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Abstract: A novel spiral non-circular bevel gear that could be applied to variable-speed driving in intersecting axes was
proposed by combining the design principles of non-circular bevel gears and the manufacturing principles of face-milling
spiral bevel gears. Unlike straight non-circular bevel gears, spiral non-circular bevel gears have numerous advantages,
such as a high contact ratio, high intensity, good dynamic performance, and an adjustable contact region. In addition,
while manufacturing straight non-circular bevel gears is difficult, spiral non-circular bevel gears can be efficiently and
precisely fabricated with a 6-axis bevel gear cutting machine. First, the generating principles of spiral non-circular bevel
gears were introduced. Next, a mathematical model, including a generating tooth profile, tooth spiral, pressure angle, and
generated tooth profile for this gear type was established. Then the precision of the model was verified by a tooth contact
analysis using FEA, and the contact patterns and stress distributions of the spiral non-circular bevel gears were
investigated.
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1 Introduction

Non-circular gears can be categorized

according to the relationships of their axes as either

non-circular cylindrical gears, which have parallel

axes, and non-circular bevel gears, which have

intersecting axes. While non-circular cylindrical

gears are used in function generators [1, 2], gear

pumps [3, 4], and a variety of other mechanical

systems [5 − 8], non-circular bevel gears are often

applied to high-order ellipse bevel gear pumps [9],
variable ratio differentials [10, 11], and other
functional generators [12].

Non-circular gears can be categorized further
as straight non-circular gears and spiral, or helical,
non-circular gears based on the longitudinal
geometrical shapes of their corresponding gear
teeth. While previous studies concerning non-
circular cylindrical gears have considered both
straight and spiral gear types, studies concerning
non-circular bevel gears have concentrated on
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straight gear types.
For example, OLLSON [13] proposed that gear

types can be used to implement the driving of
intersecting axes. In addition, XIE et al [14]
presented a functional mapping method for the tooth
profiles of straight non-circular bevel gears and
virtual non-circular cylindrical gears. LIN et al [15,
16] investigated the tooth profile generating method
using the tooth profile of a straight non-circular
bevel gear. Thus, since they have not been
adequately studied in previous publications, spiral
non-circular bevel gears were the object suitable
longitudinal curve. When constructed with a circular
arc-shaped generating cutter, the longitudinal curve
of a face-milling spiral bevel gear is an arc-circle
[17−20]. Gears generated with this type of cutter are
widely used for mechanical transmission purposes
due to their high load carrying capacity, fine
dynamic performance, and perfect crafting [21−23].
Thus, spiral non-circular bevel gears with arc-circle
longitudinal curves were selected for the purposes
of this study.

Spiral non-circular bevel gears, also known as
face-milling spiral non-circular bevel gears, are
constructed by combining the design principles of
non-circular bevel gears and the manufacturing
principles of spiral bevel gear. Spiral non-circular
bevel gears have many advantages compared to
straight non-circular bevel gear, including a high
contact ratio, high intensity, good dynamic
performance, and an adjustable contact region. Most
importantly, this gear type can be fabricated on a 6-
axis spiral bevel gear cutting machine, facilitating
the application of non-circular bevel gears to the
manufacturing industry.

The works conducted in designing the spiral
non-circular bevel gear are detailed as follows:
First, the face-milling principle was used to generate
a spiral non-circular bevel gear. Next, a
mathematical model of the spiral non-circular bevel
gear, including the tooth profile equation of the flat-
top generator, the tooth spiral equation, the pressure
angle correction of the cutter, and the enveloping
and meshing equations of the tooth profile, was
established. Then, the geometric design process was
described using a pair of spiral non-circular bevel
gears with 2-order sinusoidal gear ratio functions.

Finally, the instantaneous tooth contact area and
gear ratio of the designed gear were obtained
through transient structural analysis.

2 Generating principles of spiral non-
circular bevel gear

Non-circular bevel gearing consists of the pure
rotation of a drive pitch cone and the driven pitch
cone [24] during the driving process. As shown in
Figure 1, the generating plane, pitch cone of a drive
gear, and pitch cone of a driven gear are all tangent
to the contact line (OP).

Both the drive cone and driven cone rotate
along their own axes at a rate of ω and ω2,
respectively. The generator rotates on the generating
plane at a rate of ωg. In this way, the tooth profiles
of both drive gear and the driven gear can be
generated using the tooth profile of the planar
generator [25], all of which satisfy the conjugate
meshing condition [26]. Thus, while straight non-
circular bevel gears are generated with straight tooth
line generators, spiral non-circular bevel gears are
generated with arc tooth line generators.

The cutting method for spiral non-circular
bevel gears is similar to that of spiral bevel gears.
As shown in Figure 2, a head cutter is placed on the
generating plane, and the blade of the cutter
generates the tooth profile of the spiral non-circular
bevel gear. However, a theoretical error exists in
that, in this cutting method, the pitch cone of the flat
top generator has an approximately 90° pitch angle
rather than being a plane (the face cone of the
generator is a plane).

Figure 1 Generating principle of spiral non-circular bevel
gear
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3 Mathematical models for spiral non-
circular bevel gear

3.1 Tooth profile of flat-top generator

In general, the tooth profile (normal section) of

a head cutter is an involute rack. In order to ensure

that both sides of a generated gear have the same

pressure angle, the convex and concave pressure

angles of the cutter, α1 and α2, respectively, were not

equal. The theoretical equation of the tooth profile

is:
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⋅ ( l - W ), W ≤ l

xv ( l ) = l

(1)

where W is the point width of the cutter blade and l

is the tooth profile variable [27]. After deriving with

respect to parameter l, the equation becomes:
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xv' ( l ) = 1

(2)

According to meshing theory [28], the tooth

profile of a virtual flat-top generator is a spherical

curve. Thus, in theory, the tooth profile does not lie

on the normal section plane of the cutter, but on the

spherical curve of the virtual flat-top generator, as

depicted in Figure 3.

Figure 4 shows the geometrical relationship

between a cutter and a virtual flat-top generator on a

generating plane, or the mapping of the cutter’s
normal section in the xv direction. Op and O2 are the
rotary centers of the cutter and flap-top generator,
respectively. In addition,

- -- -----
OpO2 = ep represents

distance of the cutter center to the machine center;
rv represents the mean radius of the cutter; rvd and rvx

represent the outer radius and inner radius of the

cutter respectively. They can be calculated as

follows:

{rvd = W + hf tanα2 + rv

rvx = -W - hf tanα1 + rv

(3)

where rf is the mean pitch radius, or mean cone
distance, of the generated gear. If Pf is the
intersection of the mean pitch radius (rf) and the
cutter radius (rv), and O2 Pf is defined as the initial
line, then the polar angle of point Pf is equal to zero.

Assume that φ0 is the polar angle of point Op. Then,

according to the law of cosines

φ0 = ∠PfO2Op = arccos ( rf
2 + ep

2 - rv
2

2rfep
) (4)

where lf is the tangent of the mean pitch circle at

point Pf, and the angle to line
- -- ---
PfOp is the mean

spiral angle (βf) of the spiral non-circular bevel gear,

Figure 2 Spiral non-circular bevel gear cutting principles

Figure 4 Geometrical relationship between a cutter and
virtual flat-top generator

Figure 3 Tooth profile of a virtual flat-top generator
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which can be calculated as

βf = π/2 - ∠O2 PfOp =
π
2
- arccos ( rf

2 + rv
2 - ep

2

2rfrv
)

(5)

where rt is the spherical radius of the flap-top
generator, and At, Bt and Ot are the points of
intersection with the cutter radius, inner cutter
radius, respectively. Thus,
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∠O tOpO2 = arccos ( )rv
2 + ep

2 - r t
2

2rvep

∠PfOpO2 = arccos ( )rv
2 + ep

2 - rf
2

2rvep

(6)

and the arc length of

O t Pf is equal to

Lv = rv (∠O tOpO2 - ∠PfOpO2)

= rvarccos ( rv
2 + ep

2 - r t
2

2rvep
) -

rvarccos ( rv
2 + ep

2 - rf
2

2rvep
) (7 )

Similarly, the arc length of

A t B t is equal to

L t = r t (∠A tO2Op - ∠B tO2Op)

= r tarccos ( r t
2 + ep

2 - rvd
2

2r tep
) -

r tarccos ( r t
2 + ep

2 - rvx
2

2r tep
) (8)

Furthermore, if r t = rf, then the arc length of
the mean pitch sphere is

Lf = rf arccos ( rf
2 + ep

2 - rvd
2

2rfep
) -

rf arccos ( rf
2 + ep

2 - rvx
2

2rfep
) (9)

Thus, the module of the flat-top generator is
equal to

mf =
Lf

π
=

rf

π
arccos ( rf

2 + ep
2 - rvd

2

2rfep
) -

rf

π
arccos ( rf

2 + ep
2 - rvx

2

2rfep
) (10 )

As shown in Figure 4, the normal section of the
cutter lies on line

- -- ---
OpO t, while the tooth profile of

the flat-top generator lies on arc

A t B t. Assume that

P ( xv,yv) is a point on the normal profile of the

cutter with corresponding point (Qv) on arc

A t B t.

Thus,
- -- -----
OpQv =

- -- -----
Op Pv = rv - xv (11)

In terms of the law of cosines,

∠OvO2Op = arccos ( r t
2 + ep

2 - (rv - xv)
2

2r tep
) (12)

If the polar angle of point Qv is φv, then

φv = ∠QvO2 Pf = φ0 - ∠OvO2Op

= arccos ( rf
2 + ep

2 - rv
2

2rfep
) -

arccos ( r t
2 + ep

2 - (rv - xv)
2

2r tep
) (13)

And the spiral angle of Qv is equal to

β t = π/2 - ∠O2QvOp

=
π
2
- arccos ( rf

2 + (rv - xv)
2 - ep

2

2rf (rv - xv) ) (14 )

One of the polar angles of the flat-top
generators is defined in Eq. (13). As shown in
Figure 5, the other polar angle of point Qv is δv,
which can be calculated as:

δv = arcsin ( yv + hf

r t
) (15)

According to the discussion above, the
spherical coordinates of point Qv are (φv, δv), and its
Cartesian form, for coordinate transformation, is

r2 =

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

r t sinδv cosφv

r t sinδv sinφv

r t cosδv

1

(16)

3.2 Basic cones of non-circular bevel gears
Figure 6 displays the three basic cones of a

Figure 5 Geometrical relationship of cutter and virtual
flat-top generator
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non-circular bevel gear: the pitch cone (A0), root
cone (Af), and face cone (Aa). The reference frame,
S0 (O0 - x0 y0 z0), is fixed at the gear center, and the

pitch curve of the non-circular bevel gear can be
represented by the vector function rA0 (φ1, R )

as [29].

rA0 (φ1, R ) = [R sinδ0 cosφ0 R sinδ0 sinφ0 R cosδ0 1 ]T

(17)

where R is the radius of the pitch cone; φ0 is the

rotating angle of the non-circular bevel gear; and δ0

is the pitch angle. For a pair of non-circular bevel
gears; φ1 and φ2 can be defined as the rotating

angles of the drive gear and driven gear,
respectively; δ1 and δ2 can be defined as the pitch
angles of drive gear and driven gear, respectively. In
general, the gear ratio can be represented by the φ1

function, namely, i12 = i12 (φ1). Thus, φ2 =

∫
0

φ1 1
i12 (φ )

dφ. If the shaft angle is equal to 90° , the

pitch angle can be calculated as:

{δ1 = arccot [ i12 (φ1) ]

δ2 = arctan [ i12 (φ1) ]
(18)

By substituting R = rf in Eq. (17), the mean
pitch curve of the spiral non-circular bevel gear can
be obtained. Its arc-length [30], can be obtained by

Lp = ∫
0

2π{éëê ù

û
ú

d (rf sinδ0 cosφ )

dφ

2

+

é

ë
ê

d (rf sinδ0 sinφ )

dφ
ù

û
ú

2

+ }é

ë
ê

ù

û
ú

d (rf cosδ0)

dφ

2 1/2

dφ

= rf ∫
0

2π

δ0'
2 + sin2δ0 dφ (19)

Assume that the tooth number of the generated

gear is z. Then, the mean module, or module on the

mean pitch curve, is equal to

mF =
Lp

πz
=

rf ∫
0

2π

δ0'
2 + sin2δ0 dφ

πz
(20)

In order to ensure that the generated drive and

driven gears satisfy the conjugate meshing condition

for the same generator, the mean module must be

equal to the flat-top generator module.

mF = mf (21)

In general, the root cone and face cone can be

different in different tooth systems. In this paper,

however, these cones were defined as cones with an

angle constant to the pitch cone. Assume that

P0 (δ0,φ0,R ) is a point on the pitch cone. Then, t1 is

the tangent vector of pitch cone A0 in the

circumferential direction at point P0, which can be

calculated as [31].

t1 =
é

ë
êê

ù

û
úú

d ( R sinδ0 cosφ0)

dφ0

d ( R sinδ0 sinφ0)

dφ0

d ( R cosδ0)

dφ0

T

= R
é

ë

ê
êê
ê
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ú

δ′0 cos δ0 cosφ0 - sin δ0 sinφ0

δ′0cos δ0 sinφ0 + sin δ0 cosφ0

-δ0' sinδ0

(22)

Then the unit tangent vector is equal to

t1u =
t1

|t1|
=

é
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δ′0 cosδ0 cosφ0 - sinδ0 sinφ0

δ′20 + sin2δ0

δ′0 cosδ0 sinφ0 + sinδ0 cosφ0

δ′20 + sin2δ0

-δ′0 sinδ0

δ′20 + sin2δ0

(23)

The tangent vector of the pitch cone (A0) in the

radial direction at point P0 is equal to

t2 =
é

ë
ê

ù

û
ú

d ( R sinδ0 cosφ0)

dR

d ( R sinδ0 sinφ0)

dR

d ( R cosδ0)

dR

T

= [ ]sinδ1 cosφ0 sinδ1 sinφ0 cosδ1

T
(24)

And its corresponding unit vector is equal to

t2u = t2 = [ sinδ1 cosφ0 sinδ1 sinφ0 cosδ1 ]
T

(25)

The unit normal vector of the pitch cone at

point P0 can be calculated using the cross product of

the two tangent unit vectors as follows.

Figure 6 Basic cones of non-circular bevel gears
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n1u = t1u × t2u

=
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cosδ0 sinδ0 cosφ0 - δ′0 cos2δ0 sinφ0 + δ′0 sin2δ0 sinφ0

δ′20 + sin2 (δ0)

cosδ0 sinδ0 sinφ0 - δ′0 cos2δ0 cosφ0 - δ′0 sin2δ0 cosφ0

δ′20 + sin (δ0)2

2δ′0 sin δ0 cosδ0 sinφ0 cosφ0 - sin2δ0

δ′20 + sinδ0
2

(26)

The root cone and face cone can be represented
in terms of the unit normal vector by

ì

í

î

ï
ï
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ï

rAf (φ0,R ) = rA0 (φ0,R ) -
ha

rf

Rn1u (φ0,R )

rAa (φ0,R ) = rA0 (φ0,R ) +
hf

rf

Rn1u (φ0,R )
(27)

where ha and hf are the addenduma and dedendums
of the teeth.

3.3 Applied coordinate system
Theoretically, based on the generating

principles shown in Figures 1 and 2 and the
methods presented in Ref. (16)−(18), the kinematic
geometrical relationship of generating spiral non-
circular bevel gear can be established. However, due
to the complexity of the method above, a new
method based on the normal vector of the pitch cone
was proposed. The proposed method was more
concise since it involved vector algebra rather than
complex spatial angle and position calculations.

As shown in Figure 7, the generated gear is
fixed on the ground, the coordinate system
S0 (O0 - x0 y0 z0) is fixed on generated gear, Ap is

the face cone of the flat-top generator (a plane),
Of Pf is the tangent line of root cone Af and the plane
Ap, and Pf is the contact point of plane Ap and root
cone Af on the mean radius (rf). Substitute R = rf

into Eq. (24), there will be

rPf (φ0) = rA0 (φ0, rf ) + hfn1u (28)

In terms of Eq. (27), the unit tangent vector of
the root cone in the circumferential direction (t3u) is
equal to that of the pitch cone (t1u), namely,

t3u = t1u (29)

And the unit tangent vector of the root cone
(Af) in the radial direction (t3u) can be calculated as

t3u = Mf0t2u (30)

where

Mf0 =
é

ë

ê
ê

ù

û

ú
ú

1 0 0
0 cosδf sinδf

0 -sinδf cosδf

Thus, the unit normal vector of the root cone

(Af) at point Pf can be measured by the cross

product of the two tangent unit vectors as

n3u = t3u × t4u (31)

A mobile Cartesian coordinate system

S1 (O1 - x1 y1 z1) was established at point O0 based

on the directions of the above vectors. The x1-axis

was in the direction of n3u, the y1-axis was in the

direction of t3u, and the z1-axis was in the direction

of t4u.

The base vector of coordinate system S0 is

ì

í

î

ïï
ïï

i0 = [ ]1 0 0
T

j0 = [ ]0 1 0
T

k0 = [ ]0 0 1
T

(32)

And the base vector of coordinate system S1 is

{i1 = n3u

j1 = t3u

k1 = t4u

(33)

The relationship between the mobile

coordinate system (S1) and the ground coordinate

system (S0) can be obtained using the vector

transformation method [32],

Figure 7 Geometrical relationship of the generating
spiral non-circular bevel gear
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M01 =
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êê
ê
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úú
ú

i0 × i1 i0 × j1 i0 × k1 0

j0 × i1 j0 × j1 j0 × k1 0

k0 × i1 k0 × j1 k0 × k1 0

0 0 0 1

=

é

ë

ê

ê
êêê
ê

ù

û

ú

ú
úúú
ú

n3ux t3ux t4ux 0
n3uy t3uy t4uy 0
n3uz t3uz t4uz 0
0 0 0 1

(34)

where n3ux, n3uy and n3uzare the vector component of
the normal vector (n3u) in three axes; t3ux, t3uy and
t3uzare the vector components of the tangent vector
(t3u); and t4ux, t4uy and t4uzare the vector components of
the tangent vector (t4u).

Assume that the mobile coordinate system,
S2 (O2 - x2 y2 z2), is fixed on the generator, and its

angle to the coordinate system (S1) is θp. In order to
satisfy the conjugate meshing requirement, a pure
rolling relationship should exist between the pitch
cones of the gear and generator such that

θp = {∫0

φ0{éëê ù

û
ú

d ( R sinδ0 cosφ )

dφ

2

+

é

ë
ê

ù

û
ú

d ( R sinδ0 sinφ )

dφ

2

+

}}é

ë
ê

ù

û
ú

d ( R cosδ0)

dφ

2 1/2

dφ rf

=
∫

0

φ1

rf δ0'
2 + sin2δ0 dφ

rf

(35)

In addition, the coordinate relationship

between coordinate system S2 and mobile coordinate

system S1 is as follows:

M12 =

é

ë

ê

ê
êêê
ê

ù

û

ú

ú
úúú
ú

cosθ sinθ 0 0
-sinθ cosθ 0 0

0 0 1 0
0 0 0 1

(36)

Thus, the coordinate transformation

relationship between mobile coordinate system S2

and ground coordinate system S0 is:

M02 = M01 M12

=

é

ë

ê

ê
êêê
ê

ù

û

ú

ú
úúú
ú

n3ux cosθp - t3ux sinθp nx sinθp + t3ux cosθp t4ux 0
n3uy cosθp - t3uy sinθp ny sinθp + t3uy cosθp t4uy 0
n3uz cosθp - t3uz sinθp nz sinθp + t3uz cosθp t4uz 0

0 0 0 1

(37)

3.4 Tooth spiral
As shown in Figure 8, O2 P0 is the contact line

between the generating plane and the pitch cone of
the generated gear, rd and rx are the toe pitch radius
and heel pitch radius of the non-circular bevel gear
(as well as the toe pitch radius and heel pitch radius
of the generating plane), and OxOd is the sectional
curve of the cutter between the toe and heel of
generating plane. During the generating process, the
contact point (P0) moves continuously on the arc
(OxOd), producing a curve (Cs) on the pitch cone of
the generated gear. This curve (Cs) is the tooth spiral
of the spiral non-circular bevel gear. Assume that
point O t is a contact point on arc OxOd and that its
corresponding point on the tooth spiral is P t.

Then, in terms of Eq. (19), the arc length of

curve P0 P t is

Lc = r t ∫
φf

φt

δ′ 20 + sin2δ0 dφ (38)

where φ t is the rotary angle of the generated gear at

point P t, and φ0 is the rotary angle of the generated

gear at point P0. According to the pure rolling

relationship, the arc length of arc P0O t is equal to

curve P0 P t in that


P0O t = Lc (39)

By substituting Eq. (7) into Eq. (38), the

relationship between point P t and point O t can be

represented as

Figure 8 Tooth spiral generating
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r t ∫
φf

φt

δ′ 20 + sin2δ0 dφ = rv arccos ( r 2
v + e2

p - r 2
t

2rvep
) -

rv arccos ( r 2
v + e2

p - r 2
f

2rvep
) (40 )

Then, by substituting r t = rx - rd into Eq. (40),
the tooth spiral curve (Cs) can be obtained.

3.5 Pressure angle
According to meshing theory, the normal

vector of the generating cutter is equal to that of the
generated gear [33]. In addition, in order to ensure
equal transmission performance during positive and
negative rotation, the convex and concave flanks of
a generated gear should, in general, have equal
pressure angles [34]. However, according to the
generating method above, the normal vectors of the
convex and concave sides of a cutter are different.
Thus, cutter pressure angle correction was
implemented.

As shown in Figure 9, the pressure angles of
points F1 (internal side) and F2(external side) were
calculated, and their corresponding coordinate

values were approximately F1 ( - πm
4

, 0) and

F2 ( πm
4

, 0), respectively. The normal vectors of the

flanks at these points are ne1 and ne2, respectively,
and their corresponding projective vectors, be1 and
be2, can be calculated as

{be1 = || ne1 cos (α1 - δf ) = cos (α1 - δf )

be2 = || ne2 cos (α2 + δf ) = cos (α2 + δf )
(41)

Figure 10 shows the normal vector of the cutter

in generating plane, where ce1 and ce2 are the

projective vectors of be1 and be2 in the tangential
direction of the mean pitch circle, namely, the tooth

profile vectors, which can be calculated as:

{ce1 = be1 cosγ1 = cosα1 - δf cosγ1

ce2 = be2 cosγ2 = cosα2 + δf cosγ2

(42)

where

ì

í

î

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

γ1 = arccos

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

r t
2 + ( )rv -

πm
4

2

- ep
2

2r t ( )rv -
πm
4

γ2 = arccos

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

r t
2 + ( )rv +

πm
4

2

- ep
2

2r t ( )rv +
πm
4

(43)

in order to ensure that the two sides of the tooth
profile have equal pressure angles, such that

|ce1| = |ce2| (44)

The two sides of the cutter can be obtained by
substituting Eqs. (41) and (42) into Eq. (43) as

follows.

cos (α1 - δf )

cos (α2 + δf )
=

rv -
πm
4

rv +
πm
4

⋅
r t

2 + ( )rv +
πm
4

2

- ep
2

r t
2 + ( )rv -

πm
4

2

- ep
2

(45)

The method above used to calculate the

pressure angle relationships in the cutter is

somewhat different from those used in Refs. [30, 31,

but, fundamentally, they are the same.

3.6 Tooth profile

Using the tooth profile of the flat-top generator

obtained in Eq. (16) and the coordinate

transformation matrices of the flat-top generator and

Figure 10 Normal vector of cutter in generating plane

Figure 9 Normal vector of cutter in cutter section plane
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generated gear presented in Eq. (37), the envelope
equation of the generated gear can be derived by
substituting the tooth profile of the generator into
the coordinate system of the generated gear as
follows.

r0 = M02r2 (46)

The tangent vectors of the generator’s tooth
profile in two different directions are
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where
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Thus, the normal vector of the generator’s
tooth profile is:

nr = t l × tr (49)

In general, the relative velocity between the
generator and generated gear is calculated in terms
of the kinematic relationships between their
different coordinate systems, and the geometric
relationship between the generating plane and
generated gear is based on the normal vector of the
pitch cone. Due to the relative positional
relationship between the generator and generated
gear presented in Eq. (45), the relative velocity can
be obtained by deriving Eq. (45) with respect to
time [35] as follows:

vc =
dr0

dt
=

dr0

dφ0

dφ0

dt
= ω1

dr0

dφ0

= ω1

d ( M02r2)

dφ0

= ω1

dM02

dφ0

r2 (50 )

where ω1 is the relative velocity between the mobile
coordinate system (O1 x1 y1 z1) and ground

coordinate system (O0 x0 y0 z0), which is constant,

and
dM02

dφ0

is the derivative of each component in the

coordinate transformation matrix (M02) with respect
to φ0.

According to the meshing principle, the tooth
profile of a generated gear must satisfy the
following equation:

nr ⋅ vc = 0 = nr ( dM02

dφ1

r2) (51)

Thus, the tooth profile of a generated spiral
non-circular bevel gear can be obtained by solving
the meshing and envelope equations (Eq. (49) and
Eq. (45)) described above.

4 Geometric designs of spiral non-
circular bevel gear

The geometric design of spiral non-circular
bevel gears can be performed based on the
mathematical model above. In this paper, a pair of
spiral non-circular bevel gears with 2-order
sinusoidal gear ratio function was used as an
example. The drive gear (pinion) and driven gear
(gear) of the spiral non-circular bevel gears used in
this paper had the same generator (cutter) and date
of design. The head cutter and machine-tools setting
are shown in Tables 1−3.

In terms of the basic kinematic relationships of
non-circular gears [36], the rotation angle of a
driven gear is

φ2 (φ1) = ∫
0

φ1 1
2.154 + 0.8cosφ1

dφ (52)

Thus, φ2 (2π ) = π, and, when the drive gear

completes a cycle, the driven gear completes half of
a cycle. The tooth number of the driven gear is

z2 = 2z1 = 20

Based on Eq. (18), the pitch cone angles of the
drive and driven gears are, respectively, equal to
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{δ1 = arccot (0.8cosφ1 + 2.154 )

δ2 = arctan (0.8cosφ1 + 2.154 )
(53)

Based on Eq. (17), the pitch cones of the drive
and driven gears are, respectively, equal to (shown
in Figure 11)

A1 ( R,φ1) =

é

ë

ê

ê

ê
êê
ê

ù

û

ú

ú

ú
úú
ú

R sin [ arccot (0.8cosφ1 + 2.154) ]cosφ1

R sin [ arccot (0.8cosφ1 + 2.154) ]sinφ1

R cos [ arccot (0.8cosφ1 + 2.154) ]

1

(54)

According to Eq. (19), the arc length of the
mean pitch curve is Lp = 115.274.

Based on Eq. (5), the center distance of the
cutter is ep = 37.197.

In addition, the tooth spirals of the drive and
driven gears, as shown in Figure 11, can be

determined by substituting φf =
2π
z1

i (i=0, 1, …, z1)

into Eq. (40).
According to Eq. (20), the mean module is

equal to

mF =
Lp

πz1

= 3.67 (55)

Furthermore, the module of the flat-top
generator (mp) can be calculated with Eq. (10).
Then, in combination with Eq. (21), the module of

the cutter can be solved as m = 3. Thus, the tooth
profile of the flat-top generator (shown in
Figure 12) can be obtained with Eq. (16).

The tooth envelope surfaces generated by the
flat-top generators of the drive and driven gears can
be obtained using Eq. (45). Figure 13 displays the

Table 3 Machine-tool settings

Gear

Drive gear

Driven gear

Concave

Convex

Machine center
to back/mm

0

0

0.25

Sliding
base/mm

0.21

0.21

0

Blank
offset/mm

0

0

0

Cradle angle of
cutter/(°)

62.364

61.722

55.283

Radial
distance/mm

35.162

34.963

35.061

Machine
root angle

Varying

Varying

Varying

Table 2 Date of head cutter

Radius of cutter, rv/mm

38.1 (1.5int)

Point width/mm

1.6

Pressure angle, convex/(°)

24.5

Pressure angle, concave/(°)

19.5

Tip fillet radius/mm

0

Parameter

Drive gear

Driven gear

Mean spiral angle/(°)

35

35

Addendum/mm

3

3

Dedendum/mm

3.75

3.75

Clearance/mm

0.75

0.75

Hand of spiral

LH

RH

Table 1 Design dates of spiral non-circular bevel gears

Parameter

Drive gear

Driven gear

Module/mm

3

3

Shaft angle/(°)

90

90

Gear ratio function

—

—

Face wide/mm

20

20

Mean cone distance/mm

50

50

Number of teeth

10

20

Figure 11 Pitch cones of drive gear and driven gear

Figure 12 Tooth profile of flat-top generator
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envelope curves of the drive gears in different
spheres.

By combining the meshing equation (Eq. (49))
and envelope equation (Eq. (45)), the boundary of
the tooth envelope curve, or the tooth profile surface
of the generated gear, can be solved. Figure 14
displays 3D models of the drive and driven gears,
and Figure15 displays the virtual assembly of these
two meshing gears.

5 Tooth contact analysis using finite
element method

Since the tooth profiles of non-circular gears
are different for each tooth, the tooth contact forces
and contact areas of each tooth are also different.
Thus, a static contact analysis would not be feasible

for these purposes. Rather, a transient structural
analysis was conducted in order to determine the
evolution of the contact area during the meshing
cycle.

Finite element models of all of the teeth for
both the drive and the driven gears were used to
maintain the difference between the boundary
conditions and the tooth loaded areas and to study
the evolution of the contact area on the flanks of the
drive and driven gears.

However, since the transient structural analysis
was time-consuming and computationally
expensive, a maximum level for the simplified finite
models was established. First, a non-circular cone
was constructed by substituting h = -1.2hf into
Eq. (27). Then, the geometrical entity was removed
from within the normal cone surface. Finally, the
left geometry entity was meshed with SOLID187
elements, as shown in Figure 16. SOLID187
elements are high-order, 3-D, 10-node elements
with quadratic displacement behaviors that are well-
suited to large deflection and large strain deflection.
The tooth flanks of drive gears are considered to be
master surfaces (CONTACT174 elements) and the
tooth flanks of driven gears are considered to be
slave surfaces (TARGE170 elements). The total
amounts of the different element types used in the
finite model are shown in Table 4.

Steel with a elastic module of 210 GPa and a
Figure 14 3D models of drive and driven gears: (a) Drive
gear; (b) Driven gear

Figure 15 Virtual assembly of contact gears: (a) Front
view; (b) Left view

Figure 13 Tooth envelope curves of drive gears in
different spheres: (a)r t = rd; (b)r t = rf; (c)r t = rx

Table 4 Elements of finite model

Gear

Drive gear

Driven gear

Element type

SOLID187

CONTACT174

SOLID187

TARGE170

Number

17110

11657

25447

11657

Figure 16 Finite element models of contact gears:
(a) Front view; (b) Left view
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Poisson’s ratio of 0.3 was used for the analysis. The
concave side of the drive tooth surface and the
convex side of the driven tooth surface were
considered to be the drive and driven surfaces,
respectively. In addition, an angular velocity of
6.28 rad/s in the anti-clockwise direction and a
torque of 10 N·m in the clockwise direction were
implemented in the drive and driven gears,
respectively. In order to make the drive gear
complete a cycle and then detect the corresponding
contact area on each tooth flank, the analysis time
was established to be equal to 1 s.

As shown in Figure 17 (blue curve), the
angular velocity of driven gear was obtained. The
theoretical angular velocity of the driven gear (ω2)
was also obtained using the gear ratio listed in
Table 1, as shown in Figure 17 (red curve).

ω2 = ω1 /i12 (ω1t ) =
ω1

2.154 + 0.8cos (ω1t )
(56)

By comparing the analyzed curve (blue) with
the theoretical curve (red) shown in Figure 17, the
consistencies of the designed gear ratio and the
analyzed gear ratio were verified. Furthermore, the
preciseness of the generating method and the
generating mathematical model were also proven.
The fluctuations of the blue curve is caused by FEM
analysis which considering the dynamic of gear
system.

The contact areas of the drive gear on concave
flanks and the contact areas of the driven gear on
convex flanks over time are shown in Tables 5 and
6, respectively. The equivalent stress distributions of
the drive gear and driven gear over time are shown
in Tables 7 and 8, respectively. In addition, the
evolutions of the maximum stress curves of these
two contact gears over time are shown in Figure 18.
The FEA results indicated that:

1) The bearing contact was stabilized, and the

contact patterns were no different from those of the

spiral bevel gears [37], indicating that the contact

region adjustment method of spiral bevel gears

could be applied to spiral non-circular bevel gears.

2) The contact area could be the result of one

or two meshing teeth. The load was distributed

among two or three pairs of meshing teeth since the

Figure 17 Angular velocity of driven gear

Table 5 Contact areas of drive gear on concave surfaces
over time

Time/s

0.13476

0.40333

0.80330

1.00000

Maximum
contact

pressure/MPa

155.02

424.60

219.24

148.81

Contact area

Table 6 Contact areas of driven gear on convex surfaces
over time

Time/s

0.13476

0.40333

0.80330

1.00000

Maximum
contact

pressure/MPa

142.43

467.91

236.04

206.65

Contact area
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contact ratios of the non-circular gears were

different at different meshing locations.

3) Edge contact was present at the top edges of

the tooth surfaces of both the drive and driven gears.
Thus, similar to spiral bevel gears, a tip relief

should be applied in order to avoid these areas of
severe contact stress.

4) The maximum stress evolution (Figure 18)
was consistent with the angular velocity trend of the
driven gear (Figure 17), but opposite to the gear
ratio trend (Table 1). This suggested that the areas of
severe contact stress appeared near the meshing
position at the minimum gear ratio.

6 Conclusions

1) A spiral non-circular bevel gear with a high
contact ratio, high intensity, excellent dynamic
performance, and simple processing method
compared to straight non-circular bevel gears was
proposed by combining the generating methods of
spiral bevel gears and the meshing theory of non-
circular bevel gears.

2) Based on the generating principles and
methods of spiral bevel gears, a mathematical model
for spiral non-circular bevel gearing, including the
tooth spiral, pressure angle, and tooth spiral, was
discussed.

3) The mathematical model was successfully
applied to the design of a pair of spiral non-circular
bevel gears with 2-order sinusoidal gear ratio
functions. According to the FEA analysis, the
angular velocity of the driven gear was consistent
with the theoretical angular velocity, confirming the
precision of the mathematical model.

4) The FEA results indicated that the change in
maximum stress was related to the transient gear

ratio, and that the contact of the spiral non-circular

bevel gear was no different than that of the spiral

bevel gear in terms of their contact patterns and

edge contacts.

Table 7 Equivalent stress of drive gear over time

Time/s

0.13476

0.40333

0.80330

1.00000

Maximum
equivalent
stress/MPa

85.138

198.280

107.630

87.600

Contact area

Table 8 Equivalent stress of driven gear over time

Time/s

0.13476

0.40333

0.80330

1.00000

Maximum
equivalent
stress/MPa

84.865

282.070

199.450

103.310

Contact area

Figure 18 Evolution of contact gears’ maximum stress
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新型螺旋非圆锥齿轮的数学模型和齿面接触分析

摘要摘要：：本文结合非圆锥齿轮的设计原理和面铣螺旋锥齿轮的制造原理，提出了一种可应用于相交轴变

速传动的新型螺旋非圆锥齿轮。与直齿非圆锥齿轮不同，螺旋非圆锥齿轮有许多优点，如高接触比、

高强度、良好的动态性能和可调节的接触区域。此外，虽然制造直齿非圆锥齿轮很困难，但螺旋非圆

锥齿轮可以用6轴锥齿轮切削机床高效、精确地制造。首先，介绍了螺旋非圆锥齿轮的产形原理。接

着，建立了一个数学模型，包括产形齿的齿廓、齿轮螺旋度、压力角和该齿轮的产形齿廓。然后，利

用有限元进行齿轮接触分析，验证了模型精度，并研究了螺旋非圆锥齿轮的接触模式和应力分布。

关键词关键词：：非圆形齿轮；螺旋锥齿轮；数学模型；齿轮接触分析
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