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Abstract: In this study, the effect of influencing parameters on the stress distribution around a polygonal cutout within a
laminated composite under uniform heat flux was analytically examined. The analytical method was developed based on
the classical laminated plate theory and two-dimensional thermo-elastic method. A mapping function was employed to
extend the solution of a perforated symmetric laminate with a circular cutout to the solution of polygonal cutouts. The
effect of significant parameters such as the cutout angular position, bluntness and aspect ratio, the heat flux angle and the
laminate stacking sequence in symmetric composite laminate containing triangular, square and pentagonal cutouts was
studied. The Neumann boundary condition was used at the edges of the thermally insulated polygonal cutout.
The laminate was made of graphite/epoxy (AS/3501) material with two different stacking sequences of [30/45]s and
[30/0/−30]s. The analytical solutions were well validated against finite element results.
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1 Introduction

In recent years, the use of composite plates

with cutouts in various engineering industries such

as aerospace industry, steam and gas turbines,

shipbuilding industry and complex engineering

structures has significantly increased. Such

structures are likely to be subjected to thermal

loading. The existence of geometric discontinuities,

such as cutouts, causes disturbance in the heat flux

resulting in non-uniform thermal expansion and

consequently thermal stresses. Perforated multilayer

composite laminates are used in various industries.

Cutouts are made in composite laminates for

different purposes such as for reducing the structural
weight and producing man-holes. Thermal stresses
can decrease the strength and lead to premature
failures in structures [1, 2]. Therefore, having
accurate information about thermal stress
distribution around cutouts is of high importance.
According to the literature [3], structures with
cutout have lower strength compared to the
structures without cutout and about 80% of failures
in aircraft structures occur at the holes made for
mechanically fastened joints [4].

Several researchers [5 − 7] have studied the
stress distribution around cutouts.
MUSKHELISHVILI [5] used complex potential
functions for solving the 2D elastic problems.
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SAVIN [6] and LEKHNITSKII [7] were amongst
the first researchers who contributed effectively in
the stress analysis of anisotropic and isotropic plates
with cutouts using MUSKHELISHVILI’s method.
SHARMA [8] applied the complex variable method
to obtain a general solution for an infinite laminate
with a polygonal cutout for two different layups of
[0/90]s and [45/− 45]s. Moreover, SHARMA [9]
investigated the effect of cutout geometrical
parameters on the stress distribution in infinite
isotropic plates under in-plane loading. He obtained
the analytical solution using the complex variable
technique and conformal transformation. LU et al
[10] investigated stress distribution around a cutout
with circular or elliptical shape in an infinite plate
using an analytical method. They employed
conformal mapping function to obtain the stress
distribution around cutout when the plate was
subjected to mechanical loading. QI et al [11]
investigated the fatigue life of laminated composites
containing a circular cutout. They considered the
different diameters for the circular cutout.

RAO et al [12] used Savin’s method to derive
stress distribution around a square cutout in
symmetric laminates with cross-ply, angle-ply and
various stacking sequences under arbitrary biaxial
mechanical loading. DAVE and SHARMA [13]
studied stress distribution around a square cutout in
a functionally graded plate. They used the complex
variable method to obtain moment and stress under
mechanical loading. MOUSANEZHAD et al [14]
proposed an analytical method for determining the
inter-laminar stresses in symmetric laminated
composite plates subjected to shear loads. They
employed first-order shear deformation theory and
Reddy’s layer-wise theory to determine the inter-
laminar stresses in composite laminates under
extension and bending loads. JAFARI and BAYATI
[15] used the gray wolf optimization algorithm to
achieve optimum stress in orthotropic plates
containing polygonal cutouts. They applied an
analytical method based on the Lekhnitskii’s
solution. JAFARI and BAYATI [16] determined the
optimal values of the parameters affecting the
normalized stress around a quasi-triangular cutout in
an orthotropic plate. The design variables in this
study were the loading angle, the cutout rotation
angle, the fiber angle and bluntness.

Recently, thermal stress has been considered by

researchers [17, 18]. The employment of complex
potential function for 2D thermo-elastic problems in
isotropic plate with holes was introduced by
FLORENCE and GOODIER [19]. BHULLAR [20]
investigated thermal stresses in a hexagonal region
subject to uniform heat flux and achieved the
variation of the tangential stress around a cutout.
TARN and WANG [21] presented thermal stresses
in an anisotropic elastic body with a rigid inclusion
by the assumption of plane stress and plane strain
conditions using Lekhnitskii’s complex potential
method. JAFARI et al [22] obtained thermal stresses
around a polygonal cutout in metallic plates based
on the two-dimensional thermoelastic theory under
a steady-state condition. They examined the effect
of parameters on the value of thermal stress for
different shapes of the cutout. HASEBE et al [23]
employed conformal mapping function and complex
variable technique to determine thermal stress
distribution in an infinite plate containing an
elliptical cutout. Moreover, ZHANG et al [24] used
conformal mapping function and complex variable
method for two-dimensional problem of an elliptical
cutout in a thermo-electric isotropic material under
uniform electric current density. WANG et al [25]
obtained a closed-form solution for the 2D thermo-
elastic problem of an isotropic plate with an
elliptical cutout using the complex variable method.
HASEBE et al [26] proposed a formulation based
on the two-dimensional thermo-elastic theory and
used complex variable technique for an isotropic
plate subjected to uniform heat flux with different
thermal and mechanical boundary conditions.
RASOULI and JAFARI [27] employed the
conformal mapping technique and Lekhnitskii’s
method to obtain the thermal stress distribution
around a circular or elliptical cutout in a single-layer
anisotropic plate subjected to a uniform heat flux.
They studied the effect of the cutout orientation and
flux angle parameters on the stress distribution
around cutout. CHAO et al [28] obtained a general
analytical solution for thermal stresses in an
anisotropic plate under uniform heat flux with
elliptical inclusion. They applied the conformal
mapping and Lekhnitskii’s complex variable
technique to solve the problem. WANG et al [29]
proposed a general perturbation solution method for
the 2D thermo-elastic problem of a laminate with a
circular elastic inclusion of arbitrary shape using
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conformal mapping function. JAFARI et al [30]
studied thermal stress distribution and displacement
in orthotropic plates containing a square cutout.
They applied the analytical solution and complex
variable method to determine the thermal stress
distribution around the cutout. Furthermore,
JAFARI et al [31] presented the stress distribution
surrounding a noncircular cutout within an infinite
composite plate under steady-state condition by
utilizing the two-dimensional thermo-elastic theory.

Many studies were carried out on the circular
and elliptical cutouts and relatively fewer works
have been conducted on non-circular cutouts.
However, researchers have addressed single-layer
plates with isotropic and anisotropic properties and
no one has analytically studied thermal stresses in
multilayer composite plate with non-circular
cutouts. In this article, the thermal stress distribution
in a symmetric composite laminate with different
stacking sequences containing a polygonal cutout
was investigated using an analytical method based
on the complex variable method. The effect of
significant parameters such as the heat flux angle,
the cutout angular position, bluntness and aspect
ratio and the laminate stacking sequence was
examined on the thermal stress distribution around a
cutout with different shapes of triangular, square
and pentagonal. The present study obtained an
equivalent thermal conductivity for a perforated
symmetric laminated composite and achieved
thermal stresses using the conformal mapping
technique and Lekhnitskii’s method.

2 Analytical formulations

A symmetric laminate was assumed to be
linearly elastic and anisotropic governed by
generalized Hooke’s law. The edge of the polygonal
cutout was assumed to be insulated. The size of the
cutout in comparison with the dimensions of the
laminate was small enough so the laminate was
considered infinite. The cutout angular position
indicating the cutout orientation relative to the
horizontal axis was represented by β. As shown in
Figure 1, the laminate was subjected to a remote
uniform heat flux q under steady-state condition.

The uniform heat flux was disturbed by the
presence of a thermally insulated polygonal cutout

giving rise to thermal stresses around the cutout.
Due to the absence of a heat source in the laminate,
the maximum stress occurred on the edges of the
cutout. Moreover, because of the boundary
conditions around the cutout by considering the
normal and tangential coordinate system (ρ, θ)
according to Figure 1, the only stress created at the
edges of cutout was σθ. The plane stress and small
deformation conditions were assumed. According to
the generalized Hooke’s law, the thermal stress
components can be obtained using Eq. (1) [32].

{σ}T
= {Φ}T (1)

in which

{ }Φx

Φy

Φxy

=
1
H∑l = 1

N
é

ë

ê

ê
êê

ù

û

ú

ú
úú

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

l
ì

í

î

ïï
ïï

ü

ý

þ

ïï
ïï

-
αx

-
αy

----
αxy

l

( zl - zl - 1) (2)

where T is temperature, zl and − zl - 1 represent the z
components of the upper and lower boundaries of

the lth layer, H is the total thickness and {ᾱ} l
is the

vector of the coefficient of thermal expansion of the
lth layer in the global material coordinate system
(off-axis) and is determined as Eq. (3).
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αx = α11m2 + α22n

2

-
αy = α11n

2 + α22m2

----
αxy = 2mn (α11 - α22)

(3)

where α11 and α22 are the coefficients of thermal
expansion in the local material coordinate system
(on-axis). Furthermore, m and n are the
corresponding cosine and sine of the fiber angle γ.
According to the Likhnitskii’s complex potential
technique and by considering the Airy’s stress
function E(x, y), the stress components are defined
as Eq. (4). Using Eqs. (1) and (4) and the stress−
strain relationship and the compatibility equation,

Figure 1 Symmetric composite laminate containing a
quasi-triangular cutout under uniform heat flux
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the constitutive equation for an anisotropic material
can be obtained in terms of the stress function as
Eq. (5).

σx =
∂2 E

∂y2
, σy =

∂2 E

∂x2
, τxy = -

∂2 E
∂x∂y (4)

a11

∂4 E

∂y4
- 2a16

∂4 E

∂x∂y3
+ (2a12 + a66)

∂4 E

∂x2∂y2
-

2a26

∂4 E

∂x3∂y + a22

∂4 E

∂x4
= -αx

∂2T

∂y2
+ αxy

∂2T
∂x∂y -

αy

∂2T

∂x2
(5)

where aij (i, j=1, 2, 6) denotes the enteries of the
reduced complinance matrix of the symmetric
laminate and αx ,αy and αxy are the thermal expansion
coefficients in the global coordinate system and can
be obtained using Eq. (6).
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αx = a11Φx + a12Φy + a16Φxy

αy = a12Φx + a22Φy + a26Φxy

αxy = a16Φx + a26Φy + a66Φxy

(6)

The solution of Eq. (5) is divided into two parts
including the homogenous (E(h)) and private (E(p))
parts. The generalized biharmonic equation for an
anisotropic material in terms of the stress function
(E) is:

a11

∂4 E(h )

∂y4
- 2a16

∂4 E(h )

∂x∂y3
+ (2a12 + a66)

∂4 E(h )

∂x2∂y2
-

2a26

∂4 E(h )

∂x3∂y + a22

∂4 E(h )

∂x4
= 0 (7)

Using four first-order linear differential

operators (Dk =
∂
∂y - sk

∂
∂x), in which sk (k=1, 2, 3,

4) are the roots of the characteristic equation
(Eq. (8)). Equation (6) can be rewritten as
D1D2D3D4E

(h)=0.

a11 s4 - 2a16 s3 + (2a12 + a66)s2 - 2a26 s + a22 = 0 (8)

The roots of Eq. (8) can be presented as Eq. (9).

s1 = α1 + iβ1, s2 =
-
s1 = α1 - iβ1,

s3 = α2 + iβ2, s4 =
-
s3 = α2 - iβ2 (9)

where α1, α2, β1 and β2 are real numbers. For
symmetric laminates we have a16 = a26 = 0. The
function E(h) is considered as Eq. (10) in which Zk is

the mapping function.

E(h ) = 2Re∑
k = 1

2

Ek ( Zk) (10)

By substituting Eq. (10) into Eq. (7) and
integrating with respect to Zk, the function E(h) can
be obtained and the general solution of Eq. (5) can
be expressed in the form of Eq. (11).

E = E1 ( Z1) + E2 ( Z2) +
- -- ----- --
E1 ( Z1) +

- -- ----- --
E2 ( Z2) + E( p ) (11)

where zk = x + sk y (k = 1, 2, t ), E1 and E2 are

analytic functions and
-
E1 and

-
E2 are their

conjugates, respectively. In order to reduce the
derivative order, a new stress function (ψ) is

defined. The new stress function (ψ) is derived

using the stress function E as below:

dE
dz

= ψ1 ( Z1) + ψ2 ( Z2) +
- -- ----- --
ψ1 ( Z1) +

- -- ----- --
ψ2 ( Z2) + ψ( p )

(12)

Using Eqs. (4), (11) and (12), the stress
components are determined as Eq. (13).

ì

í

î

ï

ï
ïïï
ï

ï

ï
ïïï
ï

σx = 2Re{ }s1
2ψ′1 ( Z1) + s2

2ψ′2 ( Z2) +
∂2 E( p )

∂y2

σy = 2Re{ }ψ′1 ( Z1) + ψ′2 ( Z2) +
∂2 E( p )

∂x2

τxy = -2Re{ }s1ψ′1 ( Z1) + s2ψ′2 ( Z2) -
∂2 E( p )

∂x∂y

(13)

where ψ′1 ( Z1) and ψ′2 ( Z2) are the derivatives of

functions ψ1 ( Z1) and ψ2 ( Z2) with respect to Z1 and

Z2 , respectively. In order to relate the on-axis heat
flux q and temperature gradient in an orthotropic
laminate, the Fourier’s law was employed in the
form of Eq. (14).

{q}
on

= -[ k ] on{ ∇T } on (14)

In Eq. (14), [ k ] on is the on-axis anisotropic

thermal conductivity matrix and T is the temperature
change. It was assumed that the unidirectional
laminas were isotropic in a plane normal to the
fibers (i. e., transversely isotropic). The Fourier’s
law of thermal conduction in the global coordinate
system can be presented as Eq. (15).

{q}
off

= [T ( -γ ) ][ k ]
on
[T (γ ) ]{∇T}

off
(15)

By considering n=sinγ and m=cosγ, the
components of the off-axis thermal conductivity
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matrix [ k ] off = [ k̄ ] are defined as Eq. (16).

k̄11 = m2k11 + n2k22, k̄12 = mn ( k22 - k11),

k̄22 = n2k11 + m2k22, k̄13 = 0, k̄33 = k22, k̄23 = 0 (16)

By integrating the off-axis thermal
conductivity coefficients across the laminate
thickness, the resultant of thermal conductivity
coefficients for a multilayer laminate can be
determined using Eq. (17).

[ K ] = ∫
-H 2

H 2

[ k̄ ]l dz =∑
l = 1

NL ∫
z

l - 1

zl

[ k̄ ]l dz (17)

where [K] is the thermal conductivity resultant
matrix and NL is the number of layers. Moreover, for
a laminate without internal heat source or sink we
have [21]

∇qi = 0 (18)

By substituting Eq. (15) into Eq. (18), the
governing equation for temperature is expressed as
Eq. (19).

Kx

∂2T

∂x2
+ 2Kxy

∂2T
∂x∂y + Ky

∂2T

∂y2
= 0 (19)

The harmonic function of T(x, y) satisfying
Eq. (19) can be obtained as the temperature
distribution in laminate. The solution of Eq. (19)
can be considered as T=Et(x+st y) where st is the root
of the characteristic equation. As the thermal
conductivity matrix is invertible and positive
definite (Kx Ky > K 2

xy), the characteristic equation
contains two complex conjugate roots. Therefore,
the solution of Eq. (19) can be introduced as
Eq. (20).

T = Et ( x + st y ) +
- -- -- -- ----- -- -- --
Et ( x + st y ) =

2Re ( Et ( x + st y ) ) (20 )

where Et is a complex function. By substituting Eq.
(20) into Eq. (5), the particular solution of the stress
functions E(p) can be obtained. So, the stress
components are obtained in terms of the stress
functions as Eq. (21).
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σx = 2Re{ }s2
1ψ′1 ( Z1) + s2

2ψ′2 ( Z2) + 2Re (υs2
tψ′t )

σy = 2Re{ }ψ′1 ( Z1) + ψ′2 ( Z2) + 2Re (υψ′t )

τxy = -2Re{ }s1ψ′1 ( Z1) + s2ψ′2 ( Z2) - 2Re (υstψ′t )

(21)

where υ is defined in Eq. (22).

υ =
( -αy + αxy st - αx s

2
t )

a11 s4
t - 2a16 s3

t + (2a12 + a66)s2
t - 2a26 st + a22

(22)

The boundary of the polygonal cutout is free
from external load, therefore, the mechanical
boundary conditions can be expressed in
Eq. (23) [21].

Lψ +
----
Lψ + lψ t +

----
lψ t = 0 (23)

where

L = é
ë
ê

ù
û
ú

-s1 -s2

1 1
, l = é

ë
ê

ù
û
ú

-υst

υ
,ψ =

é

ë
êê

ù

û
úú

ψ1

ψ2

(24)

Because the boundary of the polygonal cutout
is insulated, the Newman boundary condition can be
expressed as Eq. (25).

ψ′t (ξ ) -
- -- -----
ψ′t (ξ ) = 0 (25)

The function ψ′t (ξ ) can be represented by two

functions rt (ξ ) and pt (ξ ) that are holomorphic in

the inner and outer areas of the unit circle,
respectively.

ψ′t (ξ ) = rt (ξ ) + pt (ξ ) (26)

The function ψ′t (ξ ) can be expressed as the

Laurent series in which the term ξ −1 exists.
Consequently, by integrating the function ψ′t (ξ ), the

function ψ t (ξ ) function contains the term logξ as

Eq. (27).

ψ t (ξ ) = Rt (ξ ) + Pt (ξ ) + Πlogξ (27)

Rt (ξ ) and Pt (ξ ) are holomorphic functions

inside and outside the unit circle, respectively.
Furthermore, the function ψ (ξ ) can be considered

as Eq. (28).

ψ (ξ ) = r (ξ ) + p (ξ ) + Λlogξ (28)

where r(ξ) and p(ξ) are the holomorphic functions
inside and outside the unit circle respectively. By
substituting Eqs. (27) and (28) into Eq. (23) and

multiplying it by
dσ

2πi (σ - ξ )
and applying the

Cauchy integral, ψ (ξ ) can be obtained as Eq. (29).

ψ (ξ ) = r (ξ ) - L-1 L̄
-
r (ξ -1) - L-1lPt (ξ ) -

L-1 l̄
-
R t (ξ

-1) + Λlogξ (29)
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where

Λ = L-1 ( M̄ - M )-1 (Πa -
----
Πa ) +

A℘ -1 ( M̄ -1 - M -1)-1 (Πl -
-
Πl )

B = A℘L-1, A℘ = é
ë
ê

ù
û
ú

b1 b2

d1 d2

(30)

where L and A℘ are defined in Eqs. (24) and (30)
and Π can be obtained using boundary conditions.
When heat flux was applied to an anisotropic
laminate without cutout, the thermal stress function
is presented as Eq. (31).

ψ ∞
t ′ =

q (cosδ + s̄tsinδ )

i ( Kx Ky - K 2
xy)

1
2 ( st - s̄t)

( x + st y ) (31)

In the presence of a polygonal cutout, in
addition to ψ ∞

t ′, the function ψM
t ′, which is

holomorphic outside the unit circle, is added to the
thermal stress function. Therefore, the stress
function can be expressed as Eq. (32).

ψ t ′ (ξ ) =
q (cosδ + s̄tsinδ )

i ( Kx Ky - K 2
xy)

1
2 ( st - s̄t)

⋅
(Δ1tξ + Δ2tξ

-1 + Δ3tξ
n + Δ4tξ

-n) + ψM
t ′ (ξ ) (32)

By comparing Eq. (32) and Eq. (26), the
function rt (ξ ) is obtained as Eq. (33).

rt (ξ ) =
q (cosδ + s̄tsinδ )

i ( Kx Ky - K 2
xy)

1
2 ( st - s̄t)

(Δ1tξ + Δ3tξ
n) (33)

Therefore, ψ t ′ (ξ ) can be expressed as Eq. (34).

ψ t ′ (ξ ) =
q (cosδ + s̄tsinδ )

i ( Kx Ky - K 2
xy)

1
2 ( st - s̄t)

⋅

(Δ1tξ + Δ3tξ
n) +

q (cosδ + s̄tsinδ )

i ( Kx Ky - K 2
xy)

1
2 ( st - s̄t)

⋅

(----Δ1t ξ
-1 +

----
Δ3t ξ

-n) (34 )

By integrating Eq. (34) and comparing it with
Eq. (27), Π can be obtained as Eq. (35).
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As already mentioned, ψ ∞
t ′ expresses the

thermal stress function for a laminate with no

cutout. Hence, it only causes the laminate

deformation and does not create stress. Thus, for the
purpose of achieving thermal stresses, it is enough
to compute ψM

t ′. ψ
M
t ′can be obtained as Eq. (36).
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i ( Kx Ky - K 2
xy)

1
2 ( st - s̄t)

Δ3t ξ -n (36 )

By integrating Eq. (36) and comparing the
result with Eq. (27), the functions Rt(ξ) and Pt(ξ) can
be determined. Therefore, ψ(ξ) can be obtained
using Eq. (29). Finally, the stress components are
achieved using Eq. (21).

To extend the analytical solution of a circular

cutout to a polygonal cutout and to utilize the
Cauchy integral formula, the infinite area outside

the polygonal cutout was mapped to the outside area

of a unite circle, as illustrated in Figure 2 [15].
Applying the Euler’s relation, the conformal

mapping function for a polygonal cutout can be
obtained as Eq. (37).

zk = w (ξ ) =
λ
2

(Δ1kξ + Δ2kξ
-1 + Δ3kξ

n + Δ4kξ
-n)

(37)

in which Δ ik, (i=1, 2, 3, 4) are as below:
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Δ1k =
λ
2

[ (1 - icsk)cosβ - (ic + sk)sinβ ] ,

Δ2k =
λ
2

[ (1 + icsk)cosβ + (ic - sk)sinβ ],

Δ3k =
λw
2

[ (1 + isk)cosβ + (i - sk)sinβ ],

Δ4k =
λw
2

[ (1 - isk)cosβ - (i + sk)sinβ ] (38)

In Eq. (38), the parameter λ, which is positive

and real, controls the size of the cutout, c

determines the aspect ratio of the cutout, w

determines the cutout corner curvatures (bluntness

parameter) and n determines the geometry of cutout.

Because the value of λ has no effect on the thermal

stress distribution around the cutout, hence we can

assume λ=1. The conditions 0≤w<1/n ensure that the

cutout shape does not have loops. Figure 3 shows

the effect of the parameters n and w on the shape of

cutout. Equation (39) is applied to model the cutout

angular position (β).

{ }X
Y

=
é

ë
ê

ù

û
ú

cosβ sinβ

-sinβ cosβ { }xy ,

x = λ (cosθ + w cos (nθ ) ),

y = λ (c sinθ - w sin (nθ ) ) (39)

in which x and y represent the Cartesian coordinates

in the laminate with polygonal cutout.

3 Validation of analytical solution

The ABAQUS finite element code was utilized

to validate the proposed analytical solution. The

three-dimensional models of the composite

laminates with polygonal cutouts under uniform

heat flux were developed. The laminates were

modeled using the four-noded quadrilateral (S4R)
elements. A mesh sensitivity analysis was
undertaken to ensure the independence of the
numerical results to the element size. The region
around the cutout was modeled using fine mesh. For
the mesh sensitivity analysis, the number of
elements was increased from 40 to 360 and it was
observed that further refining the mesh did not
change the results. The numerical and analytical
stress distributions (σθ) around the triangular, square
and pentagonal cutouts were compared for
two different stacking sequences of [30/45]s and
[30/0/− 30]s for graphite/epoxy (AS/3501) material
in Figure 4. The parameter θ determines the angular
position on the cutout border in relation to the
horizontal axis. Figure 4 presents a reasonable
correlation between the analytical and numerical
results. The mechanical properties of graphite/epoxy
(AS/3501) material used in this study are presented
in Table 1.

To further validate the analytical solution, the
results of the present analytical solution were
compared with those presented by JAFARI et al
[22] and RASOULI and JAFARI [27] in Figure 5.
Figure 5(a) shows the results for an infinite isotropic
plate with quasi-square cutout under uniform heat
flux and Figure 5(b) represents the results for c with
circular cutout subjected to uniform heat flux.
Figure 5 shows good correlation between the results
of the proposed analytical solution and the resuts of
other researchers. To reproduce the results of

Figure 2 Conformal mapping

Figure 3 Effect of parameters n and w on shape of cutouts
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Figure 4 Comparison between analytical and numerical thermal stress distribution around (a) quasi-triangular cutout,
(b) quasi-square cutout, (c) quasi-triangular cutout and (d) quasi-pentagonal cutout: (a)[30/0/−30]s lay-up, δ=270°, c=1,
β=0°, w=0.125; (b) [30/45]s lay-up, δ=270°, c=1, β=30°, w=0.05; (c) [30/45]s lay-up, δ=270°, c=1, β=45°, w=0.1;

(d) [30/0/−30]s lay-up, δ=270°, c=1, β=45°, w=0.05

Table 1 Materials properties of composite laminated

Material

Graphite/epoxy (AS/3501)

E11/GPa

144.8

E22/GPa

9.7

G12/GPa

4.1

υ12

0.3

α11/K
−1

−3×10−6

Α22/K
−1

2.8×10−5

K11/(W∙m−1∙K−1)

4.62

K22/(W∙m−1∙K−1)

0.72

Note: E33=E22, G12=G13=G23, v12= v13= v23, α33=α22, K33= K22, K12=0.

Figure 5 Comparison between present solution and Ref. [19] (a) and Ref. [24] (b)
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Ref. [19], the mechanical properties of an isotropic
material were considered and the number of layers
was considered one. To reproduce the results of Ref.
[24], the mechanical properties were considered
anisotropic and the number of layers was also one.
As in both references, a single-layer plate was
considered, the thermal conductivity resultant
matrix, defined in Eq. (17), was simplified and
equal to that of a single layer.

4 Results and discussion

The thermal stress distributions around a
polygonal cutout within a symmetric composite
laminate were obtained using the proposed
analytical method. The effects of different
geometrical parameters of cutout and the laminate
stacking sequence were studied on the maximum
thermal stress value around cutout. The normalized
maximum thermal stress is defined as σnorm =
σθ, max × kx

A (1,1)q0λ || αx

in which σθ, max is the maximum

circumferential stress induced around the cutout.
The composite laminates made of graphite/epoxy
(AS/3501) material with two stacking sequences
were considered for investigation. Among the
studied eases in each section, the minimum and
maximum values of σnorm were called desirable and
undesirable thermal stresses, respectively. It should
be noted that the default values of the parameters
for δ, β and c were 270, 0 and 1, respectively, unless
the parameters were varied in order to study their
effect on the thermal stress value.

4.1 Effect of cutout angular position
The angular position of cutout is one of the

effective parameters on the thermal stress
distribution surrounding a polygonal cutout.
Figures 6 − 8 show the effect of cutout angular
position (β) within a laminate with different
stacking sequences on the maximum normalized
thermal stress for different cutout shapes of
triangular, square and pentagonal, respectively, with
different cutout bluntness (w) values. As can be seen
in Figures 6 − 8, by increasing the value of w, the
thermal stresses were increased. According to
Figure 6, for the stacking sequence of [30/45]s, the
desirable and undesirable normalized thermal
stresses occurred surrounding a triangular cutout at
the angles of approximately 35° − 50° (95° − 110° )
and 0°− 25° (65°− 95° ), respectively. Whereas, for
the stacking sequence of [30/0/− 30]s, the desirable
and undesirable normalized thermal stress occurred
at the angles of approximately 0°, 60°,120° and 30°,
90°, respectively.

However, as can be seen in Figure 7, for a
square cutout within a laminate with a stacking
sequence of [30/45]s, the desirable normalized
thermal stress value was obtained at a cutout
angular position in the range of 25° − 35° and the
undesirable normalized thermal stress value was
obtained at the angles of 0° and 90°. It can be seen
that for the stacking sequence of [30/45]s, the
desirable thermal stress for w=0.075 was obtained
0.42 at β=30° while for w=0.125 was achieved 0.52
at β=40°. Furthermore, for the stacking sequence of
[30/0/−30]s, the desirable normalized thermal stress
value was attained at 0° and 90° and the undesirable

Figure 6 Effect of cutout angular position on maximum normalized thermal stress around triangular cutout for different
values of w: (a) [30/45]s stacking sequence; (b) [30/0/−30]s stacking sequence
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normalized thermal stress value was obtained at β=
45° . Hence, the value of cutout rotation angle is
important in determining the desirable and
undesirable thermal stresses.

Figure 8 demonstrates the effect of cutout
angular position on the normalized thermal stress
distribution around the pentagonal cutout for two
different stacking sequences of [30/45]s and [30/0/−
30]s. As shown in Figure 8, for the stacking
sequence of [30/45]s, by changing the bluntness
parameter, the cutout angular position
corresponding to the desirable thermal stress value
was changed. Therefore, depending on the cutout
bluntness, it is possible to adjust the cutout angular
position to obtain a minimum σnorm for the cutout.
Moreover, as can be seen in Figure 8, for a
pentagonal cutout within a laminate with a stacking
sequence of [30/45]s, the desirable normalized

thermal stress value was obtained at a cutout
angular position in the range of 3° − 12° and the
undesirable normalized thermal stress value was
obtained at a cutout angular position in the range of
24° − 30° . It can be seen, the maximum thermal
stresses for the stacking sequence of [30/45]s for
w=0.075 was 0.559 at β=24° while for w=0.1 was
0.686 at β =27° . For the stacking sequence of
[30/0/−30]s, the desirable normalized thermal stress
value was attained at β =0° , 36° and 72° and the
undesirable normalized thermal stress value was
obtained at β =18° and 54° . Furthermore, amongst
the cases studied, the maximum value of thermal
stress was obtained for the stacking sequence of [30/
0/−30]s.

Table 2 presents the values of the normalized
thermal stresses in the laminates with different
stacking sequences containing a polygonal cutout

Figure 8 Effect of cutout angular position on the maximum normalized thermal stress around pentagonal cutout for
different values of w: (a) [30/45]s, stacking sequence; (b) [30/0/−30]s, stacking sequence

Figure 7 Effect of cutout angular position on the maximum normalized thermal stress around square cutout for different
values of w: (a) [30/45]s, stacking sequence; (b) [30/0/−30]s, stacking sequence
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with different bluntness values. According to
Table 2, the normalized thermal stress was
dependent on the cutout bluntness parameter.

Figure 9 presents the thermal stress
distributions within different layers of the [30/45]s

laminate around different polygonal cutouts with
different cutout angular positions under uniform
heat flux and w=0.1. According to Figure 9, the 30°
lamina experienced more than double thermal stress
level compared to the 45° lamina, irrespective of the
cutout geometry and angular position within the
[30/45]s laminate made of graphite/epoxy
(AS/3501). According to Figure 9, for the triangular
cutout, the maximum thermal stresses for the 30°
and 45° layers were obtained at β=30°, θ=244° and
at β=0° , θ=235° , respectively. Also, it can be seen
that for the square cutout, the maximum thermal
stresses for the 30° layer were obtained at β =0°,
θ =274° . Whereas, for the 45° layer the maximum
thermal stresses were obtained at β =45° , θ =181°.
Furthermore, the maximum thermal stresses for the
30° and 45° layers of the pentagonal cutout were
obtained at β=45° , θ=221° and at β=45° , θ=79°,
respectively. It should be noted that the results
related to hexagonal, heptagonal cutouts and over
eight sides were very similar to the results of
pentagonal cutout and results were not presented.

4.2 Effect of heat flux angle
Another parameter that can influence the

thermal stress distribution around the polygonal
cutout in symmetric composite laminates under
uniform heat flux is the heat flux angle (δ).

Figures 10 − 12 show the effect of heat flux angle
within a laminate with different stacking sequences
on the maximum normalized thermal stress for
different cutout shapes of triangular, square and
pentagonal, respectively, with different cutout
bluntness (w) values. As seen in Figure 10, the heat
flux angles at which the desirable and undesirable
σnorm values were obtained were not dependent on the
cutout bluntness value. For the stacking sequence of
[30/45]s, the desirable and undesirable normalized
thermal stress values were obtained at the
angles of approximately 125° , 305° and 40° , 220° ,
respectively, whereas, for the stacking sequence
of [30/0/−30]s, the desirable and undesirable
normalized thermal stress values were obtained at
the angles of 70°, 110°, 250°, 290° and 30°, 150°,
210°, 330°, respectively.

Figure 11 illustrates the effect of heat flux
angle on the normalized maximum thermal stress
value in the laminates with different stacking
sequences of [30/45]s and [30/0/−30]s containing a
square cutout with different bluntness values. As
can be observed in Figure 11(a), for the stacking
sequence of [30/45]s, the desirable normalized
thermal stress obtained at the angle of
approximately 125° and 305° and the undesirable
normalized thermal stress occurred at the angle
of approximately 60° and 240°. According to
Figure 11(b), for the stacking sequence of
[30/0/−30]s, the desirable normalized thermal stress
occurred in the range of 80°−100° and 260°−280°.
In addition, the maximum thermal stresses for the
stacking sequences of [30/45]s and [30/0/−30]s were
0.732 and 1.824 at w=0.125, respectively.

Figure 12 presents the results for the
pentagonal cutout. As observed in Figure 12(a), for
the stacking sequence of [30/45]s, the desirable
normalized thermal stress occurred at the angles of
approximately 125° and 305° and the undesirable
normalized thermal stress occurred at the angles of
approximately 60° and 240°. Furthermore, in
Figure 12(b), for the stacking sequence of
[30/0/−30]s, the desirable normalized thermal stress
occurred at the heat flux angles of 90° and 270°.
Moreover, the undesirable normalized thermal stress
occurred at the angles of approximately 30°, 150°,
210° and 330°.

The cutout aspect ratio (c), can also influence

Table 2 Normalized thermal stress around a polygonal
cutout for different bluntness

Stacking
sequence

[30/45]s

[30/0/−30]s

Triangular
cutout (β=30°)

w

0

0.05

0.10

0.15

0

0.05

0.10

0.15

σnorm

0.4019

0.4176

0.4788

0.5723

1.3147

1.3797

1.4447

1.5098

Square cutout
(β=45°)

w

0

0.05

0.10

0.15

0

0.05

0.10

0.15

σnorm

0.4019

0.4326

0.493

0.6107

1.3147

1.3795

1.5225

1.6423

Pentagonal
cutout (β=18°)

w

0

0.05

0.10

0.15

0

0.05

0.10

0.15

σnorm

0.4019

0.4748

0.6741

1.1131

1.3147

1.3793

1.5351

1.6815
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the thermal stress distribution induced in a

perforated laminate. Table 3 lists the values of

normalized thermal stress in the laminates with

different stacking sequences containing a polygonal

cutout with different cutout aspect ratios. According

to Table 3, for the stacking sequences of [30/45]s

and [30/0/−30]s, the desirable thermal stress values

obtained at c=1 and c=0.5, respectively. In fact, for

the stacking sequence of [30/45]s, by increasing the

cutout aspect ratio, initially σnorm was decreased up to

c=1 and afterward, it was increased. However, the

trend of varying σnorm with the cutout aspect ratio

for the stacking sequence of [30/0/−30]s was

continuously increased. It should be noted that the

undesirable stress for all cutout geometry occurred

at c=2.5. In design, the effective parameters should

Figure 9 Thermal stress distributions within different layers of [30/45]s laminate around different polygonal cutouts with
different cutout angular positions under uniform heat flux and w=0.1
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be chosen so the undesirable normalized thermal

stress can be avoided. Figure 13 illustrates the

thermal stress distributions surrounding a polygonal

cutout in the laminated composites made of graphite/

epoxy (AS/3501) material and different stacking

sequences.

Figure 10 Effect of heat flux angle on σnorm around triangular cutout for two stacking sequences for different values of w:
(a) [30/45]s, stacking sequence; (b) [30/0/−30]s, stacking sequence

Figure 11 Effect of heat flux angle on σnorm around square cutout for two stacking sequences for different values of w:
(a) [30/45]s, stacking sequence; (b) [30/0/−30]s, stacking sequence

Figure 12 Effect of heat flux angle on σnorm around pentagonal cutout for two stacking sequences for different values of
w: (a) [30/45]s, stacking sequence; (b) [30/0/−30]s, stacking sequence
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5 Conclusions

Uniform heat flux can produce thermal stresses

on perforated symmetric composite laminates,

hence for appropriate design of industrial structures,

determining the amount of thermal stress

distribution around cutout is important. In this

paper, the effect of influencing parameters on

thermal stress distribution in a composite laminate

containing a polygon cutout was analyzed using an

analytical method based on the complex variable

technique. The Leknitskii’s method for circular and

elliptical cutouts was extended to triangular, square
and pentagonal cutout geometries utilizing complex

variable mapping. This complex variable method

can be applied in modeling and evaluation of

thermal stress distribution in perforated symmetric

composite laminates. The results showed that the

thermal stress distribution around the cutout can be

significantly dependent on the cutout shape,

bluntness and angular position and the heat flux

angle. According to the analytical results for all

polygonal cutouts, by increasing the value of

bluntness parameter (w), the desirable and
undesirable stresses were increased. As observed in

Table 3 Normalized thermal stress around a polygonal cutout for different cutout aspect ratios

Material

Graphite/
epoxy

(AS/3501)

c

0.5

1

1.5

2

2.5

Triangular cutouts

[30/45]s

σnorm

0.4820

0.4743

0.5051

0.5678

0.6524

[30/0/−30]s

σnorm

1.3012

1.3094

1.3133

1.3169

1.3209

Square cutout

[30/45]s

σnorm

0.9136

0.5622

0.6978

0.8467

1.0001

[30/0/−30]s

σnorm

1.1861

1.1870

1.1886

1.1911

1.1936

Pentagonal cutout

[30/45]s

σnorm

1.6999

0.6780

0.7955

0.9119

1.0268

[30/0/−30]s

σnorm

1.2479

1.2515

1.2665

1.2743

1.2823

Figure 13 Thermal stress distributions surrounding a polygonal cutout with different values of w and β in laminated

composites made of graphite/epoxy (AS/3501) material and different stacking sequences
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the effect of the aspect ratio of cutout size
parameter, the desirable thermal stress distribution
for the stacking sequences of [30/45]s and
[30/0/−30]s was achieved at c=1 and c=0.5,
respectively. Hence, in designing perforated
symmetric composite laminates, the cutout
geometry should be taken into consideration so that
the maximum stresses induced by uniform heat flux
can be minimized.
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热流作用下石墨/环氧复合材料层合板绝热多边形切口周围的热应力分布

摘要摘要：：本研究分析了在均匀热流下，影响参数对复合材料层合板多边形切口周围应力分布的影响。在

经典层合板理论和二维热弹性分析的基础上，建立了分析方法。利用映射函数将带有圆形切口的对称

穿孔层压板的解推广到多边形切口的解。研究了三角形、正方形和五角形切口对称复合材料层合板中

切口角位置、钝度和宽高比、热通量角和层合板堆叠顺序等重要参数的影响。在绝热多边形切口的边

缘采用诺伊曼边界条件。所研究层压板由石墨/环氧树脂 (AS/3501)材料制成，具有 [30/45]s 和

[30/0/−30]s 两种不同的堆垛顺序。采用有限元结果验证了解析解的有效性。

关键词关键词：：解析解；热应力分析；多边形切口；复变法；聚合物复合材料
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