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Abstract: Source location is the core foundation of microseismic monitoring. To date, commonly used location methods
have usually been based on the ray-tracing travel-time technique, which generally adopts an L1 or L2 norm to establish
the location objective function. However, the L1 norm usually achieves low location accuracy, whereas the L2 norm is
easily affected by large P-wave arrival-time picking errors. In addition, traditional location methods may be affected by
the initial iteration point used to find a local optimum location. Furthermore, the P-wave arrival-time data that have
travelled long distances are usually poor in quality. To address these problems, this paper presents a microseismic source
location method using the Log-Cosh function and distant sensor-removed P-wave arrival data. Its basic principles are as
follows: First, the source location objective function is established using the Log-Cosh function. This function has the
stability of the L1 norm and location accuracy of the L2 norm. Then, multiple initial points are generated randomly in the
mining area, and the established Log-Cosh location objective function is used to obtain multiple corresponding location
results. The average value of the 50 location points with the largest data field potential values is treated as the initial
location result. Next, the P-wave travel times from the initial location result to triggered sensors are calculated, and then
the P-wave arrival data with travel times exceeding 0.2 s are removed. Finally, the aforementioned location steps are
repeated with the denoised P-wave arrival dataset to obtain a high-precision location result. Two synthetic events and
eight blasting events from the Yongshaba mine, China, were used to test the proposed method. Regardless of whether the
P-wave arrival data with long travel times were eliminated, the location error of the proposed method was smaller than
that of the L1/L2 norm and trigger-time-based location method (TT1/TT2 method). Furthermore, after eliminating the P-
wave arrival data with long travel distances, the location accuracy of these three location methods increased, indicating
that the proposed location method has good application prospects.
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1 Introduction

In recent years, considerable attention has been
paid to engineering safety. Consequently,
microseismic monitoring (e.g., mine engineering [1−
3], tunnelling [4] and injection-induced seismicity
[5]) is becoming increasingly popular in hazard
early warning. Mine microseismic events are
usually generated by cavity collapses, fault slips, or
rock bursts [6]. Energy is transmitted in the form of
stress waves, and a sensor is used to transform these
stress waves into continuous voltage signals. This
continuous voltage signal is then discretized, pre-
processed (e. g., filtering) and stored by the
NetADC, NetSP, and a data storage centre
respectively. Finally, this signal is used to calculate
the seismic source location, event magnitude, and
source mechanism, which together provide a data
basis for judging the stability of a rock mass [7, 8].
Microseismic monitoring technology includes
sensor network optimization, data processing, and
microseismic source location [8]. Among these,
source location is the basis for subsequent processes
such as seismic magnitude calculation, focal
mechanism inversion, and hazard assessment.
Therefore, research on microseismic source location
has important applications. The location accuracy of
microseismic events mainly depends on the source
location objective function, inversion method, and
quality of P-wave arrival data. We will briefly
introduce the state-of-the-art source location
research in terms of these three aspects.

To date, the most commonly used approach has
involved travel-time-based ray-tracing location
methods, which exploit the residual between the
observed arrival time and theoretical arrival time
(TT method) or the time difference between two
sensors (TD method). In these methods, the L1 and
L2 norms are usually adopted to construct the
source location objective function. For example,
DURAISWAMI et al [9] established the L1 norm-
based TT location method (TT1 method), whereas
DAI et al [10] proposed the L2 norm-based TD
location method (TD2 method). Moreover, LI et al
[11] and LI et al [12] listed the L1/L2 norm and TT/
TD method combined four types of source location
objective functions. They showed that the L1 norm

is less affected by a large P-wave arrival picking
error than the L2 norm, but its location accuracy is
usually lower. The L2 norm has a high location
accuracy but is easily affected by large P-wave
arrival picking errors. Therefore, it is necessary to
establish a source location objective function that
has a high accuracy, for which the P-wave arrival
data are of good quality and are not sensitive to
large P-wave arrival picking errors.

The source location objective function is
usually solved by applying gradient algorithms
(e. g., the Quasi-Newton method [13]), which can
rapidly identify the microseismic event location.
However, gradient algorithms can be affected by the
initial iteration value. For this reason, global search
algorithms, such as the grid search technique,
genetic algorithm, particle swarm algorithm, and
Bayesian inversion [14], have also been adopted to
solve the source location objective function. For
example, NELSON et al [15] proposed a grid-
search-based location algorithm that can be used for
three-dimensional (3D) velocity structures. The grid
search technique can usually find an approximate
global optimal solution; however, it incurs a large
computational cost [16]. The genetic algorithm has
a relatively good global optimality, but its
performance still depends on the selection of the
initial values [14]. To address this, SONG et al [17]
proposed a grid search and genetic algorithm jointed
inversion method. This method first adopts a coarse
grid search to find an approximate initial location
and then applies a genetic algorithm to further
improve the location accuracy. This combined
technique has a lower calculation cost but higher
location accuracy. However, all of the
aforementioned location methods can still obtain
local optimal solutions due to the effects of large
P-wave arrival picking errors. Thus, we first aim to
obtain multiple location points based on multiple
initial points and then use the average of values with
high location point densities as the location result.
This can reduce the unstableness of a single time
event location. In addition, the simplex method
incurs a small computation cost but yields relatively
good global optimality [18]. It can be combined
with the aforementioned method to obtain multiple
location points.

The source location is closely related to the
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quality of P-wave arrival data. However, a mine
microseismic signal can be affected by background
noises (e. g., rock drilling and locomotive
transportation), thereby reducing the picking
accuracies of P-wave arrival times [19]. Moreover,
mines have obvious high and low P-wave velocity
zones due to the effects of geological conditions and
mining activities. The velocity difference can reach
up to 2000 m/s [20]. These high and low velocity
regions cause obvious wavefront healing
phenomena in the P-wave propagation path, i.e., the
P-wave velocity outside the high speed region may
be slower than that of the high velocity region [21].
In addition, microseismic waveform amplitudes
attenuate with increasing travel distances.
Therefore, the P-wave arrival amplitude may be
very small and/or may be contaminated by noise. It
can be inferred that when a P-wave travels for a
long distance, there is likely to be a large difference
between the observed arrival time and theoretical
arrival time, thus affecting the seismic source
location accuracy. For this reason, CHANG et al
[22] analyzed the relationship between seismic
waveform attenuation and travel distance. They
used the TD method for adjacent seismic channels
to calculate a microseismic event location, thus
achieving a relatively small location error. Sensor
array layouts in mines are generally relatively
sparse, making it difficult to apply the approach of
Ref. [22] to overcome the influence of the
propagation path. Therefore, the P-wave arrival data
corresponding to distant sensors should be excluded
to ensure an accurate source location.

In this study, the following techniques are
combined to improve microseismic location
accuracy. First, a source location objective function
is established based on the Log-Cosh function,
which has the L2 norm advantage of high location
accuracy for good P-wave arrival data and L1 norm
stability when there are large P-wave arrival picking
errors. Then, to reduce the influence of the initial
value on the iteration algorithm, multiple initial
points are randomly generated in the study area, and
the simplex method is applied to calculate the
location point corresponding to each initial point.
Furthermore, the average value of 50 location points
with the highest densities is selected as the initial
source location; this improves the stability of the

source location. Finally, to solve the problem of
poor quality of P-wave arrival data from distant
sensors, the aforementioned approximate location
result is used to eliminate such P-wave arrival data.
Then, the denoised P-wave data are used to obtain a
high-precision location result.

2 Theoretical basis

2.1 Basic theory of travel-time-based location
method
The velocity structures of mines are usually

very complex, and most seismic source location
methods treat them as homogenous velocity models
[19]. We assume that the source coordinates are (x0,
y0, z0); source occurrence time is t0; straight distance
between the sensor and source is li; P-wave arrival
time is ti (i=1, 2, …, n); n is the sensor number, and
vp is the P-wave velocity.

The P-wave travel time, which is based on the
difference between the observed arrival time and
source occurrence time, t0, is calculated as follows:

Δt i
1 = ti - t0 (1)

The theoretical P-wave travel time, based on a
homogenous velocity model, is:

Δt i
2 = li vp (2)

Therefore, the P-wave travel time difference
between the observed travel time and theoretical
travel time is:

Δt i
12 = Δt i

1 - Δt i
2 = ti - t0 - li vp (3)

Furthermore, the trigger time objective
functions of the source location based on the L1
norm, L2 norm, and the Log-Cosh functions are
established as:

Minimize TT1( x0, y0, z0, t0) =∑
i = 1

n

|| ti - t0 - li vp (4)

Minimize TT2 ( x0, y0, z0, t0) =∑
i = 1

n

(ti - t0 - li vp) 2

(5)

Minimize Log - Cosh ( x0, y0, z0, t0) =

∑
i = 1

n

lg éë
ù
ûcosh ( )ti - t0 - li vp (6 )

The relationships between the travel time
misfits and loss values of these three objective
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functions are shown in Figure 1. The L2 norm has a
low loss value when the fitting error of the L2 norm
is small; thus, it can achieve a high location
accuracy when good quality P-wave arrival data are
used. The L1 norm has a smaller sensitivity to travel
time misfits than that of the L2 norm. The Log-Cosh
function’s fitting loss has a similar trend to that of
the L2 norm for good quality P-wave arrival data
and the L1 norm for poor quality P-wave arrival
data, which is conducive to location accuracy and
stability.

2.2 Data field theory
After generating multiple initial points and

obtaining multiple corresponding location points,
local optimizations may occur. This may, in turn,
result in some differences between location points.
However, most of these location points should be
close to the true seismic event location. Therefore, it
is necessary to apply an effective technique to
characterise the point density. In this study, the data
field theory proposed by WANG et al [23] was
adopted to express the interactions between points
in space. The more points there are around one
point, the larger the data field potential value will be.

The potential value (scalar field intensity) of an
object, xi, in the data space can be defined as:

φ ( xi) =∑
j = 1

n

mj K ( x i - x j /σ) (7)

where K ( ⋅ ) is the unit potential function;  x i - x j

represents the distance between objects xi and xj; σ
is the distance influence factor, which controls the

interaction between objects; mj represents the
strength of object xj on xi in the data space; and n is
the number of all location points.

To simplify Eq. (7), we assumed that each
object has the same impact on xi (i. e., mj=1),

K ( x i - x j /σ) is set to exp ( )-( )||x i - x j||/σ
2

, and

 x i - x j is set as the Euclidean distance between

objects xi and xj. Equation (7) can then be converted
to:

φ ( x i) =∑
j = 1

n

exp ( -[ ( xi - xj)
2 + ( yi - yj)

2 +

( zi - zj)
2] /σ 2) (8)

where (xi, yi, zi) and (xj, yj, zj) are the 3D coordinates
of the i-th and j-th location points, respectively.

2.3 Proposed method
A microseismic source location method is

proposed using the Log-Cosh function and distant
sensor-removed data. This method takes advantage
of the Log-Cosh function for location accuracy and
stability. Furthermore, it applies data field theory for
characterising point density, considering that
P-wave arrival-time data with long travel distances
are usually poor in quality. The scheme of the
proposed location method is shown in Figure 2. Its
specific steps are as follows.

Step 1: The time difference between the
observed arrival time-based travel time and the
theoretical travel time is adopted to establish the
Log-Cosh function-based source location objective
function. This is calculated as shown in Eq. (6).

Step 2: Multiple location points are calculated
for the seismic event.

Step 2.1: m points are randomly generated in
the main mining area; these points follow a uniform
distribution and are treated as the initial values of
the simplex location method. For a small m, the
corresponding location points may be relatively
scattered, leading to a relatively bad location result
based on the data field theory. A large m requires a
large computation cost. We found that when m=
1000−2000, it yielded a good location result and an
acceptable computation cost. Thus, m=2000 was
adopted in this study, requiring approximately 5 s to
calculate the location points by using parallel
computation on two 18 core, 2.5 GHz CPUs.

Figure 1 Relationship between travel time misfit and
objective function loss
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Step 2.2: The initial points generated by using
step 2.1 and the P-wave arrival data are treated as
the dataset. They are then substituted into Eq. (6) as
established in step 1, and the simplex method is
used to solve this equation and obtain multiple
location points.

Step 3: The intial event location result based
on data field potential value.

Steps 3.1−3.2: The data field potential value of
each location point is calculated by Eq. (8), and the
average value of N (N=50) location points with the
largest data field potential values is taken as the
initial location result (x′, y′, z′).

Step 4: High-precision location is obtained,
without using data with large P-wave travel time.

Step 4.1: The P-wave travel time from the
initial location result to each triggered sensor are
calculated, and P-wave travel times that are larger
than the threshold value (0.2 s) are removed. The
threshold value is set according to Figure 13, which
shows that when the P-wave travel time exceeds
0.2 s, it is likely to have a relatively large P-wave
arrival picking error.

Steps 4.2−4.4: Steps 2.2−3.2 are repeated with
the new P-wave arrival dataset to re-determine the
location of the microseismic event (x, y, z); this is
set as the final location result.

3 Synthetic test

The sensor locations and velocity model of the
Yongshaba mine microseismic monitoring system
(Section 4) in the Kaiyang city (Guizhou Province,
China) were used for the basis of a synthetic test.
Two events with locations inside and outside the
sensor array were generated to test the effectiveness
of the proposed location method. Their
coordinates are (2997400 m, 381400 m, 1000 m)
and (2997400 m, 381400 m, 1300 m). The locations
of the sensors and the two test events are shown in
Figure 3. The blue triangles show the sensor
locations, whereas the red star represents the test
event location. There are 28 sensors in this system,
which are distributed at the levels of 930 m
(12 sensors), 1080 m (12 sensors), and 1120 m
(4 sensors). Field monitoring usually results in some
un-triggered sensors, due to the influences of
background noises, propagation distance, and sensor
response. Therefore, we randomly selected 15

Figure 2 Flowchart of the mine microseismic source
location method using the Log-Cosh function and large P-
wave travel time removed data
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sensors from the 28 sensors to generate the
theoretical P-wave travel time dataset. The P-wave
velocity was set to 5200 m/s. The travel time was
then obtained by dividing the distance by the
P-wave velocity. As there were high and low
velocity zones, and the picking of the P-wave
arrival time can be affected by noise, errors usually
occur in the picked P-wave arrival time. Thus, we
added random noises following a 1 ms Gaussian
distribution to each theoretical P-wave travel time.
Furthermore, larger noises following a 5 ms
Gaussian distribution were added to the P-wave
travel time greater than 0.2 s. In addition,
microseismic signals with severe amplitude
attenuations, unstable arrival picking, and
misclassification from different seismic events can
result in a large P-wave arrival picking error. Thus,
we also included a 50 ms picking error to one
sensor. The relationship between travel distance and
noisy P-wave travel times is shown in Figure 4. The
red straight line represents the travel time−distance
relationship at a velocity of 5200 m/s.

Based on the noisy P-wave travel time data of
synthetic events 1 and 2, the location tests were
performed by employing the steps described in
Section 2.3. First, a uniform distribution function
was used to randomly generate 2000 initial points in
the main monitoring area, with x∈ (380900 m,
381800 m), y∈ (2995500 m, 2998500 m), and
z∈ (900 m, 1150 m). Their coordinates and the
P-wave travel time data were then substituted into
Eq. (6). Finally, the simplex method was applied to
obtain 2000 corresponding location points.

The 2000 location points of synthetic events 1
and 2 are shown in Figures 5 and 6, respectively.
The black and red stars show the true and calculated

locations, respectively. The circles show the 2000
location points, and their colors represent the
magnitude of data field potential values. The 2000
location points of the data field and Log-Cosh
function-based location method without removing
the large P-wave travel times (DF1-Log-Cosh
method) were more dispersed than those of the same
method but with the large P-wave travel time data
removed (DF1-Log-Cosh method). Furthermore, the
DF2-Log-Cosh method exhibited a larger maximum
potential value. When the synthetic event was inside
the sensor array (synthetic event 1), the location
errors of the DF1-Log-Cosh and DF2-Log-Cosh
methods were 9.94 m and 8.74 m, respectively. For
the synthetic event outside the sensor array
(synthetic event 2), the location errors of the DF1-
Log-Cosh and DF2-Log-Cosh methods were
17.31 m and 9.96 m, respectively. Therefore,
although the data field could provide a stable
approach for finding the event location, it was

Figure 4 Relationship between P-wave travel distance
and noisy P-wave travel time: (a) Synthetic event 1;
(b) Synthetic event 2

Figure 3 Spatial locations of sensors and synthetic
events.
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necessary to eliminate those P-wave arrival data
with long travel distances.

To further verify the effectiveness of the
DF2-Log-Cosh method, we compared it with the
DF1-TT1, DF2-TT1, DF1-TT2, and DF2-TT2
methods, where the only difference in each case was
the objective function used, as shown in Eqs. (4)−
(6). The location error boxplots of 2000 location
points based on the TT1, TT2, and Log-Cosh
objective functions are shown in Figure 7, and the
data field-based final location results are listed in
Table 1. The left and right sides of each boxplot
group correspond to location results based on large
P-wave travel time data unremoved and removed,
respectively. The Log-Cosh function-based method
generated more location points with small location
errors when the large P-wave travel time data were
not removed. This indicates the superiority of the
Log-Cosh function. After eliminating the large
P-wave travel time data, the location errors of each
of these three location methods were reduced. The
relative error reductions of the DF2-TT2 and
DF2-Log-Cosh methods were more obvious. For the
test event inside the sensor array, the Log-Cosh

function-based method returned more location

points with small errors; this is beneficial in

determining location result based on the data field

theory. Moreover, when the P-wave arrival error

was relatively small, the location result for the L2

norm method was better than that using the L1

norm-based location method. For the event outside

the sensor array, the DF2-TT2 and DF2-Log-Cosh

methods returned similar location results, both of

which were much better than that of the DF2-TT1

method. Furthermore, the location errors of the

DF1-Log-Cosh method for synthetic events 1 and 2

were 9.94 m and 17.31 m, respectively, both of

which were lower than those produced by the

Figure 5 Log-Cosh function-based location results of
synthetic event 1: (a) With large P-wave travel time
unremoved; (b) With large P-wave travel time removed

Figure 6 Log-Cosh function-based location results of
synthetic event 2: (a) With large P-wave travel time
unremoved; (b) With large P-wave travel time removed

Figure 7 Location error boxplot of 2000 location points
with different objective functions
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DF1-TT1 and DF1-TT2 methods. This could
suggest that the Log-Cosh-based method is more
likely to have a better location accuracy than the
TT1 method when the P-wave arrival data are good.
In addition, the Log-Cosh-based method exhibited a
better location stability than the TT2 method under
large P-wave arrival time errors. In addition, after
removing the large P-wave travel time data, the
DF2-TT1 method still obtained relatively bad
location results, thereby verifying the low location
accuracy of the TT1 based method. The TT2
method returned a good location result when
supplied with good P-wave arrival data. The
location errors of the DF2-Log-Cosh method for
synthetic events 1 and 2 were only 8.74 m and
9.96 m, respectively. This indicates the necessity of
eliminating large P-wave travel time data and the
effectiveness of the Log-Cosh function-based
location method.

Furthermore, we added noise to the travel time

data of synthetic events 1 and 2 as defined earlier

and generated 200 noisy P-wave travel time

datasets. Then, we performed the same location

processes as detailed earlier for these 200 datasets.

The location error boxplots for datasets with and

without large P-wave travel time errors are shown in

Figure 8. The DF2-Log-Cosh function-based

method returned the smallest average location error,

whereas the L1 norm-based location result exhibited

a relatively large average location error. This

indicates that the DF2-Log-Cosh function and L2

norm may usually achieve better location results for
datasets with relatively low noise. After removing
the large P-wave travel time data, the TT2 norm and
Log-Cosh function-based methods showed equal
location performances. In conclusion, the DF2-Log-
Cosh method can achieve a good location result.

4 Engineering applications

4.1 Engineering background
Eight blasting events recorded by the

microseismic monitoring system of the Yongshaba
mine, China, were selected to verify the proposed
location method. In previous years, sublevel open-
pit mining method was used in this mine, which
resulted in the formation of several caves and may
cause surface subsidence, roof collapse, and fault
slip. These events can severely threaten mining
safety. Therefore, an IMS microseismic monitoring
system was developed at the site; it contains a data
processing centre, a data exchange centre, eight

Table 1 Location results based on different objective functions

Event ID

Synthetic
event 1

Synthetic
event 2

Data

All P-wave
arrival time

P-wave arrival time
less than 0.2 s

All P-wave
arrival time

P-wave arrival time
less than 0.2 s

Location method

DF1-TT1

DF1-TT2

DF1-Log-Cosh

DF2-TT1

DF2-TT2

DF2-Log-Cosh

DF1-TT1

DF1-TT2

DF1-Log-Cosh

DF2-TT1

DF2-TT2

DF2-Log-Cosh

Location result

x/m

381467.06

381372.96

381392.61

381366.36

381407.37

381406.63

381307.11

381381.34

381395.92

381240.96

381404.59

381404.33

y/m

2997018.21

2996983.96

2996993.73

2997022.16

2996999.33

2996999.37

2996741.79

2996981.86

2996992.59

2997018.33

2996999.62

2996999.67

z/m

1039.13

1009.93

1002.19

1045.09

992.35

994.34

1117.50

1236.23

1215.10

1165.58

1191.35

1191.04

Location
error/m

79.75

32.97

9.94

60.46

10.64

8.74

286.54

44.61

17.31

163.75

9.80

9.96

Figure 8 Location error boxplots of 200 P-wave travel
time datasets based on different objective functions
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stations, and 28 sensors. The sensors were
distributed at the levels of 930 m (12 sensors),
1080 m (12 sensors), and 1120 m (4 sensors)
(Figures 3 and 9). The blue triangles and red stars
represent the sensor and blasting event locations
respectively, and the blue line connects each
blasting event with its triggered sensor.

4.2 Blasting event location test
The locations of the eight blasting events are

listed in Table 2. Blasting events 6 and 3 were taken
as examples. The P-wave arrival pickings of
blasting event 6 are shown in Figure 10. Here, “#”
indicates the sensor ID, where l is the linear distance
between blasting event 6 and the corresponding
sensor.

The microseismic waveforms were sorted
according to the linear distance between the blasting
event and each triggered sensor. The microseismic
waveform amplitude and signal-to-noise ratio
tended to decrease, and it was difficult to pick up
the P-wave arrivals for the last few waveforms. This
indicates that distant P-wave arrivals were likely to
have low reliability.

The P-wave arrival pickings in Figure 10 were
taken as the dataset, and the location method
proposed in Section 2.3 was used to obtain the result
shown in Figure 11. Similarly, the location result of
blasting event 3 (Figure 12) was obtained by
applying the same procedure. The location points of
the DF1-Log-Cosh and DF2-Log-Cosh methods are
shown in panels (a) and (b), respectively in each
case. The 2000 location points of blasting event 6
were more concentrated than those of blasting event
3; this may be due to a better triggered sensor
distribution for blasting event 6. Moreover, the 2000
location points in the vertical direction were mainly
distributed in a straight line, which may be caused
by insufficient vertical constraints regarding the
existing sensor distribution. The 2000 location
points in the DF1-Log-Cosh location method were
relatively scattered, and their maximum potential
value was smaller than that of the DF2-Log-Cosh
location method. Furthermore, the DF1-Log-Cosh
location errors of blasting events 6 and 3 were 73.91
m and 60.30 m, respectively when using all of the
picked P-wave arrival data, whereas their DF2-Log-
Cosh location errors were 51.70 m and 27.20 m,
respectively. This again indicates the necessity of
eliminating distant P-wave travel time data. It
should be mentioned that the application location
errors of blasting events 6 and 3 were larger than
those of the synthetic tests, which could be a
combined result of the heterogeneous velocity
model and the larger P-wave arrival time errors of
the blasting events. Here, the P-wave arrival time
error originated from the signal propagation
attenuation, P-wave arrival picking error, and delay

Figure 9 3D locations of 28 sensors and eight blasting
events

Table 2 Location results of eight blasting events based on DF-Log-Cosh method

Event
ID

1

2

3

4

5

6

7

8

Average

Measured location

x/m

381683

381653

381194

381684

381503

381590

381526

381442

y/m

2997760

2997405

2996224

2997777

2997036

2997278

2997584

2998029

z/m

1107

1099

1014

1107

1028

1053

1044

1017

Location result based on all
P-wave arrival data

x/m

381647.67

381611.34

381166.99

381672.34

381487.82

381538.98

381513.17

381421.70

y/m

2997787.39

2997403.04

2996245.35

2997809.74

2996999.93

2997226.30

2997614.32

2998063.99

z/m

1112.90

1050.22

964.50

1117.09

1030.42

1066.71

1048.36

1024.14

Error/m

45.09

64.18

60.30

36.19

39.21

73.91

33.21

41.08

49.14

Location result based on P-wave arrival
time less than 0.2 s

x/m

381647.83

381625.25

381173.62

381688.83

381496.77

381545.22

381535.64

381426.44

y/m

2997787.36

2997399.21

2996241.09

2997785.14

2997006.56

2997252.53

2997607.34

2998027.89

z/m

1112.94

1063.50

1008.28

1129.75

1029.23

1048.61

1051.84

1053.85

Error/m

44.95

45.43

27.20

24.64

30.12

51.70

26.45

40.02

36.31
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time difference from each sensor to the signal

storage system.

The location results of the eight blasting events

are listed in Table 2, and the relationship between

the travel distance and travel time is shown in

Figure 13. The source occurrence time, T0, was

taken as the median of the P-wave arrival time

minus the blasting event location-based P-wave

theoretical travel time, and the value was then set as

the zero point. The P-wave velocity was used as the

slope to obtain the straight blue line shown in

Figure 13. The black circle is obtained from the

distances between each blasting event and the

sensor locations, whereas the blue (travel time is

less than 0.2 s) and red (travel time is larger than

0.2 s) circles are obtained from the distances

between the DF1-Log-Cosh location result and the

sensor locations. The black circle was obtained from

the distance between the blasting event and sensor

locations, whereas the blue (travel time is less than

0.2 s) and red (travel time is larger than 0.2 s)

circles were obtained from the distances between

the DF1-Log-Cosh location results and the triggered

sensors.

Figure 10 Microseismic waveforms (blue curves) and manual pickings (vertical lines) for blasting event 6
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Generally, the closer a circle is to the blue line

(Figure 13), the better the P-wave arrival time

fitness is. Blasting events 1, 3, 5, and 6 exhibited

poor fitness for large P-wave travel times, and their

location errors, when including large P-wave travel

time (t≥0.2 s) data, were 45.09, 60.30, 39.21, and

73.91 m, respectively. After removing the large P-

wave travel times, the location errors of blasting

events 3, 5, and 6 decreased to 27.20, 30.12, and

51.70 m respectively. Furthermore, the average

location error of the eight blasting events decreased

from 49.14 m to 36.31 m. Therefore, the DF2-Log-

Cosh method, which eliminated distant P-wave

travel time data, exhibited better location results.

5 Discussion

5.1 How to process poor P-wave arrival data

As mentioned earlier, the P-wave arrival can be

affected by signal propagation attenuation,

background noise, and signal misclassification, all

of which may result in poor P-wave arrival pickings

[24]. Poor P-wave arrival times can be removed by

using the experienced time difference values

between P-wave arrivals. For example, the P-wave

arrival difference should be smaller than the largest

travel time from one point to another within the

study zone. However, poor P-wave arrival pickings

generally cannot be removed from the

aforementioned technique. To address this, LI et al

[11] established an objective function in the form of

exponential decay to reduce the influence of large

P-wave arrival picking errors. However, a single

time Newton iteration-based location result may be

unstable. DONG et al [25] took advantage of the

combination datasets from six sensors to obtain

multiple location points. Then, they applied

probability density curves in each direction to

obtain an initial location result. They removed large

P-wave arrival picking errors by using the initial

location result-based P-wave travel time. Finally,

they applied an iteration method to obtain the source

location. However, when there are only a few

triggered sensors, it is difficult to use probability

density curves to obtain a good initial location

result, and the single time relocation may still be

affected by the initial iteration value. PENG et al

[19] used bootstrap sampling to generate more

P-wave travel time sub datasets. Then, they used the

Figure 11 Log-Cosh function-based location results of
blasting event 6: (a) With large P-wave travel time
unremoved; (b) With large P-wave travel time removed

Figure 12 Log-Cosh function-based location results of
blasting event 3: (a) With large P-wave travel time
unremoved; (b) With large P-wave travel time removed
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data field to characterise the high density location

points. In this study, we adopted a data field to

describe the density of each location point and then

relocated the event using distant P-wave travel time

removed data. This approach combines the

advantages of the methods proposed Ref. [19, 25].

5.2 Effect of P-wave travel time modelling

We adopted a homogeneous velocity model to

calculate the P-wave travel time. For a small zone,

the P-wave propagation path can be treated as a

straight line. Furthermore, the calculated travel time

error is small compared with the real travel time.

For a large zone, the ray path is not a straight line

due to velocity variations [21], and the straight line

based P-wave travel time may contain a relatively

large error. Therefore, several studies have applied a

1D velocity model to calculate the ray travel time,

which is better than a homogeneous velocity model.

However, there is still a gap between this approach

and the complex ray propagation paths that usually

occur in mines. Recently, DONG et al [26]

introduced the A* search algorithm into source

location for a 3D structure containing a hole. PENG

et al [27] and JIANG et al [28] combined the fast

marching method (FMM) and a 3D velocity model

(empty zone plus homogenous velocity model) for

the purposes of microseismic source location.

WANG et al [21] established a 3D velocity model-

based ray-tracing-and-shooting method for a high-

resolution velocity model. This method can obtain a

good P-wave travel time. Furthermore, as the ray

tracing method does not consider the influence of

waveform attenuation, 3D wavefield modelling that

considers the influence of waveform attenuation can

be introduced to obtain a better P-wave travel time

[29]. However, the 3D ray-tracing-based FMM

method, shooting method, and wavefield modelling

require high computation costs. Thus, it is difficult

to combine them with the method proposed here. In

the future, we can introduce reciprocity between the

sensor and source location to generate a high-

precision P-wave travel time database, which could

then be combined with the DF2-Log-Cosh-based

location method to obtain a better location accuracy.

Figure 13 Relationship between
travel distance and travel time
when using DF1-Log-Cosh
method: (a) Event 1; (b) Event 2;
(c) Event 3; (d) Event 4;
(e) Event 5; (f) Event 6;
(g) Event 7; (h) Event 8
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6 Conclusions

1) A Log-Cosh function-based source location

objective function was proposed, which solved the

problem of L1 norm’s low location accuracy and

L2 norm’s instability for large P-wave arrival

picking errors. The synthetic results showed that

when there were large P-wave arrival picking errors,

the Log-Cosh function obtained smaller location

error points, which is beneficial to data field-based

location. After eliminating large P-wave travel time

data, the Log-Cosh function obtained a location

accuracy similar to that obtained by the TT2 method.

2) We used 2000 randomly generated initial

points to obtain 2000 location points, and the

average location of the 50 points with the largest

data field potential values was used as the event

location result. Two synthetic tests and eight

blasting events showed that this technique can

significantly reduce the influence of the initial

iteration value and obtain a stable location result.

3) To handle the low quality data of large

P-wave travel times, we performed the location test

on data with and without large P-wave travel times.

The average location error of the eight blasting

events decreased from 49.14 m to 36.31 m when

large P-wave travel-time data were removed.

Furthermore, the travel times corresponding to

closer sensors showed better fitness values than

those of distant sensors, demonstrating that it is

necessary to eliminate large P-wave travel time data.
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(Edited by ZHENG Yu-tong)

基于Log-Cosh函数及剔除远距离传感器P波到时的矿山微震震源定位方法

摘要摘要：：震源定位是微震监测的核心基础。目前使用较多的射线走时追踪定位方法主要基于L1和L2范

数建立震源定位目标函数。然而，L1范数定位精度较低，L2范数易受P波初至大拾取误差影响。此

外，传统定位方法易受初始点影响而得到局部最优，远距离P波初至数据质量较差。为此，本文提出

了一种基于Log-Cosh函数及剔除远距离传感器到时的微震震源定位方法，其基本原理为：首先，建立

基于Log-Cosh函数的震源定位目标函数，其具有L1范数的稳定性和L2范数的定位精度；其次，在矿

山开采区域随机生成多个初始点，使用已建立的震源定位目标函数得到相应的多个初定位点，再以初

定位点中数据场势值最大的50个定位点坐标均值作为初定位结果，计算初定位结果到各触发传感器的

P波传播时间，剔除传播时间大于0.2 s的P波初至数据；最后，以去噪后的P波初至数据集重复上述定

位步骤，得到高精度定位结果。以开阳磷矿用沙坝矿两个理论测试事件和八次爆破事件为例展开定位

研究。结果表明，不管是否剔除传播时间较大的P波初至数据，基于数据场的Log-Cosh法定位误差都

小于传统TT1法和TT2法定位误差，而在剔除传播时间较大的P波初至数据后，三种定位方法的定位

精度都有所提高，表明本文所提出的定位方法具有较好的应用前景。

关键词关键词：：震源定位；Log-Cosh函数；数据场理论；定位稳定性
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