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Abstract: Earthquake is a kind of sudden and destructive random excitation in nature. It is significant to determine the
probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of
structures when the intensive seismic excitation, the intensity of which is larger than 7, acts in train-bridge system.
Firstly, the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track
irregularity and the vertical seismic acceleration are established, where the train subsystem is composed of 8 mutually
independent vehicle elements with 48 degrees of freedom, while the single-span simple supported bridge subsystem is
composed of 10 2D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the
support. Secondly, Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of
the system. The power spectrum density of random excitation is used to define a series of non-stationary pseudo
excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo
method, respectively solved by precise integral method and Newmark-β method through the inter-system iterative
procedure. Finally, the results are compared with the case under the weak seismic excitation, and show that the samples
of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution. In a high
probability, the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak
ones.
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1 Introduction

As the proportion of bridges in railway lines
increases, the probability of trains running on the
bridges during earthquakes is also increasing.
Especially when the high-speed railway bridges face
an intensive earthquake at a seismic intensity
greater than 7, the bridge structure is damaged due
to the violent vibration and the safety of passengers

is seriously threatened [1]. Since the earthquake is a
random load, if a single seismic acceleration sample
is used to study this problem, it will bring some
uncertainty to the calculation results. Therefore, the
random vibration method is used to study and
analyze the response of the train-bridge system
(TBS) under the seismic excitation. The description
of the relevant dynamic characteristic indicators
from the perspective of probability distribution is of
great significance to ensure the safety of train
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operation and structural stability.
Nowadays, the research on the response of

train-bridge system and the intensive earthquakes
has got the attention of the scholars in China and
abroad. YAU [2−3] studied the dynamic response of
a suspension bridge subjected to moving loads and
vertical earthquake action. NISHIMURA et al [4−5]
performed theoretical analysis and experimental
studies on the derailment mechanism and the
running safety of high speed railway (HSR) vehicles
subjected to earthquake and track irregularity. HE
et al [6] developed an analytical approach to
evaluate the influence of dynamic train-bridge
interaction on the seismic response of the
Shinkansen viaduct in Japan under moderate
earthquakes and found that the response of bridge
subsystem might be underestimated if the train load
acted on the bridge only as additional mass. LOH
et al [7] assessed seismic response characteristics of
the bridge from both weak and strong ground
excitations showing that weak and strong ground
excitation will induce significant differences on the
dynamic response of the bridge. QI et al [8] carried
out the low reversed cyclic loading tests of
composite frame system and studied the seismic
behaviors of composite frames such as failure mode,
hysteresis curve, strength degradation, rigidity
degradation, ductility, and energy dissipation. ZHU
et al [9] conducted a systematic study on the effect
of heavy-haul trains on bridge seismic response and
found that the peak moment of the main girder and
peak stress of stay cables would tremendously
increase during the earthquake.

With the application of random vibration
method, the research on the response of train-bridge
system is precisely conducted and statistically
significant in China and abroad. LIN et al [10] set a
simple and accurate algorithm for non-stationary
responses of structures subjected to evolutionary
random seismic excitation, which is an extension of
pseudo excitation method (PEM) for stationary
random seismic responses. ZHANG et al [11]
modeled the bridge as an elastic Bernoulli-Euler
beam and applied PEM to transform the random
surface roughness into the superposition of a series
of deterministic pseudo harmonic surface
unevenness to simplify the solution of the non-

stationary random vibration equations. HE et al
solved the motion equation of vehicle-bridge
coupled system through precise integral method
(PIM) [12], and calculated the bridge response
evolutionary power spectrum density (EPSD) from
the bridge transient pseudo response, so as to
deduce the standard deviation time history curve
reflecting the response probability and statistical
characteristics. ZHU et al [13] improved the
efficiency of PEM by incorporating the self-
adaptive Gauss integration (SGI) technology as a
new combining integration and analyzed the random
characteristics for the vehicle-bridge vibrations for
different speeds and rail irregularities. YU et al [14]
presented a new efficient computational framework,
explicit time-domain method (ETDM), for non-
stationary random vibration analysis of the vehicle-
bridge system subjected to random track irregularity
excitation and validated the accuracy and efficiency
of the proposed method by the solutions obtained
using the Monte Carlo method (MCM) and PEM.

Despite a large amount of research on TBS,
earthquake and random vibration method, it is still
lack of a comprehensive analysis of the TBS
subjected to the intensive seismic excitation at the
aspect of random and statistical characteristics. The
article aims to determine the probability distribution
characteristics of the acceleration response of bridge
and the offload factor of train to ensure the safety
and the stability of structures when the intensive
seismic excitation acts on TBS.

By constructing a 2D TBS motion equation,
considering the random excitation of track
irregularity and the deterministic axle load
excitation, the random excitation of seismic
acceleration is input by large-mass method. Under
the condition of the train running at a constant
speed, the power spectrum density (PSD) of random
excitation is used to define a series of non-stationary
pseudo excitation in PEM and the trigonometric
series of random vibration history samples in MCM,
respectively solved by PIM and Newmark-β method
(NβM) through inter-system iterative procedure.
Finally, the results are compared with the case under
weak seismic excitation and relevant suggestions
are provided for ensuring the safety and the stability
of the train operation and the bridge structure.
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2 Establishment of 2D TBS motion
equations

2.1 Motion equation of train subsystem
The train subsystem is composed of 8 same

mutually independent vehicle elements. Each of
them consists of a car-body, two bogies, four wheel-
sets, and a two-layer spring-damper suspension
system. To simplify the analysis while with enough
accuracy, the assumptions are made as follows [15]:

1) The interaction does not exist among vehicle
elements.

2) The car-body, bogies, and wheel-sets in each
vehicle element are rigid.

3) The springs in vehicle element are linear,
and the dampers are viscous.

4) The vehicle element is a linear system,
namely the mass, damping, and stiffness matrices of
the vehicle element are constant.

5) The train runs on the bridge at a constant
speed.

6) Wheels and rails fit snugly. There is no
sliding, climbing or derailment of the train on the
rail.

With the assumptions above, each vehicle
element is modeled with 6 independent degrees of
freedom (DOFs) for the car-body and bogies, and
with 4 dependent DOFs for the wheel-sets coupled
by the vertical motion states of 4 contact points. The
DOFs of each vehicle element are listed in Table 1
corresponding to Figure 1. z is the vertical
displacement; φ is the pitch torsional displacement.
The numbers of the bogies and the wheel-sets
represent the front and rear orders. Subscript i
denotes the number of certain vehicle element and
equals 1, 2, 3,…, 8.

In Figure 1(a), lv, d1 and d2 represent
respectively the length of a vehicle element, the half-
length between two wheel-sets in a bogie and
between two bogies in a car-body. The primary
suspension system between the bogie and each

wheel-set is characterized by springs with the spring

coefficient k1 and the viscous dampers with the

damping coefficient c1, while k2 and c2 for the

second suspension system. mc and Ic denote

respectively car-body mass and the pitch moment of

inertia. Accordingly, mb and Ib are for the bogies.

According to the D 􀆳Alembert principle, the motion

equation of the train can be expressed as:

M tü t +C tu̇ t +Κ tu t =T t (k1 zw + c1 żw ) (1)

where Mt, Ct, Kt and Tt, are respectively the mass,

the damping, the stiffness and projector matrices of

the train and can be diagonally assembled of Mve,

Cve, Kve and Tve of vehicle elements as Eq. (5). The

expression of Cve, which is similar to Eq. (3), can be

obtained simply by replacing the spring factors k

with the corresponding damping factors c.

Mve = diag [mc Ic mb Ib mb Ib ] (2)
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1

(3)

Table 1 DOF parameters of a vehicle element

Vehicle element

Car-body

Bogies

Wheel-sets

DOF

2 DOFs: zci, φci

4 DOFs: zb1i, φb1i, zb2i, φb2i

4 DOFs: zw1i, zw2i, zw3i, zw4i

Figure 1 2D model of the vehicle element and the beam
element: (a) Vehicle element i; (b) Beam element j
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Tve =
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(4)

M t = diag [Mve Mve  Mve ] (5)

2.2 Motion equation of bridge subsystem
Composed of 10 mutually coupled plane beam

elements, the bridge subsystem has a single-span
constrained by the simple support. When a train
runs on the bridge, the forces from the wheels are
transmitted to the bridge structure through the track.
In studying vertical vibrations of the train-bridge
system, the bridge is usually analyzed with finite
element method (FEM), using the following
assumptions [16]:

1) The relative displacement between the track
and the bridge deck, and the elastic effect of the
track system is neglected.

2) The deformation of cross section in
vibration is neglected for the beam with solid
sections.

3) Bernoulli-Euler beam elements are adopted.
4) The Rayleigh damping is considered.
From above, each beam element is modeled as

Figure 1(b) and the corresponding DOFs of each
beam element are listed in Table 2. z is the vertical
displacement; φ is the pitch torsional displacement
along z axle. Subscript j denotes the number of
certain beam element and equals 1, 2, 3,…, 10.

lbe, E, I, S and ρ, represent respectively the

length, elastic modulus, cross-sectional moment of

inertia, cross-sectional area and density of a beam
element. According to the D􀆳Alembert principle, the
motion equations of the bridge subsystem can be
expressed as:

é
ë
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úúúúMb Mbp

Mpb Mp +ML
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+ é
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(6)

The mass matrix Mb and stiffness matrix Kb of
the bridge can be formed by withdrawing the non-
support elements from the matrix Kbe10 and Mbe10

assembled in the way of Eqs. (9) and (10) of the
mass and stiffness matrices of beam elements, Mbe

and Kbe. Also, 0 and I respectively represents zero
matrix and identical matrix.
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Kbe10 = [04 ´(2j - 2) Ι4 ´ 4 04 ´(20 - 2j) ]
T ×

Kbe[ ]04 ´(2j - 2) Ι4 ´ 4 04 ´(20 - 2j) (9)
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The mass matrix Mp and stiffness matrices Kp

of support can be formed in Eqs. (14) by
withdrawing the vertical DOF elements of support
from the matrix Kbe10 and Mbe10. In Eqs. (15) and
(16), the remained elements are used to form the
bridge-support coupling matrix of stiffness and
mass, Kbp and Mbp. Kbp and Mbp are respectively the
transpose of Kbp and Mbp.

Table 2 DOF parameters of a beam element

Beam element

Left node

Right node

DOF

2 DOFs: zj, φj

2 DOFs: zj+1, φj+1
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In order to apply seismic acceleration to the

bridge supports, large mass ML should be added on

the diagonal elements corresponding to the supports

in the mass matrix Mp on the left side of the motion

equation, and meanwhile, the external load should

be applied to the elements corresponding to the

supports in the force vector on the right side of the

equation. The values of the external load are equal

to the product of the seismic acceleration and the

sum of the large mass and the diagonal elements. In

Eq. (14), mL is the large mass, which is usually 103−
106 times the total mass of the bridge.

Based on assumption (4), the damping matrix

Cb of the bridge can be expressed in Eq. (17) by

combination of Mb and Kb with ξ, damping ratio of

the bridge, and ω1 and ω2, respectively the first and

second order angular frequencies of the bridge.

Cb =
2ξω1ω2

ω1 +ω2

Mb +
2ξ

ω1 +ω2

Kb (17)

fr is the wheel-rail force vector and can be

expressed as a linear addition of the car body-bogie

feedback response, the wheel-set motion state, and

the axle load as in Eq. (18).

fr =-mw z̈w + c1 [Τ T
t u̇ t - żw ]+ k1 [Τ T

t u t - zw ]+

(mw +
mb

2
+

mc

4 ) g (18)

Tb in Eq. (19) is the projector matrix of bridge

to project fr to the nodes of the beam elements

contacted by the wheel-sets. As sub-matrix, Tb
ve in

Tb can be sequenced as sub-vectors τb
w for 4 wheel-

sets in a vehicle element. Because of the time

difference among 4 wheel-sets in a vehicle element,

τb
w can be differed in Eq. (20) by subtraction of time

delay and in Eq. (21), adopts the sub-function P

projecting the wheel-rail force respectively to the

vertical DOF in Eq. (22) and to the pitch torsional

DOF in Eq. (23).
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3 Analysis and solution of TBS based on
random vibration method

3.1 Random excitation sampling and solution
based on MCM-NβM
MCM is named after the famous casino in

Monaco. It is a method for setting a random
process, repeatedly generating a time series,
calculating parameter estimates and statistics, and
then studying its distribution characteristics [17].

As to simplify the analysis while with enough
accuracy, relevant assumptions are made as follows:

1) Seismic acceleration time history is a
uniformly modulated non-stationary Gaussian
random process.

2) The influence from spatial variation of
seismic ground motion is excluded.

Based on the assumptions above, the seismic
acceleration is input to the vertical DOFs
consistently of the support. The original signal
samples can be generated by the trigonometric
series superposition method, and the modulation
function can be selected from the Bogdanoff-
Goldberg-Bernard single exponential model [18], as
shown in Eq. (24).

üp (t)= 1.36te-0.5t 2∑
k = 1

N1

Se (ωk )dωk ×

cos[ωkt + φk ]
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ë

ê
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êê
ê

ê
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ú
úú
ú

ú

ú1
0
1
0

(24)

where Se is the given seismic acceleration PSD; ωk

is an angular frequency sample; dω is the
bandwidth; and φk is a random phase angle obeying
the uniform distribution U(0, 2π). The integer order
of k ranges from 1 to N1.

A similar method can be used for the time
history sampling of track irregularities. The track
irregularity is regarded as a stationary Gaussian
random process, and in Eq. (25), the wheel-set
displacement can be expressed as the sum of the
bridge displacement and the track irregularity at the
wheel-rail contact point. As to the wheel-set running
outside the deck, its displacement should include the
seismic displacement by the quadratic integration of
the seismic acceleration.

zw (t)=T T
b ub + [ ]1 0 0 0 ∬ üp (t)dt +

2∑
k = 1

N2

Sv (nk )dnk cos(nkv(t - t0 )+ θk ) (25)

where Sv is the given vertical track irregularity PSD,
nk is an angular wave number sample, dn is the
bandwidth, and θk is a random phase angle obeying
the uniform distribution U(0, 2π). The integer order
of k ranges from 1 to N2.

After the sampling, different series of system
response subjected to different random excitation
samples can be solved by NβM, thus reflecting that
the MCM is essentially a random sampling method.

3.2 Establishment and solution of random
excitation based on PEM-PIM
In PEM, with the given random excitation

PSD, a series of input pseudo simple harmonic
excitation are constructed, converting the
calculation of non-stationary random vibration into
stepwise precise integral calculation, to obtain the
structural response power spectrum and the
variance [19].

Based on the same assumptions as last section,
there is no phase difference between the input
points. The pseudo seismic acceleration can be
expressed in Eq. (26). The overhead tildes represent
the variables in the pseudo form as the function of
angular frequency ω and time t. Bogdanoff-
Goldberg-Bernard single exponential model, a kind
of time-derivable slow-varying uniform modulation
function, are adopted to construct the non-stationary
pseudo excitation through variable separation.

ü͂p (ω t)= 1.36te-0.5t Se (ω) ejωt
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ê ù

û

ú

ú

ú
úú
ú

ú

ú1
0
1
0

(26)

In PEM, the pseudo wheel-set displacement
should be separately defined as for the track
irregularity and the seismic excitation because they
are two different types of independent random
excitation and only their PSD are allowed to be
superposed linearly. Firstly, in Eq. (27), PSD of
track irregularity in angular frequency and wave
number domain is used to structure pseudo wheel-
set displacement z͂w, where p is the matrix
containing the phase difference among 32 wheel-
sets of a train with 8 vehicles and sequenced in the
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way of Eqs. (28) and (29). Secondly, as to the
seismic excitation, the pseudo wheel-set
displacement in Eq. (30) should include the
pseudo seismic displacement by the quadratic
integration of the pseudo seismic acceleration.

z͂w =T T
b u͂b +

Sv (n)
V

ejnVt p =T T
b u͂b + S ir (ω) ejωt p

(27)

p = [pve
1 pve

2 pve
3  pve

8 ]T
(28)

pve
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êêêêe

-jω(i- 1)
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V e
-jω[

(i- 1)lv + 2d1

V
]

e
-jω[

(i- 1)lv + 2d2

V
]

e
-jω[

(i- 1)lv + 2d1 + 2d2

V
]ù

û
úúúú

(29)

z͂w =T T
b u͂b + [1 0 0 0 ]∬u͂pdt (30)

As for the pseudo wheel-rail force, in PEM, its
deterministic part is excluded and it can be
presented as follows:

f͂r =-mw z̈͂w + c1 [Τ T
t u̇͂ t - ż͂w ]+ k1 [Τ T

t u͂ t - z͂w ] (31)

PIM is an integral method proposed by
ZHONG et al [20]. He expresses the motion
equation of the structure in the Hamiltonian system,
so that the accuracy of the solution can be
improved. The state space equation of the system is
established by reducing the order in Eq. (32)
containing the pseudo force vector F͂ within the
pseudo state force vector r͂.

ẋ͂ =Hx͂ + r͂ r͂ = é
ë
êêêê

ù
û
úúúú

0

F͂
 x͂0 = ( )u͂(ω 0)

u̇͂(ω 0)
(32)

where x͂ is the pseudo state vector, with the subscript
0 representing the initial condition, composed of the
pseudo displacement and velocity, while H is the
stationary state space matrix containing stiffness K,
mass M and damping C matrices of the system, and
can be expressed as:

H = é
ë
êêêê ù

û
úúúú0 I

-M -1 K -M -1C
(33)

The theory of ordinary differential equations is
applied. When integrating in the time domain, the
response in the next step can be expressed as:

X(ω t +Dt)= eH × Dt X(ω t)+ ∫
t

t +Dt

eH ×(t +Dt - τ) r͂(ω τ)dτ

(34)

Assuming that the excitation load is linear, the
following relationship exists:

r͂(ω τ)= r͂0 + r͂1τ = r͂(ω t)+
r͂(ω t +Dt)- r͂(ω t)

Dt
τ

(35)

By substituting Eq. (35) into Eq. (34), the
response by PIM is expressed as:

x͂(ω t +Dt)= eH × Dt (X(ω t)+H -1 (r͂0 +H -1 r͂1 ))-
H -1 (r͂0 +H -1 r͂1 +Dtr͂1 ) (36)

3.3 Inter-system iteration procedures
The inter-system iteration method, also called

as the whole-process iteration method, is a newly
developed method to solve the TBS motion
equation [22].

In this method shown in Figure 2, firstly, the
vehicle motion and the wheel-rail force can be
calculated through solution of independent train
equations under the assumption that the bridge

Figure 2 Flowchart of inter-system iteration procedure
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subsystem is rigid, the wheel-rail forces and the
seismic load are applied to the bridge, thus the
motion state of the bridge can be calculated through
the solution of the independent bridge equation.
Secondly, the next iteration is carried out by the
superposition of the calculated deck motion time
histories with the track irregularities as an updated
train subsystem excitation. The wheel-rail force can
also be adopted as the index for the convergence
judgment. When the absolute difference from the
last iteration is smaller than 10 N, the procedure is
judged to be convergent. Finally, the output will be
implemented, followed by the end of the procedure.

The deterministic excitation like axle load
history is simultaneously input with the random
excitation history samples generated by MCM,
including the track irregularity and the seismic
excitation, into TBS and solved by NβM, which
aims to obtain the history distribution and the
tentative statistical parameters (expectation and
variance) of the response, offload factors, etc.

By PEM, the deterministic excitation is
excluded. The pseudo form of random excitation
established by sampling the PSD is solved by PIM,
which aims to obtain the theoretical variance and
PSD of the response, offload factors, etc. In
addition, the solutions to the TBS respectively
subjected to the track irregularity and the seismic
excitation should be separately conducted while the
PSD by these two separate approaches should be
superposed in the end.

Without any random excitation input, the
solution by PIM to TBS only with the deterministic
excitation input like axle load aims to obtain the
theoretical expectation of the response, offload
factors, etc.

3.4 Random dynamic characteristics of TBS
under intensive seismic excitation
The vibration level of the bridge can be

characterized by its vibration acceleration. The HSR
code in China (TB 10621−2014) [21] stipulates that
when the train crosses the bridge, the vertical
acceleration limit of the ballast-less bridge deck
under the intensive vibration frequency of 20 Hz is
below 5 m/s2 .

Offload factor, the ratio of wheel load
reduction at the offloaded side to the average load of
the two wheel-sets, is used to check whether the

vehicle will derail due to overlarge offload at one
side of wheel-set [15]. For vehicles running on the
bridge, the wheel load decreases when the wheel
vibrates upside, which will, even with small or zero
lateral wheel-rail force, induce derailment due to the
relative lateral displacement between wheel and rail.
Therefore, as a criterion for anti-derailment, offload
factor has practical significance for vehicles running
on the bridge. The HSR code in China (TB 10621−
2014) [21] stipulates that the safe offload factor
should be less than 0.6. The offload factor vector
can be expressed in Eq. (37).

Rw =
fr

( )mw +
mb

2
+

mc

4
g
- 1 (37)

In order to obtain the tentative possibility
density function curve, which is smooth and
continuous, Kernel estimation is adopted and can be
defined as follows: Let (x1, x2, … , xn) be n
independent and identically distributed samples
drawn from some uni-variate distribution at an
instant with an unknown density p at any given
function variable x [23]. Its non-stationary kernel
density estimator is presented as:

p(x t)=
1
nh∑i = 1

n

K ( )x - xi (t)
h

(38)

where the domain of definition for x is within the
real number set; xi(t) is the number i of the random
samples in the time domain by MCM; K is a kernel
function and h is a parameter of window governing
the degree of smoothing of the estimation. In
Eq. (39), K is often chosen as the density of a
standard Gaussian function, and in Eq. (40), a
popular way to obtain a value of h is to assume that
the sample is distributed according to a Gaussian
distribution law. σ(t) is the non-stationary standard
variance of the random history samples.

K(x)=
1

2π
exp ( - 1

2
x2) (39)

h = 1.06σ(t)n-1/5 (40)

The goodness of fit (GOF) is used to verify
whether the hypothetical probability distribution is
valid or not [24], as in Eq. (41). The closer the
goodness of fit is to 1, the more the experimental
distribution meets the theoretical hypothesis. p(x, t)
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is the experimental non-stationary probability

density to fit the probability density of the

theoretical normal distribution f(x, t) and pm(t) is the

non-stationary average calculated along the variable

x for p(x, t).

R2 (t)= 1 -
∑
xÎR

(p(x t)- f (x t))2

∑
xÎR

(p(x t)- pm (t))2
(41)

The EPSD reflects the time varying of different
components, and its matrix form can be obtained by
multiplication of the conjugate and the transpose of
the corresponding pseudo vectors. For example, the
matrix of EPSD for the displacement response can
be calculated in Eq. (42).

Suu (ωt)= u͂*u͂T (42)

The track irregularity and the seismic

excitation are assumed to be random excitation with

the zero mean value. Hence, after applying the

square root on the integration of time for Eq. (42),
Eq. (43) can finally withdraw the standard deviation
of the displacement response through the

multiplication of the extraction vector υ and its

transpose. Typically, to withdraw the first diagonal

element of matrix, υT can be defined as [1 0 ··· 0].

σu (t)= ∫
-¥

+¥

υT Suu (ω t)υdω (43)

4 Case study

4.1 PSD parameters of random excitation
The seismic acceleration spectrum is centered

on the remarkable frequency with a gentle peak, and

then the intensity decreases as the frequency

becomes higher. For the vertical seismic

acceleration input, the white noise filter model

suggested by KANAI and TAJIMI is adopted [25].

Se (ω)=
1 + 4ξ 2

g ( )ω
ωg

2

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú

1 - ( )ω
ωg

2 2

+ 4ξ 2
g ( )ω
ωg

2
S0 (44)

The parameters of the subsoil filter model are

different for different sites. The site Class I is

considered, namely rock or compact gravel soil. The

study is mainly divided into 3 cases, namely, no
earthquake, weak earthquake and the intensive

earthquake corresponding to the intensity of 0, 6

and 7, respectively. The relevant filter model

parameters and the white noise spectrum value at

each intensity are shown in Table 3.

The German vertical track irregularity PSD

[26] is used, and can be expressed as:

Sv (n)=
Avn

2
c

(n2 + n2
r )(n2 + n2

c )
(45)

where Av is the roughness coefficient; nc and nr are

the cutoff angular wave numbers; at the low

disturbance condition, the corresponding values are

listed in Table 4.

4.2 Parameters of TBS

The parameters in Table 5 of the high-speed

train CRH2 are used for analysis, while the 32 m

high-speed railway reinforced concrete beams in

Table 6 are adopted for the analysis of the bridge

whose natural frequency and linear density are

respectively 6.6 Hz and 43 t/m.
To ensure the accuracy of the results, the train

starts from a certain length of track irregularity to
the bridge. The seismic acceleration is input to the
bridge and the train simultaneously. According to

ISO 2631 [27], the upper and lower limits of

angular wave number are determined, and the
parameters are shown in Table 7.

Table 3 Parameter values of seismic acceleration PSD

Parameter

Dominant ground frequency, ωg/(rad·s−1)

Ground damping ratio, ξg

White spectrum S0 at the seismic
intensity of 0/(m2·s−3)

White spectrum S0 at the seismic
intensity of 6/(m2·s−3)

White spectrum S0 at the seismic
intensity of 7/(m2·s−3)

Value

25.13

0.64

0

7.24×10−4

2.75×10−2

Table 4 Values of vertical track irregularity PSD

Parameter

Roughness coefficient, Av/(m·rad)

Cutoff angular wave number, nr/(rad·m−1)

Cutoff angular wave number, nc/(rad·m−1)

Value

4.032×10−7

0.0206

0.8246
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4.3 Description of train crossing process
Each solution to TBS subjected to a random

excitation time history sample containing the track
irregularity and the seismic excitation is called once
sampling of MCM which corresponds to once train-
passing process, and generates a sample of the time
history of bridge acceleration response, wheel-rail
force, offload factor, etc.

The process when the 8-vehicle train crosses
the bridge is divided into three stages as shown in
Figure 3. Firstly, in Figure 3(a), to ensure the
stability the solution to each vehicle element, the
train starts from tmin=0 s at the initial distance that its
first wheel-set is 8 times distance of vehicle (8×25=
200 m) away from the closest support.
Simultaneously, the seismic excitation is input, in
the form of displacement and velocity, to the wheel-
set and in the form of acceleration to the support.

Secondly, in Figure 3(b), after the first wheel-
set arrives at the closest support, which takes 8lv/V
seconds corresponding to t0 in Table 7, the train
begins to cross the bridge. The motion of the wheel-
sets on the bridge is only coupled with the response
of bridge and the track irregularity while the motion
of the wheel-sets outside the bridge is only coupled
with the seismic displacement and velocity and the
track irregularity.

Thirdly, in Figure 3(c), when the last wheel-set
leaves the farthest support and runs a certain
distance, the process is terminated. The whole
process will take 17 s, which can guarantee that the
entire train can cross the bridge in different cases of
speed from 90 to 720 km/h.

4.4 Analysis of precision and correctness
The train at a speed of 252 km/h is simulated to

cross the bridge subjected to the earthquake at the
intensity of 6. PEM-PIM and MCM-NβM are
adopted respectively. A sampling result of
acceleration and offload factor is respectively

Table 5 Parameter values of train

Train subsystem parameter

Car-body mass, mc/kg

Bogie mass, mb/kg

Wheel-set mass, mw/kg

Car-body inertia, Ic/(kg∙m2)

Bogie inertia, Ib/(kg∙m2)

Primary suspension stiffness, k1/(N·m−1)

Primary suspension damping, c1/(N·s·m−1)

Secondary suspension stiffness, k2/(N·m−1)

Secondary suspension damping, c2/(N·s·m−1)

Semi-distance of wheel-sets, d1/m

Semi-distance of bogies, d2/m

Distance of vehicle, lv/m

Train speed, V/(km·h−1)

Value

40000

3000

2000

2×106

3000

1×106

20000

2×105

10000

1.25

8.75

25

360

Table 6 Parameter values of beam element

Bridge subsystem parameter

Elastic modulus, E/Pa

Inertia, I/m4

Section area, S/m2

Material density, ρ/(kg·m−3)

Beam element length, lbe/m

Damping ratio, ξ

Value

3.55×1010

22.5

17.5

2500

3.2

0.02

Table 7 Parameter values of time and frequency

Parameter

Lower limit of angular frequency, ωmin/rad

Upper limit of angular frequency, ωmax /rad

Sampling rate of angular frequency, dω/rad

Lower limit of time, tmin/s

Upper limit of time, tmax/s

Time sampling rate, Δt/s

Arrival instant on the bridge for the first wheel-set, t0/s

Lower limit of angular wave number, nmin/(rad·m−1)

Upper limit of angular wave number, nmax/(rad·m−1)

Sampling rate of angular wave number, Δn/(rad·m−1)

Value

40π

π/100

π/25

0

17

0.0025

8lv/V

π/40

2π

π/400

Figure 3 Schematic diagram of the train crossing the
bridge: (a) The train comes close to the bridge; (b) The
train crosses the bridge; (c) The train leaves the bridge
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plotted in Figures 4 and 6, while their statistic
standard variance is plotted in Figures 5 and 7. The
result shows that:

1) In Figure 4, the vertical acceleration
response at the mid-span is comprehensively much
smaller than that on the ground, which reflects that
the stiffness and the mass of the bridge are much
less than that of the ground.

2) In Figures 5 and 7, it takes longer time and a
larger amount of samples for MCM-NβM, at least
10000 times, to reach as high as the solution
precision by PEM-PIM, which reflects that PEM-
PIM is highly precise and efficient, and the
consistency of the standard variance curve by PEM-
PIM and MCM-NβM demonstrates the correctness
of programming procedure.

3) In Figure 6, the sub-graph represents the
period where the first wheel-set moves on the

bridge. By comparison of different combination of

input, the influence from the seismic excitation on

the offload factor is not obvious as for single

sampling, while in Figure 7, the offload factor

standard variance will highly peak when the wheel-

set reaches the mid-span, which reflects that the

random analysis method is of necessity and the

sensitive and unsafe interval of offload factor is

located on the bridge.

4.5 Analysis of bridge acceleration EPSD

By PEM-PIM, the train at a speed of 252 km/h

is simulated to cross the bridge subjected to the

earthquake respectively at the intensity of 0, 6 and

7. The EPSD of mid-span vertical acceleration is

shown in Figure 8. The result shows that:

1) The EPSD of the vertical acceleration at the

Figure 4 Comparison of two acceleration samples of
MCM between at the mid-span and on the ground

Figure 5 Comparison of the precision and efficiency of
the acceleration standard variance at mid-span between
PEM-PIM and MCM-NβM

Figure 6 Comparison of an offload sample of MCM in
different conditions of random excitation

Figure 7 Comparison of the precision of the offload
factor standard variance for the first wheel-set between
PEM-PIM and MCM-NβM
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mid-span of the bridge only subjected to the track

irregularity, namely without seismic excitation

shown in Figure 8(a), has a wider frequency band

than the ones subjected to the earthquake at the

intensity of 6 and 7 shown in Figures 8(b) and (c),

and contains the dominant components at the high

frequency interval from 50 to 60 Hz.

2) For the bridge under the earthquake shown

in Figures 8(b) and (c), the EPSD of the vertical

acceleration at mid-span contains the dominant
components closer to 6.6 Hz, the natural frequency
of the bridge, and has the highest order of 102 at the
seismic intensity of 7.

3) In general, the intensive earthquake has the
greatest impact on the bridge so that the influence
from the track irregularity can be neglected. The
dominant frequency of the bridge vertical
acceleration response locates in the natural
frequency of the bridge.

4.6 Analysis of bridge acceleration distribution
histories

By MCM-NβM (1000 samples), the train at a
speed of 252km/h is simulated to cross the bridge
subjected to the earthquake respectively at the
intensity of 0, 6 and 7. The GOF histories, the
distribution histories of the mid-span vertical
acceleration and possibility density function (PDF)
curves at mid-span are respectively shown in
Figures 9−11. The results show that:

1) In Figure 9, the GOF histories are larger
than 0.99, and in Figure 11, the tentative and
theoretical PDF curve graphically share a high
fitting degree at a certain instant, which means the
samples of vertical acceleration at mid-span obeys
the normal distribution at any instant. However, at
the seismic intensity of 0, before the train runs on
the bridge, the randomness of the bridge response
does not exist, neither does goodness of fit during
this period.

2) In Figures 10(a), (b) and (c), most of
acceleration samples by MCM-NβM are

Figure 8 EPSD of the mid-span vertical acceleration:
(a) Bridge under the seismic intensity of 0; (b) Bridge
under the seismic intensity of 6; (c) Bridge under the
seismic intensity of 7

Figure 9 GOF histories between the tentative and the
theoretical normal distribution of the mid-span vertical
acceleration at different seismic intensities

2478



J. Cent. South Univ. (2022) 29: 2467－2484

symmetrically distributed within the range of 3σ
principle by PEM-PIM and their expectation locates
on the zero line. According to the statistics, the over-
limit possibility of the vertical acceleration at the
seismic intensity of 0, 6 and 7 are respectively 0%,
13.7% and 97.3%.

3) In general, the bridge acceleration response
under the intensive earthquake is a non-stationary
zero-mean Gaussian random process whose
distribution limit can be determined by 3σ principle,
and probably, the intensive earthquake has an
extremely harmful effect on the bridge.

Figure 10 Distribution histories of the mid-span vertical
acceleration: (a) Bridge at the seismic intensity of 0;
(b) Bridge at the seismic intensity of 6; (c) Bridge at the
seismic intensity of 7

Figure 11 PDF curve of the mid-span vertical
acceleration: (a) Bridge at the seismic intensity of 0; (b)
Bridge at the seismic intensity of 6; (c) Bridge at the
seismic intensity of 7
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4.7 Analysis of wheel-rail force EPSD
Under the same studied case as Section 4.5,

since the offload factor is related to wheel-rail force,
the EPSD of wheel-rail force is analyzed and shown
in Figure 12. The result shows that:

1) The EPSD of the vertical wheel-rail force on
the bridge only subjected to the track irregularity,
namely without seismic excitation shown in
Figure 12(a), has a wider time and frequency band

than the ones subjected to the earthquake at the
intensity of 6 and 7 shown in Figures 12(b) and (c),
and almost keeps constant along the time axis.

2) For the bridge under the earthquake, the
EPSD of the vertical wheel-rail force contains the
dominant components closer to 6.6 Hz, the natural
frequency of the bridge, and meanwhile reaches, at
a certain moment, a sudden peak which has the
highest order of 108 at the seismic intensity of 7. By
comparison with the case only subjected to the track
irregularity in Figure 12(a), the sudden peak in the
EPSD of the vertical wheel-rail force for
Figures 12(b) and (c) results from the application of
seismic excitation.

3) In general, when the earthquake does not
occur, the wheel-rail force is a stationary process.
The intensive earthquake will, in time domain, lend
to the surge of wheel-rail force dominated by the
component of the natural frequency of bridge, while
the weak one will have less influence on the wheel-
rail force.

4.8 Analysis of time history distribution of
offload factor
Under the same studied case as Section 4.6, the

GOF histories, the distribution histories of the
offload factor and PDF curve are respectively
shown in Figures 13−15. The results show that:

1) In Figure 13, the GOF of tentative and
theoretical PDF curve is larger than 0.99, and in
Figure 15, the tentative and theoretical PDF curve
share a high fitting degree at a certain instant, which
means the samples of offload factor obey the normal

Figure 12 EPSD of the wheel-rail force: (a) Bridge at the
seismic intensity of 0; (b) Bridge at the seismic intensity
of 6; (c) Bridge at the seismic intensity of 7

Figure 13 GOF histories between the tentative and the
theoretical normal distribution of the offload factor at
different seismic intensities
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distribution at any instant.

2) In Figures 14(a), (b) and (c), most of offload

factor samples by MCM-NβM are symmetrically

distributed within the range of 3σ principle by PEM-

PIM and their expectation locates on the zero line.

At certain range of time, the distribution of offload

factor has a surge, and according to the statistics, its

over-limit possibility at the seismic intensity of 0, 6

and 7 are respectively 0%, 0% and 42.7%. The

negative value of offload factor means that the

wheel-set is on-loading and it is safe for the train to

cross the bridge. At the seismic intensity of 7, the

offload factor distribution has the highest 3σ upper

limit.

3) In general, the offload factor under the

intensive earthquake is a weakly stationary zero-

Figure 14 Distribution histories of the offload factor:
(a) Bridge at the seismic intensity of 0; (b) Bridge at the
seismic intensity of 6; (c) Bridge at the seismic intensity
of 7

Figure 15 PDF curves of the offload factor: (a) Bridge at
the seismic intensity of 0; (b) Bridge at the seismic
intensity of 6; (c) Bridge at the seismic intensity of 7
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mean Gaussian random process whose distribution
limit can be determined by 3σ principle, and
probably, the intensive earthquake will lead to the
unsafe passage of the train on the bridge.

4.9 Analysis of the relation between the offload
factor and the train speed

For the analysis of the offload factor as the
function of the train speed, PEM-PIM is adopted
and the offload factor peak curve of 3σ principle is
analyzed at the speed from 90 to 720 km/h with the
bandwidth of 9 km/h and shown in Figure 16. Also,
statistics of the speed for the offload factor peak
appearing on the bridge at different seismic
intensities is shown in Figure 17. The results show
that:

1) In Figure 16, at the seismic intensity of 0
and 6, the offload factor peak increases with the

increase of train speed and presents a quadratic
linear relationship with the train speed. The
tendency of offload factor peak-speed curves is
close to each other and almost shares the same
speed limit of 400 km/h at the criterion line. Under
this circumstance, the bridge response contributes
weakly to the offload factor, and the influence from
the track irregularity velocity and acceleration
containing the factors of V and V 2, namely train
speed and its square, accounts for the quadratic
linear relationship. At the the seismic intensity of 7,
the overall offload factor peak-speed curve exceeds
the criterion line. Its tendency fluctuates with the
increase of speed.

2) In Figure 17, for all the speed cases (71
cases of speed), the offload factor peak can only be
found when the wheel-set is on the bridge at the
seismic intensity of 7, which demonstrates that the
bridge response will be so largely influenced by the
intensive earthquake that it has the main impact on
the offload factor. Under the intensive earthquake,
the train speed contributes weakly to the offload
factor.

3) In general, the offload factor is positively
correlated with train speed in the condition of weak
earthquake. The weak earthquake pose less threat to
the passage of train on the bridge, which means, by
strictly controlling the train speed, the safe passage
on the bridge can be guaranteed, while for the
intensive earthquake, the passage of train is
completely unsafe and halting the operation of train
is highly recommended.

5 Conclusions

1) It is feasible to study TBS under intensive
earthquakes based on the random vibration method.
Compared with the seismic acceleration using only
a single sample, MCM based on multiple samples is
more statistically accurate, and based on the input-
output PSD conversion process, PEM is more
efficient and accurate.

2) Adopting time-derivable slow-varying
uniform modulation function to separate the
stationary and non-stationary part of random
excitation is workable and can well preserve the
time domain characteristics of the random process.

3) The bridge acceleration and offload factor
under the intensive earthquake is respectively non-

Figure 16 Relation curve between offload factor peak of
3σ principle and train speed

Figure 17 Statistics of the speed cases for the offload
factor peak appearing on the bridge at different seismic
intensities
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stationary and weakly stationary zero-mean
Gaussian random process whose distribution limit
can be determined by 3σ principle.

4) Under the weak earthquake, the train speed
has the main impact on the offload factor, while the
bridge response contributes weakly to the offload
factor. At the intensive earthquake, the train speed
contributes weakly to the offload factor, while the
bridge contributes to the offload factor the most.
The intensive earthquake will probably have an
extremely harmful effect on the bridge and pose
threat to the passage of train on the bridge. Under
the circumstance, the passage of train is completely
unsafe and halting the operation of train is highly
recommended.
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(Edited by HE Yun-bin)

基于随机振动方法的强震作用下车桥耦合系统动力响应研究

摘要摘要：：地震荷载是自然界中一种突发并且对结构具有一定破坏性的随机激励。当震级大于6级即地震

烈度在7以上的地震即强震作用在车桥耦合系统中时，确定系统响应的概率分布特性用于保障行车和

结构安全稳定十分重要。因此，本文分别采用蒙特卡洛实验法以及虚拟激励随机振动分析方法，构建

二维车桥耦合系统空间状态方程，考虑轨道不平顺随机激励和确定性轴重激励，以及通过大质量法输

入地震随机激励，借助精细积分法通过全过程迭代过程对该状态方程进行精确高效求解响应时程分

布。由此确定系统响应及相应动力学指标的概率分布，与非强震条件下的响应概率分布特性对比，最

终为保障行车和桥梁结构安全稳定提供建议。

关键词关键词：：随机振动方法；强震；车桥耦合系统；概率分布；空间状态方程；全程迭代法；精细积分
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