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Abstract: This study analyzed the pollution level, distribution, sources, and ecological impact of six heavy metals (As, 
Cd, Cr, Cu, Zn and Pb) in soil from Linli County, China. The concentration analysis showed that the concentration of Cd 
in all samples exceeded the background value, and the exceeding rate reached 100%, while the average concentrations of 
other elements were similar to the background value, and the exceeding rate was under 15%. The pollution level of Cd 
was the most severe according to geo-accumulation index and enrichment factor, while other elements were under mild 
pollution level. The results of self-organizing map (SOM) and positive matrix factorization (PMF) analysis showed that 
agricultural activities were one of the main sources of heavy metal elements in soil, and natural weathering and industrial 
pollution could also lead to soil pollution. Cd appeared to be the most significant pollutant element in the soil of Linli 
County, and it had the largest impact on the ecological environment. Overall, this study provides guidance for soil 
pollution control and related policies, aiming to reduce the pollution of heavy metal elements in soil and the hazards to 
the ecological system caused by agricultural production and industrial activities.
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1 Introduction

In recent decades, rapid economic development 

has led to increasingly serious contamination of 

heavy metals (HMs) in soils, resulting in growing 
concern about the negative impacts of soil 
contamination [1, 2]. Various studies on the 
environmental contamination of HMs in typical 
areas have indicated that the current levels of HMs 
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in soils are much higher than the previous 
environmental standard limits, especially for Hg, Cd 
and Pb [3− 5]. The cumulative damage of HMs to 
the soil environment is cumulative over time, and 
the toxicity of HMs can pose a threat to humans 
through a variety of pathways, and yet the 
development of contamination has been ongoing    
[6, 7]. Therefore, understanding the extent of heavy 
metal contamination in soil and identifying its 
sources are crucial for pollution prevention and 
control [8].

Sources of HMs in soil systems can be both 
anthropogenic and natural, and identifying these 
sources and assessing their ecological risks are 
important for mitigating the impacts of HMs [9]. 
The use of self-organiting map (SOM), as a neural 
network algorithm, can effectively utilize robust 
imagery and clustering to deal with problems [10], 
and it has superior performance compared to 
traditional statistics in handling similarities in 
complex spatio-temporal variability patterns, SOM 
can accurately map correlations of HMs [11]. Due 
to the good performance of SOM in classification 
and model recognition, the combined use of positive 
matrix factorization (PMF) may further support the 
research outcomes of SOM in allocating 
contributions from different sources. In this study, 
the integration of SOM and PMF models is likely to 
be a suitable approach for pollution source 
identification in Linli County, China. For instance, 
HOSSAIN et al [12] conducted a survey on sources 
of heavy metal pollution in Bangladesh using a 
combination of SOM and PMF methods, identifying 
four sources of heavy metals and providing an 
appropriate method for allocating multiple sources 
of pollution in Bangladesh. DAI et al [13] analyzed 
the intrinsic elemental relationships of HMs in the 
study area by means of SOM, and through 
correlation matrix and principal component 
analysis, the authors concluded that the probable 
sources of inputs of Pb, Zn, and Cr were 
atmospheric or riverine inflow transportation [13]. 
ZHANG et al [14] categorized the SOM for 
groundwater source categories and obtained a total 
of five clusters. BIGDELI et al [15] separately 
predicted highly favorable regions of geochemical 
anomaly data for river sediments from the SOM 
model and concluded that the results of the two 
models were very similar. Analyzing sources of 

pollution is a critical step in environmental 
protection.

After a long period of development and 
change, the ecological risk assessment system has 
become the basis for the prevention, understanding 
and control of pollution in environmental science 
[16]. The ecological risk assessment methods 
mainly include qualitative assessment and 
quantitative assessment. Qualitative assessment has 
the advantage of being easily understood and 
implemented, while quantitative assessment is 
reliable in its evaluation results and has transparent 
processes. Both methods have been widely used by 
scholars [17 − 19]. The purpose of this study is to 
obtain the potential ecological risk status of Linli 
County. Therefore, to comprehensively consider the 
impact of different factors on ecological risk, the 
potential ecological risk index method of 
quantitative analysis was selected for application. 
This method helps to comprehensively analyze and 
compare the risk levels of different elements in Linli 
County and better understand the overall impact of 
risks. RUI et al [20] conducted an ecological risk 
assessment of contaminated elements in an area of 
Shanghai, China, and found that the contamination 
had serious negative impacts on the local aquatic 
environmental system. LIU et al [21] used an 
ecological assessment system to evaluate soil 
pollution caused by industrial activities in the 
Yellow River floodplain, and the results showed that 
industrial activities had a large impact on 
bioavailability. The ecological risk assessment 
system has just become an important pollution 
evaluation system.

Linli County is located in Changde City, 
Hunan Province, China, within the transition 
between the Dongting Lake Basin and the Xuefeng 
Mountain tectonic zone, and is a comprehensive 
agricultural county in Hunan Province. Research on 
this area is limited at present, investigating local 
environmental safety and ecological risk is critical. 
Therefore, this study aims to study the 
environmental pollution in Linli County to provide 
effective suggestions and evaluation criteria for the 
future management of the polluted environment in 
the area. The objectives of this study were to 
investigate (1) the assessment of contamination 
status and prediction of spatial distribution of As, 
Cd, Cr, Cu, Zn, and Pb in the soils of Linli County; 
(2) the judgment and resolution of sources of HMs 
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in the soils of Linli County by using SOM and 
PMF; and (3) the risk of environmental and 
ecological contamination caused by HMs in the 
soils of Linli County.

2 Materials and methods

2.1 Collection and analysis of soil samples
Seventy-four soil samples were collected 

throughout Linli County in April and June, 2023, 
respectively. The sampling depth was about 0.2 m, 
and GPS was used to ensure accurate geographic 
coordinates. Soil samples preserved in polythene 
bags were air-dried in the laboratory.

Large soil clods were ground and filtered 
through a 100-mesh (150 μm) nylon sieve. The 
filtered soil was thoroughly mixed through a 
container and then packed in polythene bags and set 
at 4 ℃ . Transfer 0.1 g soil sample into a 50 mL 
beaker followed by the addition of 6 mL of 
concentrated nitric acid (6 mol/L) solution and 5 mL 
of deionized water. Let the beaker sit at room 
temperature for 4 h, then place it in a water bath and 
heat it to approximately 60 ℃ . Next, place it on a 
hot plate and heat it at 120−150 ℃ for a digestion 
time of 1−1.5 h, with a minimum time of 30 min to 
avoid incomplete decomposition of soil particles 
and evaporation of nitric acid, until the test solution 
appears grayish in color and HNO3 has completely 
evaporated. Remove the test material and add 1 mL 
of nitric acid and 5 mL of deionized water in a 
beaker, dissolve the test material and transfer it to a 
100 mL volumetric flask and stir in 100 mL of 
deionized water [22]. The inductively coupled 
plasma mass spectrometer (ICAP Q) was utilized to 
examine the concentrations of As, Cr, Cu, Zn and 
Pb. The main parameters of this instrument include 
a resolution of 80000 and a sensitivity of 5 with a 
repetition standard deviation (RSD) of less than 1% 
[16]. The pH value of soil solution was determined 
using the electrode method by adding 10 g of 
sample and 25 mL of carbon dioxide-free distilled 
water in a beaker with stirring, and the pH value of 
the solution was determined for 30 min [23]. A 10% 
blank experiment was set up for each test assay to 
control to ensure quality control standards. In 
addition, copper unit powder is used to calibrate 
instruments and test samples, and calibration curves 
are prepared to ensure the reliability and accuracy of 
experimental data.

2.2 Pollution evaluation methods
2.2.1 Enrichment factor (FE)

Enrichment factors are used to assess the 
degree of influence of artificial and natural factors 
on the contamination of HMs in soil [24]. FE is 
defined as follows:

FE = (C i /CR )sample /(C i /CR )background (1)

where (Ci/CR)sample represents the ratio of the 
concentration of the study element to that of the 
reference element, and (Ci/CR)background is the ratio of 
the concentration of the study element to the 
background concentration of the reference element. 
The background values of As, Cd, Cr, Cu, Zn and 
Pb were 15.7, 0.126, 71.4, 27.3, 94.4 and 29.7 
respectively [23]. Al was chosen as a reference 
element in this study because of its relatively 
uniform concentration distribution in the 
environment. Classification criteria of 
anthropogenic pollution according to FE: light 
pollution (FE<2), medium pollution (2<FE<5), high 
pollution (5<FE<20) and heavy pollution (FE>20) 
[25]. When the value of FE tends to 1, then the metal 
is likely to be of natural origin or from weathering 
of the earth’s crust [26].
2.2.2 Geological cumulative index (Igeo)

Igeo is often used to assess the level of 
accumulation of HMs in the soil, with the 
calculation formula chosen:

Igeo = log2Cr /(1.5Br ) (2)

where Cr represents the concentration of element r 
in the soil and Br is the background value of element 
r for the study. The constant 1.5 is used to offset the 
fluctuating condition of elemental background 
values in the context of natural conditions. Igeo is 
categorized into 7 classes, i.e., Igeo£0, 0−1, 1−2, 2−3,  
3 − 4, 4 − 5, ³5, indicating no pollution, slight 
pollution, moderate pollution, moderate to heavy 
pollution, heavy pollution, heavy pollution to severe 
pollution and severe pollution, respectively [27].

2.3 Source analysis methods
2.3.1 Positive matrix factorization

PMF is a receptor model based on matrix 
decomposition arithmetic, which is often used to 
assign trace elements to sources because of its skill 
in performing well in source contribution 
assignment [28]. The formula is as follows:

1373



J.  Cent.  South  Univ.  (2024)  31:  1371－1382

xij =∑
k = 1

p

gik fik + eij (3)

Q =∑
i = 1

m∑
j = 1

n ( )eij /σ ij

2

(4)

σ ij =
5
6

LMD [d £ LMD ] (5)

σ ij = ( )¶ j ´ xij

2

+ ( )0.5 ´ LMD

2
 [d > LMD ] (6)

The procedure is to obtain the value of xij by 
taking the values of gik and fik, and then adjust the 
data to obtain the lowest Q value. Where, xij denotes 
the concentration of element j in the ith sample, gik 
denotes the source of element k in the ith sample, fik 
denotes the concentration of element j in the kth 
sample, eij is the degree of error, σij is the uncertainty 
of element j in the ith sample, ∂j is the relative 
standard deviation of element j, d is the 
concentration of the study element, and LMD is the 
detection limit of the method. LMD is the detection 
limit of the detection method.
2.3.2 Self-organizing map networks

The famous SOM algorithm is an unsupervised 
operation first proposed by Kohonen, also known as 
the Kohonen map [29]. The SOM network consists 
of two layers, the input layer and the output layer, 
with the concentration of each sample element 
defined as an n-dimensional vector of inputs. A 
vector X is randomly selected, and the Euclidean 
distance between the neuron and the vector X is 
computed to accomplish the goal of network 
training. Then, the neural network is composed by 
passing through the input layer and is passed to a 
specific vector of weights. The output layer outputs 
a plan view of the arrangement sequence of the 
honeycomb styles (see Figure 1) [30, 31]. The 
formula for the Euclidean distance (Di) can be 
expressed as:

Di = ∑
i = 1

n

[ ]xi (t)-ω ij (t)
2

= ||X -W j|| (7)

where Wj is the weight vector of neuron j in the 
competing layer, ωij is the weight between neuron i 
in the input layer and neuron j in the competing 
layer, and n is the number of input vectors. During 
the arithmetic process while considering that there 
is no suitable rule for the selection of the number of 

neurons in the input layer, this study will use            
m=5× (n)1/2 to determine the number of neurons, 
where m denotes the number of nodes in the self-
organizing graph.

2.4 Ecological risks assessment method
The ecological risk index (IR) is often used to 

assess the level of ecological risk posed by 
hazardous factors in the natural environment [32]. 
The formula is:

IR =∑E i
n =∑T i

n ´C i
n (8)

where Ei
n is the IR value of element i, Cn is the 

concentration of the element, and Ci
n is the 

concentration of the background value of element i. 
Ti

n is the toxicity response factor (TRF), which 
corresponds to 10, 30, 2, 5, 1 and 5 for As, Cd, Cr, 
Cu, Zn and Pb, respectively [33, 34]. Ecological 
risks are rated as low, medium, high and severe 
risks, with corresponding index values of IR£150, 
150−300, 300−600 and ³600, respectively [35].

3 Results and discussion

3.1 Soil HMs pollution situation
Descriptive analyses of HMs in Linli County 

soils are shown in Table 1, with HMs data 
distributed as skewed normal and reported as mean 
concentrations. The pH values of Linli County soils 
varied between 4.50 and 8.46, with approximately 
59% of the soils having an acidic pH value less than 
7 and 41% having an alkaline distribution. As 
shown in Table 1, the effective mean values of the 
elements of HMs, except Zn and As, exceeded their 
corresponding background value concentrations. 
This result indicates that some of the sampled soils 

Figure 1 Schematic of SOM neural network mapping
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in Linli County were contaminated by Cr, Cd, Cu 
and Pb to different degrees. In addition, among all 
samples, the exceedance rates of Zn, As, Cr, Cd, Cu, 
and Pb were 31.1%, 17.6%, 40.5%, 100%, 56.8% 
and 63.3%, respectively. Compared to other 
pollutants, Cd pollution is particularly prominent, 
with concentrations exceeding background levels in 
all data samples. The maximum concentration is 
182.5 times the background value, and the average 
concentration is 4.76 times the background value.

The coefficient of variation (CV) is often used 
to indicate the concentration variability of HMs. CV 
£20%, 21%<CV£50%, 51%<CV£100% and CV>
100%, respectively represent the four grades of low, 
medium, high and very high variability [36]. From 
CV, the highest CV of Cd among all the elements is 
76%, which is defined as high variability, while the 
variability of the rest of the elements falls within the 
range of medium variability. Higher CV values 
indicates that the elements have been affected by the 
outside world more seriously, so that the high 
pollutant nature of Cd is mainly caused by the 
external factors [37, 38]. As shown in Table 1, the 
average enrichment factor index of Linli County 
suggests that the FE values of the remaining 
elements, except Cd, fall into the light 
anthropogenic pollution level (FE<2), while the FE 
value of Cd is 4.42, reaching medium anthropogenic 
pollution level. This indicates that the pollution 
accumulation of Cd is influenced by anthropogenic 
activities to a greater extent, and this result is 
consistent with that of CV, which indicates that the 
source of Cd pollution is mainly caused by 
anthropogenic activities.

The order of magnitude of the mean Igeo of the 
studied elements in Linn County is as follow:         
Cd(2.52) >Pb(0.76) >Cu(0.75) >Cr(0.67) >Zn(0.63) >

As(0.51). Cd was classified as moderately to 
heavily polluted, while the rest of the elements were 
at the level of slightly polluted, indicating that 
although the overall pollution level of HMs in the 
soil of Linli County was not high except for Cd, 
they were affected by pollution, and there were no 
non-polluting elements in the studied elements. 
Figure 2 shows the distribution of the ground 
cumulative index levels for each element. As 
depicted in Figure 2, Cd and Pb have a small 
number of non-normal values classified above the 
moderate to severe pollution levels, indicating that 
some sampling sites in Linli County are polluted by 
point sources of HMs [39, 40].

3.2 Spatial distribution of HMs
Identifying the spatial distribution of HMs in 

soils in Linli County and discussing areas of HMs 
enrichment are beneficial for identifying sources of 
HMs [41]. The distribution of HMs in soil 
throughout Linli County is shown in Figure 3.

From Figure 3, it can be observed that the 
distribution of the six HMs exhibits similar features. 
The concentration of all elements in the southeast 
direction of the study area is higher, particularly in 
Linli County, which is rich in industrial activities, 
leading to higher heavy metal content. Cd is the 
most polluted element, which shows high 
concentrations mainly in the northern and 
southeastern part of the study area. Based on the 
fieldwork and spatial characteristics, the following 
conclusions can be drawn: Firstly, the river in the 
northern part of Linli County provides water for 
irrigation, and pollution in the upstream water may 
lead to soil contamination in the surrounding areas 

Figure 2 Distribution of the proportions of each class of 
the research element Igeo

Table 1 Descriptive analysis of HMs concentration in soil 

Element

Cr

Cd

Cu

Zn

Pb

As

SD: Standard deviation; Cv: the coefficient of variation.

HMs concentration/(mg·kg−1)

Min 
value

38.9

0.2

17.2

48

22.3

6.5

Max 
value

167.6

2.3

77.2

228.7

110.4

32.4

Mean 
value

72.5

0.6

30.7

89.3

33.6

12

SD

26.3

0.4

9.6

31

11.1

5.45

CV/%

36

72

31

35

33

46

FE

1.02

4.42

1.12

0.95

1.13

0.76
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[42, 43]; Secondly, as agriculture is the primary 
industry in Linli County, the use of river water for 
irrigation and the accompanying use of pesticides 
and herbicides may lead to Cd enrichment, which 
then enters the soil through the irrigation water flow, 
causing pollution [44]; Thirdly, it is possible that 
accumulated plants serve as a major source of Cd 
contamination, with the discharge of municipal 
sewage and industrial wastewater promoting Cd 
accumulation [45].

The spatial distribution of As closed resembles 
that of Cd, with high concentrations clustered in the 
north-central part of Linli County, as well as the 
southeast and southwest. Similar distribution 
patterns between elements often indicate a common 
source of pollution [19]. Additionally, high 
concentrations of Pb, Zn and Cu are particularly 
noticeable in the southeast of the study area, 
primarily concentrated in areas with industrial plant 
clusters, suggesting industrial activities as a 
potential cause of HMs accumulation. The high 
concentration thermograms of Cr cover the entire 
study area, indicating a relatively wide and irregular 

spatial distribution, and not limited to a specific 
area, which suggests a potential natural source for 
Cr.

3.3 Analysis of HMs sources in soil
To investigate the taxonomic relationship 

between HMs in soil in Linli County and determine 
the correlation between the studied elements, this 
study used self-organized maps combined with PMF 
analysis to conduct competitive output on the 
concentration and source of HMs at the sampling 
sites (e.g., Figures 4 and 5).

Based on Figure 4, six elements are displayed 
in a honeycomb plane format using the self-
organizing map (SOM) classification technique. The 
plane is designed and constructed based on a hue-
based classification mode, and the aggregation and 
allocation of different colors indicate different levels 
of segmentation for the variable plane. Different 
network nodes represent different reference values 
for the input vectors, which are constrained between 
0 and 1. Blue indicates low concentration, and pink 
represents high concentration. When there are 

Figure 3 Schematic diagram of spatial distribution of heavy metals in the study area
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common or similar relationships among the six 
elements in the output plane, it indicates that the 
distribution of the variables is highly correlated 
[16]. From Figure 4, it can be observed that the 

classification patterns of Zn, Cu and Pb are highly 
similar, with all three elements clustered in high 
concentrations in the lower right corner of the plane. 
The distribution patterns of Cd and As are more 

Figure 5 Distribution map of contribution proportions of each element in factors 1 (a), 2 (b) and 3 (c) in PMF analysis

Figure 4 SOM competitive output cellular network diagram for 6 elements
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similar, with a strong correlation observed in the 
lower left corner of the plane. Cr, on the other hand, 
is only clustered in the lower left corner. According 
to the results of SOM analysis, Zn, Cu and Pb 
distributions exhibit strong correlation, while Cd 
and As exhibit moderate correlation. Cr is classified 
as a separate distribution category.

Positive matrix decomposition analysis was 
carried out for the studied elements within Linli 
County, and in order to ensure the accuracy of the 
decomposition, the parameters were adjusted 
repeatedly, and the concentration and uncertainty 
were iterated for 20 times, and the optimal solution 
was derived when the output factor was set to 3 
(Figure 5). The fitting coefficients (R2) between the 
predicted values of the PMF model and the 
observed values were calculated simultaneously to 
ensure the applicability of the model. The fitting 
coefficients for Zn, Cu, Cd, Pb, Cr and As were 
0.9917, 0.9528, 0.9276, 0.9626, 0.9670 and 0.9703, 
respectively. The closer the value of R2 is to 1, the 
better the fit of the model, indicating that the PMF 
model is effective in identifying the sources of 
heavy metal pollution in Linli County.

In factor 1, Cr was used as the representative 
element with contribution rate of 68.3%. The 
average concentration of Cr was slightly higher than 
the background value, but the ground cumulative 
index indicated that Cr was non-polluted. The 
spatial distribution of Cr within Linli County was 
relatively uniform, so the source of Cr was mainly 
natural weathering, and the concentration of Cr in 
some of the sampling points might have been 
affected by industrial and agricultural production, 
resulting in a concentration higher than the 
background value [46].

Factor 2 was dominated by Cd (63.6%) and As 
(62.8%). Both Cd and As exhibited similar spatial 
distribution patterns and concentration competition 
models, indicating potential common sources. The 
enrichment factor suggested that Cd pollution was 
predominantly caused by anthropogenic sources. 
Fertilizers and pesticides used in agricultural 
activities contain high levels of Cd, which 
contributes to its accumulation. Municipal 
wastewater from industrial production also 
contributes to Cd enrichment in soil [43]. At the 
same time, municipal wastewater from industrial 
production is also enriched in Cd, and the discharge 

of this wastewater can lead to the accumulation of 
Cd in the soil. As in the study, although only a small 
number of points in the concentration is higher than 
the background value, but the spatial distribution of 
As is very similar to that of Cd. Previous studies 
have shown that the improper use of As herbicides, 
fertilizers, and pesticides can lead to As 
accumulation, and the atmospheric deposition of 
industrial waste gases can accelerate this process, 
and these factors play important roles in soil 
development. Despite efforts to reduce exhaust 
emissions, it is difficult to eliminate this pollution 
effect [47, 48]. Therefore, the main sources of Cd 
and As pollution are related to human production 
activities.

In factor 3, the contributions of Pb, Cu and Zn 
were 73.5%, 70.6% and 68.7%, respectively. The 
spatial distribution patterns of the three elements 
were very similar, and the aggregation areas were 
all concentrated in the southeast of Linli County. 
Previous studies have indicated that Pb, Cu and Zn 
from industrial wastewater can permeate 
surrounding soil through rivers or pipelines, 
resulting in soil pollution around water system [22]. 
Additionally, brake wear, tire wear, and leaded 
gasoline emissions from automobiles can lead to 
aggregation of Pb, Cu, and Zn in the soil, and 
vehicular pollution caused by the transportation of 
goods in industrial areas may also be responsible for 
the enrichment of the three elements of Pb, Cu, and 
Zn in the lower right-hand corner of Linli County 
[49]. So, factor 3 is a source of pollution due to 
industrial activities.

The results of SOM and PMF analyses showed 
a high level of agreement. Overall, the main sources 
of HMs pollution in Linli County include pollution 
from production activities, particularly agricultural 
activities, pollution from natural weathering, and 
pollution from industrial activities. Among these, 
human production activities are the primary factor 
influencing environmental pollution in the 
surroundings of Linli County.

3.4 Ecological risk assessment of soil
The study evaluated the potential ecological 

risk values of six HMs elements and 74 sampling 
sites in Linli County, as shown in Figures 6 and 7. 
The overall ecological pollution in Linli County was 
predicted using the soil of the sampling sites as the 
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environmental characteristic value. The maximum 
and average values of all HMs elements shown in 
Figure 6, except for Cd, were below 40, indicating 
that these elements are of low ecological risk in all 
areas of Linli County (hierarchical classification 
shown in Figure 6). However, the mean value of 
ecological risk of Cd was 132.7 (higher risk level), 
with a maximum of 551.4 (very high-risk level), and 
the percentage of Cd classified from low to high 
was 1%, 32%, 38%, 18% and 11%, respectively.

Figure 7 displays the distribution of IR values 
of sampling points in Linli County, with values 
ranging from 59 to 592.8. The ecological risk level 
in 63.5% of the area is low, while 29.7% of the area 
reaches a medium-risk pollution level, and the 
remaining 6.8% of the land exhibits high ecological. 
This implies that Linli County has an overall low 

ecological risk level. Cd contributes more than 70% 
to the medium to high ecological risk class, with 
minimum and maximum of 71.6% and 94.3%, 
respectively. This indicates that Cd is the primary 
element responsible for high ecological risk, mainly 
due to its low environmental background value and 
high toxicity response factor. This result is 
consistent with previous studies that Cd poses the 
highest ecological risk among HMs in the 
environment [23, 44].

4 Conclusions

This study analyzed the distribution and 
sources of heavy metal elements in the soil of Linli 
County, and evaluated their impact on the ecological 
environment. It revealed the main sources and 
contamination levels of heavy metal elements in the 
soil of this area, and confirmed the major 
contribution of human activities to soil pollution. 
Based on the research findings, the following 
priorities were proposed:

1) Cd was the most heavily polluted element. 
The Cd concentrations in all samples exceeded the 
environmental background values, with a 100% 
over-standard rate, and the enrichment factor 
showed that Cd was moderately artificially polluted. 
The geo-accumulation index also indicated a 
moderate to severe contamination level of Cd.

2) The spatial distribution of heavy metals in 
the soil of Linli County was shown, and the areas 
where heavy metals were enriched were identified. 
The results indicated that the distribution patterns of 
all elements were generally the same in the study 
area, and that Cd was the most heavily polluted 
element, mainly distributed in the northern and 
southeastern parts of the study area. In addition, 
regarding the possible sources of contaminants, this 
study analyzed the factors of water pollution, 
agricultural activities and industrial activities.

3) SOM analysis showed that the distribution 
of Zn, Cu and Pb had a strong correlation, while Cd 
and As had a moderate correlation, and Cr was a 
separate distribution category. The PMF analyzed 
three pollution sources, namely, production activity 
pollution sources primarily from agricultural 
activities, pollution sources primarily from natural 
weathering, and pollution sources caused industrial 
activities.

Figure 6 Schematic diagram of the distribution range and 
risk level classification of ecological risk values for six 
elements

Figure 7 Distribution range and level division diagram of 
RI values for 74 sampling points
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4) In Linli County, 63.5% of the region was 
classified as low ecological risk level, 29.7% were 
classified as moderate risk level of pollution, and 
6.8% of the land was classified as high ecological 
risk level of pollution. The contribution rate of Cd 
to the middle and high ecological risk levels was 
over 70%, with a minimum of 71.6% and a 
maximum of 94.3%.

This study has important implications for the 
producers to reduce heavy metal pollution in the soil 
of Linli County and its harm to the ecosystem. The 
findings also provide important references and 
methods for similar research in the future.
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(Edited by HE Yun-bin)

重金属污染与生态风险评价—基于自组织地图和正矩阵分解的临澧县土壤研究

摘要摘要：：土壤重金属污染一直是环境科学中备受关注的问题。本文对中国临澧县土壤中六种重金属(As、

Cd、Cr、Cu、Zn和Pb)的污染水平、分布、来源及其对生态环境的影响进行了分析。样本浓度分析结

果显示Cd的浓度均超过背景值，超标率达到100%，其余元素的平均浓度与背景值相近，超标率均在

13.5%以下。地累计指数和富集因子指数均显示Cd是污染最严重的元素，其他元素则处于轻度污染级

别以下。自组织地图(SOM)和正矩阵分解(PMF)的分析结果显示农业活动是土壤中重金属元素主要来

源之一，而自然风化和工业污染也会导致土壤污染。Cd是临澧县土壤中污染最显著的元素，对生态环

境造成的影响最大，达到较高风险等级。本研究为降低土壤重金属污染和生态环境风险提供了重要参

考，同时也为相关部门制定有效的污染防治、生态环境保护政策提供了理论指导。

关键词关键词：：生态风险；正矩阵分解；重金属污染；土壤；自组织地图
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