Dun Du (Site 4), Yu Liang (Site 5), Pu
Kou (Site 6), Nan Yuan Kou (Site 7) and Jie Kou (Site 8).
The entire watershed was delineated into eight sub–basins
through the use of Digital Elevation Model (DEM) data
(http://datamirror.csdb.cn) and readily available GIS soft-
ware, in order to test for relationships between the
landscape and surface water.

2.2 Data preparation

The Huangshan Environmental Monitoring Center
(HSEMC) collected water samples monthly over three
years (2008 to 2010). Ten common parameters were
selected for this study based on sampling continuity at the
eight monitoring sites, including temperature (Temp,°C),
pH, electrical conductivity (EC, ms$s–1), dissolved oxygen
(DO, mg$L–1), permanganate index (CODMn, mg$L–1),
ammonia–nitrogen (NHþ

4 –N, mg$L–1), chemical oxygen
demand (CODCr, mg$L–1), total nitrogen (TN, mg$L–1),
total phosphorus (TP, mg$L–1) and Escherichia coli (E.
coli, num$L–1). The water samples were sampled,
preserved, transported, and analyzed according to the
national standards for surface waters in China (GB3838–
2002) in the laboratory of HSEMC. Appendix A
summarizes the abbreviations, units, and analytical
methods for the ten water quality parameters. The verity
of the analytical processes for all parameters was ensured
through careful standardization, procedural blank measure-
ments, and spiked and duplicated samples. Table 1
compiles the basic statistics on river water quality gathered
from the three year data sets.
The Multi–source Land Cover Data obtained from the

Data Center for Resources and Environmental Sciences at
the Chinese Academy of Sciences (http://www.geodata.cn/
Portal/metadata/viewMetadata.jsp) were reclassified into
the following categories: agriculture, forest, grassland,
water, and urban. The data were converted from a raster set
to a vector set, and then were intersected with the eight
sub–basin boundaries previously derived from GIS tools.
Figure 2(a) shows that forest coverage dominated nearly all
of the watersheds (>60%), with the exception of Sub–
basin 6, in which the percentage of agriculture coverage
(45.56%) approximately equaled the percentage of forest
coverage (45.48%). GIS tools were also used to calculate
the slope (o), precipitation (mm), air temperature (°C), and
population density (persons$km–2) of each sub–basin,
based on various data sets obtained from the same land
cover source. The average flow volume in each sub–basin
between 2008 and 2010 was calculated based on stream–
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flow information obtained from the Huang Shan Hydro-
logical Bureau. Figure 2 (b) shows how the data were
standardized before being tested by statistical methods.
The potential sources of pollution for each sub–basin could
be deduced from studying these data side–by–side and
analyzing statistical results. In addition, the temporal
variations specific to the Xin'anjiang River could be
explained by daily climatic data recording the precipitation
and air temperature of the entire watershed.

2.3 Multivariate statistical methods

Multivariate statistical analysis of the river water quality
data sets in this study was performed through a correlation
matrix, CA, DA and PCA [16–18]. The mathematical tools
were all applied with the following objectives: 1) to
determine which clusters of months account for the
variability in water quality parameters and other basin
characteristics; 2) to group sampling sites by similar water
pollution patterns; 3) to confirm the group results; and 4) to
identify the potential sources of pollution in the Xin’an-
jiang River Basin.
The Spearman R coefficient, computed over ranked

data, was used to account for the non–normal distribution
of measured water quality parameters and basin character-
istics. The Spearman R coefficient is a non–parametric
measure of the correlation between variables. It is defined
similarly to the Pearson correlation coefficient, but has

been adapted for variables with non–normal distribution
and has been computed over ranks, (i.e., the values of the
variables are ranked from smallest to largest) [16,19].
CA is an unsupervised pattern recognition technique that

uncovers intrinsic structures in order to group objects into
clusters, which once grouped, should exhibit internal
(within cluster) homogeneity and external (between
clusters) heterogeneity [20,21] based on their proximity
or similarity [9]. Hierarchical agglomerative cluster
analysis is the most common approach that intuitively
provides similar relationships between each sample and the
entire data set [10]. In this study, hierarchical agglom-
erative cluster analysis was performed on the standardized
data set by Ward’s Method, using squared Euclidean
distances to measure similarity. The objective of standar-
dization is to optimize the influence of variables and to
eliminate the influence of different units of measurement,
which would render the data dimensionless. The result is
illustrated by a dendogram, in which the linkage distance is
reported asDlink/Dmax, and represents the quotient between
the linkage distance and the maximal distance, multiplied
by 100 as a way to standardize the linkage distance
represented on the y–axis [16,22–24].
DA is a method of analyzing dependence that occurs as a

unique result of canonical correlation. One of the
objectives of DA is to confirm the groups found by CA.
DA constructs a discriminant function (DF) for each group,
found by CA< [20,25] as follows:

Fig. 1 Study area and eight monitoring sites
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Table 1 Water quality parameters with range, mean value, standard error of mean and standard deviation of Xin'anjiang River system

parameters HSLX HJDQ HKD HDD YL PK NYK JK

Temp. range 5.4–31.5 5.6–32.5 5.5–34 5.6–34.2 4.4–29.9 5.3–30.1 3.5–31 4.2–32

mean 17.67 17.92 18.33 18.59 18.39 18.53 18.64 19.74

SE 1.31 1.33 1.36 1.34 1.30 1.27 1.27 1.30

SD 7.83 7.96 8.15 8.01 7.82 7.61 7.62 7.79

pH range 7.13–8.51 7.1–8.88 6.86–8.92 7.08–8.7 6.88–8.47 6.89–8.51 6.82–8.78 7.05–8.88

mean 7.74 7.72 7.69 7.74 7.70 7.73 7.67 7.68

SE 0.06 0.07 0.08 0.07 0.06 0.06 0.06 0.07

SD 0.37 0.41 0.48 0.39 0.35 0.34 0.38 0.39

EC range 3.1–18.6 4.2–37.7 4.2–22 4.52–22.5 15.1–69.5 13–64.2 8.6–31.8 7.8–24.9

mean 7.02 22.78 12.13 12.81 32.42 29.20 17.18 13.76

SE 0.49 1.39 0.81 0.71 2.40 2.18 0.95 0.60

SD 2.93 8.37 4.85 4.24 14.40 13.08 5.71 3.59

DO range 7.0–14.0 6.1–14.6 7.2–14.4 7.3–16.3 5.5–15.2 6.1–15.5 5.7–13.7 6.1–80.2

mean 9.35 9.51 9.38 10.02 9.06 9.69 9.24 11.10

SE 0.28 0.33 0.34 0.36 0.32 0.37 0.31 2.00

SD 1.68 1.99 2.02 2.17 1.94 2.23 1.83 11.97

CODMn range 0.6–3.8 1–5.8 1.3–3.8 1.0–3.0 1.7–5.7 1.5–4.2 1–3.8 1–3.2

mean 1.59 2.34 2.16 2.06 3.31 2.87 2.33 1.88

SE 0.10 0.15 0.10 0.09 0.17 0.11 0.11 0.09

SD 0.59 0.90 0.57 0.53 1.00 0.64 0.67 0.52

NHþ
4 –N range 0.066–0.659 0.077–0.863 0.049–0.832 0.071–0.927 0.148–0.992 0.142–0.902 0.048–0.806 0.064–0.704

mean 0.24 0.30 0.31 0.36 0.53 0.43 0.30 0.18

SE 0.03 0.03 0.04 0.04 0.05 0.04 0.04 0.02

SD 0.15 0.18 0.22 0.24 0.28 0.26 0.21 0.12

CODCr range 0–9 0–17 2.2–12 0–18 5.8–19 5.0–16.0 0–16 0–10

mean 4.31 7.92 7.38 7.38 11.16 9.88 7.93 6.06

SE 0.40 0.48 0.34 0.57 0.56 0.40 0.50 0.41

SD 2.39 2.86 2.04 3.42 3.38 2.39 3.00 2.49

TN range 0.35–1.9 0.48–2.52 0.56–1.86 0.9–2.12 0.94–4.58 0.98–4.34 0.95–2.44 0.082–1.82

mean 0.96 1.21 1.17 1.44 2.50 2.26 1.61 1.28

SE 0.06 0.07 0.05 0.06 0.14 0.13 0.07 0.05

SD 0.34 0.40 0.32 0.36 0.85 0.79 0.42 0.31

TP range 0.02–0.15 0.03–0.18 0–0.14 0.03–0.14 0.04–0.2 0.04–0.18 0.02–0.16 0.008–0.09

mean 0.06 0.07 0.06 0.08 0.11 0.08 0.07 0.04

SE 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00

SD 0.03 0.03 0.03 0.03 0.04 0.04 0.03 0.02

E.coli range 170–2400 220–3500 430–5400 430–3500 330–5400 490–5400 230–5400 220–3500

mean 599.44 835.56 1174.08 1025.42 1523.06 1523.33 1121.11 832.50

SE 93.36 139.51 164.46 115.06 191.65 197.10 207.12 148.25

SD 560.17 837.03 986.75 690.38 1149.93 1182.61 1242.74 889.51
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f ðGiÞ ¼ ki þ
Xn

j¼1

wij � pij, (1)

where i is the number of groups (G), ki is a constant that is
inherent to each group, n is the amount of parameters used
to classify a set of data into a given group, j = 1,2,…,n, and
wij is the weight coefficient, assigned by DA analysis to a
given parameter (pij). In this study, DA was performed on
each raw data matrix, by using standard, forward stepwise
and backward stepwise modes to construct DFs to evaluate
the spatiotemporal variations in the quality of river water in
the basin. In this analysis, the grouping variables were the
monitoring sites (spatial) and the periods (temporal), and
the independent variables were all of the measured
parameters. The standard DA mode constructed DFs
containing all of the parameters. The forward stepwise
mode added variables step–by–step, beginning with the
most significant variable and continuing until no signifi-
cant changes are observed. In contrast, the backward
stepwise mode removed variables step–by–step, beginning
with the least significant variable and continuing until no

significant changes were observed [17,26].
PCA is a procedure that uses an orthogonal transforma-

tion to convert a set of potentially correlated variables into
a set of linearly, uncorrelated variables, called principal
components (PCs) [27,28]. PCA extracts eigenvalues and
eigenvectors from the covariance matrix, which describe
the dispersion of the original variables (measured para-
meters) in order to assess associations between variables
[29]. PCA provides information about the most meaningful
parameters, which describe the entire data set and thereby
allow the reduction of data with minimal loss of original
information [30,31].
ArcGIS software was used to obtain land use data and

other basin parameters, including slope, precipitation, air
temperature and population density. Microsoft Office
Excel 2003 and STATISTICA 7.0 were used to make the
mathematical and statistical computations.

3 Results and discussion

3.1 Temporal variations in river water quality

Temporal CA was used as an exploratory method to
generate a dendrogram that grouped the 12 months into
three clusters at (Dlink/Dmax) � 100< 20, according to the
flow volume and seasonal features, such as air temperature.
As Fig. 3 shows, there were significant differences
between the clusters. Empirically, 12 months would be
divided into four seasons, as spring (March to May),
summer (June to August), autumn (September to Novem-
ber), and winter (December to February). With the
exception of a few discrepancies, our clusters were mostly
consistent with the empirical divisions.
The seasons in the Xin’anjiang River Basin could not be

classified empirically, because summer and autumn had

Fig. 2 (a) landscape characteristic gradients, (b) trends of
temperature, precipitation, slope, population density and flow

Fig. 3 Dendrogram showing temporal similarities of monitoring
periods
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similar temperatures and precipitation. Cluster 1 (Period
1), which included November, December and January,
closely corresponded to the lowest flow period and had an
average flow volume of 21.54 m3$s–1 and the lowest air
temperature at 8.10°C. Cluster 2 (Period 2) included
February, March, April and May, and Cluster 3 (Period 3)
contained all the remaining months from June to October.
The flow volumes were approximately the same in Periods
2 and 3, but the air temperature was significantly higher in
Period 3 (25.80°C) than in Period 2 (14.52°C).
DAwas applied to the raw data after dividing the entire

data set into three groups, in order to avoid mistakes and to
evaluate the results of temporal CA. The DA aimed to test
the significance of DF and to determine the most
significant variables associated with cluster differences
[10]. Table shows DFs and classification matrices (CMs)
obtained from the standard stepwise, forward stepwise and
backward stepwise modes of DA. The DFs obtained from
the standard and forward stepwise modes using ten and
eight discriminant variables, yielded corresponding CMs
that correctly assigned 76.39% and 77.78% of the cases,
respectively. However, the DA gave CMs with 75.69%
correct assignations in backward stepwise mode using only
three discriminant parameters (Table 2). The temporal DA
results suggested that temperature, pH and E.coli were the
most significant parameters to discriminate between the
three groups, and therefore, that the majority of expected
temporal variations in the water quality were the result of
these three parameters.
The mean value and standard deviation of the three

discriminant parameters were respectively calculated to
identify seasonal trends during the three periods (Temp:
13.05 � 4.84, 12.78 � 4.89, 26.28 � 2.63; pH: 7.80 �
0.36, 7.70� 0.29, 7.66� 0.45; E.coli: 1571.46� 1589.84,
872.88 � 505.21, 949.17 � 709.99). Periods 1 and 2 had
similar temperatures, but the highest average Temp

occurred during Period 3. The pH was relatively consistent
during the three periods. High temperature may cause the
decomposition of dissolved organic matter, a process that
consumes great quantities of oxygen and leads to the
formation of ammonia and organic acids [16,22]. The
hydrolysis of these acidic materials decreases water pH
values. Therefore, the pH was slightly lower in Period 2
and Period 3 than in Period 1. More E.coli was present in
Period 1 than in the other two periods. To better understand
the differences between the three groups, the analyzed
variables were correlated pair–by–pair with basin char-
acteristics, such as precipitation, temperature, and flow
(Appendix B). The temperature positively correlated to the
air temperature, which was consistent with the seasons.
There was a significant positive correlation between
precipitation and flow, but E.coli negatively correlated
with both precipitation and flow. These results indicated
that precipitation dominated the stream flow of the
Xin'anjiang River, and that E.coli was closely related to
municipal sewage and wastewater treatment plants [25,31],
with constant amount and reflected the dilution effect in
Period 2 and Period 3.

3.2 Spatial variations in river water quality

Just like temporal CA, spatial CA produced a dendrogram,
which grouped the eight sites into three clusters at (Dlink/
Dmax) � 100< 16 (Fig. 4). Sites affected by similar
sources were classified into groups. Site 1 and Site 8
formed Group 1; these two sub–basins had little impact
from humans, relatively low pollution, and were domi-
nated by forested areas (81.37% of Site 1 and 85.13% of
Site 8). Site 5 and Site 6 formed Group 3, and were located
near several water treatment plants and factories in a highly
polluted region. The rest of the sites located near urban
areas (e.g. Huangshan City) formed Group 2, and were

Table 2 Classification functions for discriminant analysis of temporal variation

parameters standard forward backward

period 1 period 2 period 3 period 1 period 2 period 3 period 1 period 2 period 3

Temp. – 0.06 – 0.10 0.71 – 0.09 – 0.13 0.69 – 0.32 – 0.32 0.51

pH 59.92 58.55 56.24 57.52 56.21 53.97 56.59 55.46 53.26

EC – 0.17 – 0.22 – 0.22 0.04 – 0.02 – 0.03

DO 0.43 0.40 0.28 0.46 0.43 0.31

CODMn – 6.12 – 4.78 – 4.53 – 4.34 – 3.05 – 2.84

NHþ
4 –N 9.20 8.57 7.24 17.58 16.74 15.21

CODCr 0.079 0.023 0.063 0.092 0.036 0.075

TN 9.59 9.35 9.11

TP – 0.17 – 0.17 – 0.16

E.coli 0.006 0.005 0.005 0.007 0.006 0.006 0.007 0.006 0.006

constant – 244.53 – 232.29 – 229.38 – 233.19 – 221.49 – 219.17 – 225.57 – 215.45 – 214.49

%correct 53.62 73.33 99.15 53.62 71.11 99.14 34.72 79.17 98.33
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moderately polluted and mainly affected by domestic
wastewater.
Spatial DA was performed on the same raw data set

comprised of ten parameters, after using CA to group the
data into three major classes. Just as with temporal DA,
DFs and CMs were obtained from the standard, forward
stepwise, and backward stepwise modes (Table 3). The
standard and forward stepwise mode DFs used ten and
eight discriminant variables, and correctly assigned
80.56% and 79.86% of the cases to the three groups,
respectively. In the backward stepwise mode, the DA
produced a CM with nearly 80.56% correct assignment
using only five discriminant parameters, and thereby
illustrated that Temp, EC, CODCr, TN and TP were
significant parameters of spatial variables (Table 3). The
correct assignations through DA for these three site
clusters further confirmed the adequacy of the previous
spatial CA in this study, as both DA and CA verified

significant differences between the three regions.
Spatial DA using backward step mode was used to

calculate the mean value and standard deviation for the five
selected discriminating parameters in order to evaluate
different patterns associated with spatial variations in the
river water quality, (Temp: 18.71 � 7.77, 18.37 � 7.83,
18.46 � 7.61; EC: 10.39 � 4.67, 16.23 � 7.29, 30.81 �
13.66; CODCr: 5.51 � 1.47, 7.89 � 2.47, 10.52 � 2.95;
TN: 1.12 � 0.36, 1.36 � 0.41, 2.38 � 0.82; TP: 0.05 �
0.03, 0.07 � 0.03, 0.09 � 0.04). The Spearman non–
parametric correlation coefficient (Spearman R) was used
in this study to establish the sub–basin characteristics
associated with certain water quality parameters (Appen-
dix C). The water temperature exhibited a closely
correlated coefficient (Spearman –R = 0.91) to the flow.
The average flow rates for Group 1, Group 2 and Group 3
were 93.52, 70.75 and 40.70 m3$s–1, respectively, which
indicated that a higher flow volume could maintain a more
stable environment but led to a higher water temperature.
The trend for EC, CODCr, TN and TP suggested that Group
3 had the highest average concentration, followed by
Group 2. Group 1 had the lowest average concentration.
The two sub–basins in Group 3, and their watercourses,
were located near a chemical plant and a sewage treatment
plant, and a large amount of municipal and industrial
wastewater entered this zone. Human activities signifi-
cantly affected the four sites within Group 2, which were
located near urban area and big counties, but Group 1 was
heavily forested and had little impact from humans. Aside
from human impact, basin characteristics may also
correlate with water quality variables. EC, CODCr, TN
and TP all significantly correlated with the percentage of
agricultural area present, which was 9.13%, 33.95% and
20.69% for Group 1, Group 2 and Group 3, respectively. In
addition, TN positively correlated with precipitation, while
TP negatively correlated with the percentage of forest and

Fig. 4 Dendrogram showing sampling site clusters

Table 3 Classification functions for discriminant analysis of spatial variation

parameters
standard forward backward

group 1 group 2 group 3 group 1 group 2 group 3 group 1 group 2 group 3

Temp. 0.68 0.71 0.85 0.52 0.54 0.70 0.54 0.58 0.75

pH 56.05 55.86 56.03

EC – 0.17 – 0.11 0.04 0.14 0.19 0.34 0.19 0.26 0.42

DO 0.28 0.25 0.25

CODMn – 4.71 – 4.36 – 4.05 – 0.11 0.29 0.52

NHþ
4 –N 4.30 5.06 3.72

CODCr 0.62 0.78 0.95 0.79 0.96 1.11

TN 11.76 11.95 15.46 5.14 5.43 8.77 5.81 6.44 9.98

TP – 0.19 – 0.17 – 0.19

E.coli 0.004 0.005 0.005 0.0004 0.0007 0.0007

constant – 225.31 – 227.00 – 242.44 – 12.82 – 15.28 – 30.28 – 10.64 – 12.51 – 26.67

%correct 47.22 91.67 66.67 45.83 93.06 66.67 26.39 91.67 69.44
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grassland and positively correlated with air temperature.
Taking account of these comprehensive factors, Site 8, the
site closest to Thousand Island Lake, had better water
quality than the other sites, whereas the upstream area,
including Site 5 and Site 6, was highly polluted.

3.3 Source identification

PCAwas employed on the normalized data to compare the
compositional patterns of the water samples and to identify
the influencing factors for each of the three spatial clusters.
The PCA of the three data sets extracted four PCs with
eigenvalues>1 for both Groups 1 and 2, and extracted
three PCs for Group 3. These results explained 68.94%,
67.48% and 70.35% of the total variance in the respective
water quality data from each set, respectively. Table 4
summarized the PCA results including the loadings,
eigenvalue, and variance contribution rate of each PC
and the cumulative variance contribution rate. Table 4 also
highlighted the loading with significant absolute value in
each PC.
Among the four PCs for the data set pertaining to the

sites in Group 1, PC1 explained 22.92% of the total
variance and had strong positive loadings (>0.70) on
Temp, CODMn and CODCr. As both CODMn and CODCr

positively correlated to the percentage of agricultural area
present, this factor may be a result of seasonal effects and
of influences from non–point sources, such as agricultural
activities. Anthropogenic factors did not significantly
impact these two sites, due to low population densities
and relatively little exploitation. The PC2 explained
19.57% of the total variance and had strong negative
loadings on NHþ

4 –N, which positively correlated to the
percentage of agricultural area present and to population

density, indicating that this factor represented the eventual
contribution of ammonium fertilizers from agricultural
areas to the stream via surface runoff and irrigation waters.
The PC3 explained 15.60% of the total variance and had
strong negative loadings on EC, indicating the impact of
mineral components on surface water. The PC4 explained
10.85% of the total variance and had strong positive
loadings on DO, which correlated with biochemical
pollution.
Among the four PCs for Group 2, the PC1 explained

23.73% of the total variance, had strong negative loading
on Temp, and dominantly represented seasonal effects, just
like the PC1 of Group 1. The PC2 explained 19.97% of the
total variance and had strong positive loadings on CODMn,
which could be interpreted as organic pollutions from
domestic wastewater, wastewater treatment plants, and
agricultural activities. The five sites in Group 2 were
primarily located in central Huangshan City, and received
large amounts of anthropogenic pollution. The PC3
explained 12.94% of the total variance with strong
negative loadings on pH, while the PC4 explained
10.84% of the total variance with strong positive loadings
on EC. These two factors may be attributed to the
physicochemical source of the variability [33] and to
natural ioni group sources from stream inflow.
The two sites in Group 3, Site 5 and Site 6, received a

great amount of municipal sewage and industrial waste-
water from the Huizhou District and She County. The PC1
of this group, explaining 36.21% of the total variance, had
strong positive loadings on DO and strong negative
loadings on Temp. The inverse relationship between
dissolved oxygen and water temperature is a natural result
of warmer water becoming easily saturated with oxygen
but having less capacity to hold dissolved oxygen [34].

Table 4 Loadings of 10 experimental variables on factor analysis parameters for three spatial clusters

parameters
Group 1 Group 2 Group 3

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3

Temp. 0.71 0.34 0.09 – 0.21 - 0.89 0.05 – 0.15 – 0.18 - 0.82 – 0.30 – 0.16

pH 0.32 0.01 0.55 0.10 0.14 0.07 - 0.84 0.13 0.44 0.11 - 0.70

EC 0.16 0.12 - 0.74 0.34 0.32 0.00 0.03 0.82 0.44 0.68 0.07

DO – 0.02 0.00 0.07 0.82 0.67 – 0.36 – 0.26 – 0.03 0.92 – 0.24 – 0.01

CODMn 0.89 – 0.31 0.04 0.08 – 0.12 0.81 – 0.17 – 0.16 – 0.05 0.91 0.10

NHþ
4 –N – 0.06 - 0.85 0.18 0.05 0.58 0.53 0.19 0.03 0.46 0.57 0.50

CODCr 0.90 0.06 – 0.07 0.07 – 0.01 0.86 – 0.13 0.01 – 0.03 0.90 – 0.19

TN 0.17 – 0.66 – 0.50 0.17 0.43 0.38 0.49 0.16 0.55 0.37 0.49

TP – 0.09 – 0.66 0.32 – 0.40 0.52 0.19 0.13 – 0.65 0.12 – 0.04 0.53

E.coli 0.02 0.15 – 0.63 – 0.31 0.12 – 0.16 0.49 0.04 0.15 0.08 0.72

eigenvalue 2.29 1.96 1.56 1.09 2.18 2.01 1.37 1.19 3.62 1.85 1.56

% total variance 22.92 19.57 15.60 10.85 23.73 19.97 12.94 10.84 36.21 18.51 15.63

cumulative %
variance

22.92 42.49 58.09 68.94 23.73 43.70 56.64 67.48 36.21 54.72 70.35
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The PC2 explained 18.51% of the total variance and had
strong positive loadings on CODMn and CODCr, both of
which correlated with the percentage of agricultural area
present. As the COD parameter indicated the amount of
organic material observable in the water, this factor
represented nutrient pollution from anthropogenic sources,
such as eutrophication from domestic wastewater and
agricultural activities [35]. The relatively high–concentra-
tion of COD in this region made COD a significant factor
for Group 1, despite the attenuating effect of the stream.
The PC3, explaining 15.63% of the total variance, had
strong negative loadings on pH and strong positive
loadings on E.coli, which positively correlated with
population density. This factor indicated the impact of
human and animal feces; the increase of coliform led to the
formation of more acidic materials, which decreased the
pH values.
The major sources influencing the river water quality in

all three regions were physical parameters, soluble salts,
domestic wastewater, agricultural land runoff, and a small
amount of industrial waste. Site 8 had better water quality
than the other sites, due to the self–purification of the
stream, but COD and NHþ

4 –N were still significant factors
on the water quality of Thousand Island Lake and should
be researched further.

4 Conclusions

This case study illustrates the usefulness of multivariate
statistical assessment of large and complicated databases in
order to obtain meaningful information concerning the
quality of surface water. Multivariate statistical methods
were successfully applied to evaluate temporal and spatial
variations in river water quality and to deduce the pollution
sources at the monitoring sites in the Xin'anjiang River
Basin. Hierarchical CA helped to group 12 months into
three periods, and to divide the eight sampling sites into
three groups based on their similarities regarding water–
quality and natural and anthropogenic pollution sources.
Discriminant analysis provided the best results for both
temporal and spatial analysis. To discriminate between the
seasons, DA used only three parameters (Temp, pH and E.
coli) and had 76% correct assignations. To discriminate
between the three spatial regions, DA used five parameters
(Temp, EC, TN, CODCr and TP) and had 80.56% correct
assignations. The results showed that most of the physical
parameters followed seasonal variations, while the nutrient
pollution caused significant variations in the water quality
at different sites. The analysis of correlations between
water quality parameters and basin characteristics showed
that land cover, climate, and topography significantly
influenced water quality, which should be examined
further in a future study. The PCA helped to deduce the
latent pollution sources for each group and to determine
that the parameters responsible for water–quality varia-

tions were soluble salts (reflected by EC, CODMn,
NHþ

4 –N, CODCr and E.coli). The results showed that
the multivariate statistical techniques served as excellent
exploratory tools to analyze and interpret complex water
quality data sets and to understand their temporal and
spatial variations. This study revealed that the pollution of
the Xin'anjiang River was related to both anthropogenic
activities and poor wastewater management. The drinking
water safety of Huangshan City and Hangzhou City
depends on good water quality maintenance before the
Xin'anjiang River flows into Thousand Island Lake.
Therefore, the results of this study can lead to govern-
mental consideration of strategies to mitigate further
degradation and to improve the water quality in the
watershed.
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