RESEARCH ARTICLE

Characterization and performance of V_2O_5/CeO_2 for NH_3 -SCR of NO at low temperatures

Caiting LI (⊠), Qun LI, Pei LU, Huafei CUI, Guangming ZENG

Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), College of Environmental Science and Engineering, Hunan University, Changsha 410082, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Abstract A series of CeO_2 supported V_2O_5 catalysts with various loadings were prepared with different calcination temperatures by the incipient impregnation. The catalysts were evaluated for low temperature selective catalytic reduction (SCR) of NO with ammonia (NH₃). The effects of O₂ and SO₂ on catalytic activity were also studied. The catalysts were characterized by specific surface areas (S_{BET}) and X-ray diffraction (XRD) methods. The experimental results showed that NO conversion changed significantly with the different V_2O_5 loading and calcination temperature. With the V₂O₅ loading increasing from 0 to 10 wt%, NO conversion increased significantly, but decreased at higher loading. The optimum calcination temperature was 400°C. The best catalyst yielded above 80% NO conversion in the reaction temperature range of 160°C-300°C. The formation of CeVO₄ on the surface of catalysts caused the decrease of redox ability.

Keywords V_2O_5 /CeO₂ catalysts, NH₃-SCR (selective catalytic reduction), the incipient impregnation, low temperatures

1 Introduction

The emission of NO_x contributes to acid rain, photochemical smog, ozone depletion, and greenhouse effects [1]. The pollution sources of NO_x are divided into stationary sources (i.e. power plants) and mobile sources (i.e. transportation). Power plant boilers produce about 40% of the NO_x emissions from stationary sources. In recent decades, the catalytic technologies of NO_x have become attractive. The selective catalytic reduction(SCR) of NO_x has been well reported for some time for the treatment of flue gas, by using reducing agents such as CO, H_2 , NH_3 , and aliphatic carboxylic acid [2,3]. The main reducing agent for reducing NO emissions from power plant sources is ammonia(NH_3). The reaction is as follow equation:

$$4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2 \text{O}$$
 (1)

The reported commercial catalysts for SCR of NO_x with NH₃ usually include V_2O_5/TiO_2 [1,4], or a V_2O_5/TiO_2 catalyst promoted by WO₃ or MoO₃ [5–9], CuO/TiO₂, MnO_{x}/TiO_{2} [10]and so on. The required operating temperature for the above industrial catalysts is typically 300°C-400°C. This makes it necessary to locate the SCR unit upstream of the desulphurizer and/or particulate control device in order to avoid reheating the flue gas and causing deposition of dust on the catalyst, where the life of the catalyst is shortened because of high concentrations of SO_2 and ash in the flue gas [1]. Therefore, it is important to investigate a catalyst with high activity at low temperatures, which would be placed downstream of the desulphurizer and electrostatic precipitator, operating at a temperature of 80°C-300°C. Some transition-metalcontaining catalysts have been investigated for the low temperature SCR reaction, such as MnO_x/Al₂O₃ [11], V₂O₅/AC [12], MnO_x/NaY [13], iron-silica aerogels [14], MnO_x/CeO₂ [15-18], MnO_x/TiO₂(prepared from two different precursors) [19], amorphous MnO_x [20] and other oxides [21].

Rare earth oxides have been widely investigated for catalysis. Ceria (CeO₂) is one of the most significant. And it is a crucial component in the so-called "three-way catalysts" for the elimination of toxic exhaust gases in automobiles [22]. The most important property of CeO₂ is as an oxygen reservoir, which stores and releases oxygen via the redox shift between Ce⁴⁺ and Ce³⁺ under oxidizing and reducing conditions, respectively. Ceria also improves the dispersion of the metal and the activity [22,23]. The vanadium-based catalysts are highly active and resistant to

Received March 16, 2010; accepted November 25, 2010

 SO_2 [16]. Xiaodong Gu et al. [24] have found that various amounts of V_2O_5 on Ceria and different calcination temperatures brought about the changes of surface structure of dispersed vanadium species, which have an effect on the activity. Recently, Chen et al. [25] have found that the Ce doped V_2O_5 -WO₃/TiO₂ catalyst could enhance the NO_x adsorption and then accelerate the SCR reaction due to the synergetic interaction among the Ce and V, W species. They [26] also have studied the W-doped CeO₂/ TiO₂ catalysts by co-impregnation method, and found the co-impregnation method could make CeO₂ and WO₃ crystallites disperse better over the catalyst surface, and much stronger interaction happened between Ce and W with the increased appearance of Ce³⁺.

In this work, we studied the CeO₂ with different loadings of V₂O₅ for SCR of NO with NH₃ at low temperatures (120°C–300°C). The activities of catalysts that were prepared at different calcination temperatures were compared. The effects of O₂ and SO₂ also were studied. And the CeO₂ and the V₂O₅/CeO₂ catalysts were characterized by means of specific surface areas (S_{BET}), X– ray diffraction (XRD).

2 Experiment

2.1 Catalyst characterization

The specific surface area (S_{BET}) of each prepared sample was determined by nitrogen physisorption at $-196^{\circ}C$ (Micromeritics ASAP 2010). The specific surface area was determined from the linear portion of the BET plot. Prior to the surface area measurements, the samples were degassed in vacuo at 120°C for 1 h.

The X-ray diffraction (XRD) measurements were carried out with a Rigaku Rotaflex D/Max-C system with Cu K α ($\lambda = 0.1543$ nm) radiation. The samples were loaded on a sample holder with a depth of 1 mm.

2.2 Catalyst preparation

CeO₂ was prepared by thermal decomposition of Ce(NO₃)₂·6H₂O (4 moL·L⁻¹, Sinopharm Chemical Reagent Co., Ltd.) in air at 500°C for 5 h. The V₂O₅/CeO₂ catalysts with various loadings (1–20 wt% V₂O₅) were prepared by using the incipient impregnation method. Ammonium metavanadate (NH₄VO₃) and oxalate were mixed in the desired proportions (about 1:2, excess oxalate). A certain amount of CeO₂ powder was added into the aqueous solution and was stirred. After being kept at room temperature overnight, it was dried at 100°C for 12 h and then calcined at 400°C, 500°C and 600°C for 4 h. The catalysts were marked x% V₂O₅/CeO₂(y), x% is V₂O₅ loading and y is the calcination temperature. V₂O₅ was obtained by calcining NH₄VO₃ at 400°C for 5 h.

2.3 Catalytic activity tests

The SCR activity measurement of the V₂O₅/CeO₂ catalysts was carried out in a fixed-bed stainless steel continuous flow reactor at atmospheric pressure. The range of experimental temperature was 120°C–300°C. The typical reactant gas composition was as follows: 1×10^{-9} NO, 1.08×10^{-9} NH₃, 5 vol% O₂, and balance N₂. A 500 mg sample was used in each run. The total flow rate was 100 mL/min. To prevent formation and deposition of ammonium nitrate, the tubing of the reactor system was heat–traced. NO concentrations in the inlet and outlet gases were measured by Hand–held Combustion Analyzer (KM900, Kane International Limited, UK.). The accuracy is ±5% of the reading, and its resolution is 10^{-6} .

3 Results and discussion

3.1 Characterizations of catalysts

3.1.1 BET

The specific surface areas (S_{BET}) of the V_2O_5/CeO_2 catalysts with various V_2O_5 loadings at different calcination temperaturess are summarized in Table 1. It is clear that the S_{BET} of pure CeO₂ is the largest ($83 \text{ m}^2 \cdot \text{g}^{-1}$). The S_{BET} of V_2O_5/CeO_2 catalysts decrease compared to pure CeO₂. It is clear that the S_{BET} decreases as the V_2O_5 loading increases from 0 to 20 wt%. The S_{BET} of V_2O_5 is only 15 m² · g⁻¹. The reasons for this result may be: 1) the blockage of some pores by the supported species, 2) the destruction of the texture of ceria during impregnation, 3) the sintering of the catalysts, 4) the formation of new low surface area compounds due to solid reactions occurring between the support and supported species [24]. However, temperature higher than 400°C is needed for the solid reaction between CeO₂ and V_2O_5 .

The S_{BET} decreased with the increase of V_2O_5 loading, which is due to either the blockage of some pores by the

 Table 1
 Specific surface area of the catalysts

catalysts	$S_{BET}/(m^2 \cdot g^{-1})$
CeO ₂	83
V_2O_5	15
1%V ₂ O ₅ /CeO ₂ (400°C)	80
5%V2O5/CeO2(400°C)	72
10%V ₂ O ₅ /CeO ₂ (400°C)	56
15%V ₂ O ₅ /CeO ₂ (400°C)	53
20%V ₂ O ₅ /CeO ₂ (400°C)	48
5%V2O5/CeO2(500°C)	60
5%V ₂ O ₅ /CeO ₂ (600°C)	43

supported species or the destruction of the texture of ceria during impregnation. With the increase of calcination temperature, the increased order of the surface areas of three catalysts with different calcination temperatures is: $5\% V_2O_5/CeO_2$ (400° C) > $5\%V_2O_5/CeO_2$ (500° C) > $5\%V_2O_5/CeO_2$ (500° C). This is evidently related to the formation of new compounds and the sintering of the catalysts. Daniell et al. [27] found that VO_x and CeO_2 began to react to form CeVO₄ on the surface over 400° C. The sintering of the catalysts would be analyzed on XRD as demonstrated below.

3.1.2 XRD

XRD patterns of V₂O₅/CeO₂ catalysts with various V₂O₅ loadings and pure CeO₂ (commercial) are shown in Fig. 1. The cubic fluorite structure of CeO₂ (JCPDS #43-1002) was clearly detected in all catalysts. No XRD pattern for crystalline V₂O₅ was observed for the catalysts with the loading of V₂O₅ lower than 15%. This demonstrates that the V₂O₅ loading is too low to be detected or that vanadium species are in a highly dispersed state in the catalysts. With the V₂O₅ loading increased, a weak peak of V₂O₅ crystal was observed at 20% V₂O₅ loading. This

Fig. 1 XRD patterns of the V₂O₅/CeO₂ (400°C) catalyst with various V₂O₅ contents. (a) Pure CeO₂; (b) 1% V₂O₅/CeO₂; (c) 5% V₂O₅/CeO₂; (d) 10% V₂O₅/CeO₂; (e) 15% V₂O₅/CeO₂; (f) 20% V₂O₅/CeO₂

indicates the coverage of V_2O_5 exceeds the monolayer on CeO₂ and the particle size of V_2O_5 is much larger than other catalysts calcined at 400°C.

Figure 2 shows the XRD patterns of the $5\%V_2O_5/CeO_2$ (400°C), $5\%V_2O_5/CeO_2$ (500°C), and $5\%V_2O_5/CeO_2$ (600°C). With the increase of calcinations temperature, the characteristic peaks for CeVO₄ become intensive. This illustrates that more CeVO₄ forms and the particle size increases [24]. We can also observe that the peaks of CeO₂ become sharper with the increase of calcinations temperature, indicating the sintering of CeO₂, which is consistent with the results of the measurements of the S_{BET}. The oxygen anions in CeVO₄ are less active than in V₂O₅ and CeO₂, because they are more strongly bonded into the lattice of CeVO₄. With the formation of CeVO₄, the Ce⁴⁺ in CeO₂ is reduced to Ce³⁺ in CeVO₄, more stably, which in turn weakens the redox ability of the catalysts.

Fig. 2 XRD patterns of the 5%V₂O₅/CeO₂ catalyst at different calcination temperatures: (a) 5%V₂O₅/CeO₂ (400°C); (b) 5%V₂O₅/CeO₂ (500°C); (c) 5%V₂O₅/CeO₂ (600°C)

3.2 Activity evaluation

3.2.1 Effect of V₂O₅ loading on NO conversion

Figure 3 illustrates the results of the NO conversion of the catalysts with various V_2O_5 loadings for SCR of NO with NH₃ at low temperatures (120°C–300°C). Pure CeO₂ showed slight activity (not shown in Fig. 3). With an increase of the V_2O_5 loading, the activity of the catalysts was significantly enhanced, compared with pure CeO₂. However, the catalytic activity didn't always increase with the enhancement of the V_2O_5 loading. When the V_2O_5 loading exceeded 15%, the catalytic activity clearly decreased. For 5% and 10% V_2O_5 /CeO₂, the trend of NO conversion was consistent, and higher than 90% in a temperature range (200°C–300°C). However, the NO maximum conversion of 15% V_2O_5 /CeO₂ was 80% at

Fig. 3 NO conversion of the V₂O₅/CeO₂ catalyst with various V₂O₅ loadings calcined at 400°C.Reaction conditions: 500 mg catalyst, total flow 100 mL·min⁻¹, NO 1×10^{-9} , NH₃ 1.08×10^{-9} , O₂ 5 vol%, N₂ balance

 300° C and the NO conversion of $20\% V_2O_5/CeO_2$ was only about 50% at 300°C. For all catalysts, the NO conversion increases gradually with the raising of the reaction temperature, and tended to be stable.

3.2.2 Effect of calcination temperature on NO conversion

The catalytic activities of the 5% V_2O_5/CeO_2 catalysts calcined at 500°C and 600°C also were studied with the same reaction conditions as the catalysts calcined at 400°C. Figure 4 shows the NO conversion of catalysts for 5% V_2O_5 loadings at different calcination temperatures (500°C, 600°C). With the enhancement of calcinations'

Fig. 4 NO conversion of the 5%V₂O₅/CeO₂ catalyst calcined at 400°C, 500°C, 600°C. Reaction conditions: 500 mg catalyst, NO 1×10^{-9} , NH₃ 1.08×10^{-9} , O₂ 5 vol%, N₂ balance, total flow 100 mL·min⁻¹

temperature from 400°C to 600°C, the NO conversion of catalysts decreased. The $5\%V_2O_5/CeO_2$ (400°C) catalyst showed the widest reaction window and the highest NO conversion (nearly 98% at 250°C). The NO conversion of other catalysts $5\%V_2O_5/CeO_2(500°C)$ and $5\%V_2O_5/CeO_2(600°C)$ was only about 50%–70%. That indicated the calcinations' temperature of catalysts was one important factor for the catalytic activity. On the one hand, the calcinations' temperature increasing resulted in the formation of CeVO₄ which reduced the redox ability of the catalysts. In fact, we can observe the faint XRD pattern of the new compound CeVO₄, which is related to the V₂O₅ loading. On the other hand, the increase of calcination temperature led to the sintering of the catalyst to reduce activity.

3.2.3 Effect of O_2 on NO conversion

Xu et al. [28] reported that O_2 plays an important role in the reaction between NO with NH₃. Figure 5 showed the NO conversion of the 5%V₂O₅/CeO₂ catalysts in the presence of O₂ and in the absence of O₂. As shown in Fig. 5, the NO conversion of the 5%V₂O₅/CeO₂ catalyst increased gradually and reached 98% at 250°C in the presence of O₂. The NO conversion maintained a steady-state at the initial stage of the reaction in the absence of O₂, but then decreased at 200°C. Accordingly, we inferred that lattice oxygen participated in the reaction in the absence of O₂. The steady-state was mainly due to the CeO₂. With the whole reaction completed, the lattice oxygen of CeO₂ was consumed and the NO conversion decreased significantly.

Fig. 5 NO conversion of the $5\%V_2O_5/CeO_2$ catalyst under different reaction conditions: in the presence of O_2 and in the absence of O_2 . Reaction conditions: 500 mg catalyst, NO 1×10^{-9} , NH₃ 1.08×10^{-9} , O_2 0–5 vol%, N₂ balance, total flow $100 \text{ mL} \cdot \text{min}^{-1}$

3.2.4 Effect of SO₂ on NO conversion

We further studied the effect of SO₂ on the NO conversion of the 5%V₂O₅/CeO₂ catalyst. The results are shown in Fig. 6. After adding SO₂, the NO conversion increased in the 120°C-300°C range. This was due to the reaction between SO_2 and NH_3 , which formed SO_4^{2-} . As is well known, V₂O₅ is a very active catalyst for SO₂ oxidation and much easier to transform into SO_4^{2-} . The SO_4^{2-} stimulated NH₃ to be adsorbed onto the surface of the $5\%V_2O_5/CeO_2$ catalyst to form NH₄⁺. Then the reaction between NH₄⁺ and NO occurred and promoted the NO conversion. Zhu et al. [29,30] also found that SO₂ had positive influences on the NO conversion when the V_2O_5 loading was 1%-5% and the reaction temperature was 250°C. On the other hand, the ammonium salts deposited on the face of the catalyst and acted as poisons to offset the promoting catalytic role of SO₂ with time process at higher temperature($> 200^{\circ}$ C) [12].

Fig. 6 NO conversion on $5\% V_2 O_5 / CeO_2$ catalyst under different reaction conditions: in the presence of SO₂ and in the absence of SO₂. Reaction conditions: 500 mg catalyst, NO 1×10^{-9} , NH₃ 1.08×10^{-9} , SO₂ 0–3vol%, N₂ balance, total flow 100 mL·min⁻¹

4 Conclusions

The V₂O₅/CeO₂ catalyst with various V₂O₅ loadings is highly active in the presence of oxygen and is resistant to SO₂. The V₂O₅ loading and the calcinations temperature of catalysts have significant effects on the activity and surface structure of the catalysts. O₂ has an important role in the reaction between NO and NH₃. By XRD and activity test, it is concluded that the formation of CeVO₄ has influenced catalytic efficiency by changing the structure of the catalysts, facilitating the reduction of Ce⁴⁺ to Ce³⁺, which weakens the catalytic activity.

Acknowledgements The research was supported by the National Natural Science Foundation of China (Grant No. 50878080) and the Scientific and

Technological Major Special Project of Changsha City in China (K0902006-31).

References

- Bosch H, Janssen F. Formation and Control of Nitrogen Oxides. Catalysis Today, 1988, 2(4): 369–379
- Teng H, Tu Y T, Lai Y C, Lin C C. Reduction of NO with NH₃ over carbon catalysts The effects of treating carbon with H₂SO₄ and HNO₃. Carbon, 2001, 39(4): 575–582
- Severino F, Brito J L, Laine J, Fierro J L G, Löpez A A. Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl₂O₄ and CuCr₂O₄ Spinel Type Catalysts. Journal of Catalysis, 1998, 177(1): 82–95
- Wood S C. Select the Right NO_x Control Technology. Chemical Engineering Progress, 1994, 90: 32–38
- Ha H P, Jung S H, Lee J Y, Hong S H. Study on SCR De NO, mechanism through in situ electrical conductivity measurements on V₂O₅-WO₃/TiO₂ catalysts. Rare Metals, 2006, 25(9): 77–83
- Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweiler W. Effect of oxygen concentration on the NO_x reduction with ammonia over V₂O₅-WO₃/TiO₂ catalyst. Catalysis Today, 2006, 113(3–4): 208– 214
- Kijlstra W, Brands D, Smit H, Poels E, Bliek A. Mechanism of the Selective Catalytic Reduction of NO with NH₃ over MnO_x/Al₂O₃ II, Reactivity of Adsorbed NH₃ and NO Complexes. Journal of Catalysis, 1997, 171(1): 219–230
- Ramis G, Yi L, Busca G, Turco M, Kotur E, Willey R J. Adsorption, Activation, and Oxidation of Ammonia over SCR Catalysts. Journal of Catalysis, 1995, 157(2): 523–535
- Kasaoka S, Sasaoka E, Iwasaki H. Vanadium Oxides(V₂O_x) Catalysts for Dry-Type and Simultaneous Removal of Sulfur Oxides and Nitrogen Oxides with Ammonia at Low Temperature. Chemical Society of Japan, 1989, 62(4): 1226–1232
- Wöllner A, Lange F, Schmelz H, Knözinger H. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Applied Catalysis A, General, 1993, 94(2): 181–203
- Kijlstra W, Daamen J, Graaf J, Linden B, Poels E, Bliek A. Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnO_x/Al₂O₃. Applied Catalysis B: Environmental, 1996, 7(3–4): 337–357
- Zhu Z P, Liu Z Y, Niu H X, Liu S J. Promoting Effect of SO₂ on Activated Carbon-Supported Vanadia Catalyst for NO Reduction by NH₃ at Low Temperature. Journal of Catalysis, 1999, 187(1): 245– 248
- Richter M, Trunschke A, Bentrup U, Brzezinka K W, Schreier E, Schneider M, Pohl M M, Fricke R. Selection Catalytic Reduction of Nitric Oxide by Ammonia over Egg-Shell MnO_x/NaY Composite Catalysts. Journal of Catalysis, 2002, 206(1): 98–113
- Fabrizioli P, Bürgi T, Baiker A. Environmental Catalysis on Iron Oxide-Silica Aerogels: Selective Oxidation of NH₃ and Reduction of NO by NH₃. Journal of Catalysis, 2002, 206(1): 143–154
- Qi G S, Yang T R. Characterization and FTIR Studies of MnO_x-CeO₂ Catalyst for Low-Temperature Selective Catalytic Reduction

of NO with NH₃. Journal of Physical Chemistry B, 2004, 108(40): 15738-15747

- Qi G S, Yang T R, Chang R. MnO_x-CeO₂ mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH₃ at low temperatures. Applied Catalysis B: Environmental, 2004, 51(2): 93–106
- Tikhomirov K, Kröcher O, Elsener M, Wokaun A. MnO_x-CeO₂ mixed oxides for the low-temperature oxidation of diesel soot. Applied Catalysis B: Environmental, 2006, 64(1–2): 72–78
- Machida M, Uto M, Kurogi D, Kijima T. MnO_x-CeO₂ Binary Oxides for Catalytic NO_x Sorption at Low Temperatures. Sorptive Removal of NO_x. Chemistry of Materials, 2000, 12(10): 3158– 3164
- Li J H, Chen J J, Ke R, Luo C K, Hao J M. Effects of precursors on the surface Mn species and the activities for NO reduction over MnO_x/TiO₂ catalysts. Catalysis Communications, 2007, 8(12): 1896–1900
- 20. Tang X L, Hao J M, Xu W G, Li J H. Low temperature selective catalytic reduction of NO_x with NH_3 over amorphous MnO_x catalysts prepared by three methods. Catalysis Communications, 2007, 8(3): 329–334
- Cousin R, Capelle S, Abi-Aad E, Courcot D, Aboukaïs A. Copper-Vanadium-Cerium oxide catalysts for carbon blank oxidation. Applied Catalysis B: Environmental, 2007, 70(1–4): 247–253
- 22. Kašpar J, Fornasiero P, Graziani M. Use of CeO₂-based oxides in the three-way catalysis. Catalysis Today, 1999, 50(2): 285–298
- 23. Trovarelli A. Catalytic properties of Ceria and CeO2-containing

materials. Catalysis Reviews. Science and Engineering, 1996, 38(4): 439–520

- Gu X D, Ge J Z, Zhang H L, Auroux A, Shen J Y. Structureal, redox and acid-base properties of V₂O₅/CeO₂ catalysts. Thermochimica Acta, 2006, 451(1–2): 84–93
- Chen L, Li J H, Ge M F. Promotional Effect of Ce-doped V₂O₅-WO₃/TiO₂ with Low Vanadium Loadings for Selective Catalytic Reduction of NO_x by NH₃. Journal of Physical Chemistry C, 2009, 113(50): 21177–21184
- Chen L, Li J H, Ge M F, Zhu R H. Enhanced activity of tungsten modified CeO₂/TiO₂ for selective catalytic reduction of NO_x with ammonia. Catalysis Today, 2010, 153(3–4): 77–83
- Daniell W, Ponchel A, Kuba S, Anderle F, Weingand T, Gregory D H, Knözinger H. Characterization and Catalytic Behavior of VO_x-CeO₂ Catalysts for the Oxidative Dehydrogenation of Propane. Topics in Catalysis, 2002, 20(1–4): 64–74
- Xu W Q, Yu Y B, Zhang C B, He H. Selective catalytic reduction of NO by NH₃ over a Ce/TiO₂ catalyst. Catalysis Communications, 2008, 9(6): 1453–1457
- Zhu Z P, Liu Z Y, Niu H X, Liu S J, Hu T D, Liu T, Xie Y N. Mechanism of SO₂ promotion for NO reduction with NH₃ over activated carbon-supported vanadium oxide catalyst. Journal of Catalysis, 2001, 197(1): 6–16
- Zhu Z P, Liu Z Y, Liu S J, Niu H X. A novel carbon-supported vanadium oxide catalyst for NO reduction with NH₃ at low temperatures. Applied Catalysis B: Environmental, 1999, 23(4): L229–L233