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Abstract: This paper presents the analysis of two-layer cilia induced flow of Phan-Thien-Tanner (PTT) fluid with
thermal and concentration effect. The Phan-Thien-Tanner fluid model has been used in the analogy of mucus present in
the respiratory tract. The two-layer model approach was used due to the Peri Ciliary liquid Layer (PCL) and Airway
Ciliary Layer (ACL) present on the epithelium cell in respiratory tract. The mathematical modelling of two-layer flow
problem was simplified using long wavelength and small Reynold 􀆳 s number approximation. The resulting differential
equation with moving boundary gives exact solution for velocity, temperature and concentration profiles in two layers.
The change in pressure has calculated by the results of velocity profile, also the pressure rise was evaluated by the
numerical integration of pressure gradient along the channel wall. The impact of physical parameters on pressure rise,
velocity, temperature and concentration profile was explained by the graphs. It can be seen from graphs that velocity and
temperature profile are maximum in the inner layer of fluid (PCL) and concentration profile is maximum at outer layers
of fluid (ACL).
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1 Introduction

From last fifty years, biologists and researchers

precisely focused on the study of cilia and flagella

motion. Cilia are hair like structures which are

found in various physiological organs such as

trachea, respiratory system, hair bundles on ears,

fallopian tubes in women, lungs, kidneys, eyes and

ependymal cell of brain that generates cerebrospinal

flow. Cilia are divided into motile and non-motile

cilia. Motile cilia have wave like motion which is

responsible for the movement of fluid [1]. Motile
cilia are also responsible for the propulsion of sperm
in male reproductive system. Also, moving cilia
keep the mucus airways clean from dirt, which are
found in respiratory tract and irregularity in ciliary
motion can result in serious respiratory, kidney and
lung diseases [2 − 4]. In respiratory tract, ciliated
epithelium is covered by airway surface liquid
(ASL) and mainly consists of two different layers.
The first one is mucus layer which is a non-
homogenous, non-Newtonian, viscoelastic fluid and
second layer is periciliary liquid layer (PCL) which
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is considered as a less viscous fluid layer with small
viscosity.

From the literatures [5−8], it is observed that
cilia help to transport the complex biological fluid
especially mucus clearance in the respiratory tract to
transport the clear air into the lungs. The fresh air
always move towards lungs by the periodic beating
of cilia and with normal frequency of ciliary beat. A
significant amount of research has been carried out
in the field of ciliary motion and mucus transport,
because mucus has been considered as Newtonian
and non-Newtonian fluid. SIDDIQUI et al [9]
discussed the motion of power law fluid in a tube
with ciliated walls and showed the effect of power
law index on pressure gradient and velocity profile,
also he demonstrated in his study that velocity has
increased for shear thinning fluid and decreased for
shear thickening fluid. SIDDIQUI et al [10]
postulated the Carreau fluid flow due to ciliary
motion in a tube and axisymmetric flow of Carreau
fluid model has been obtained by the perturbation
method, also he showed that volume flow rate
significantly changes by the Wessenberg number
and cilia length parameter. NADEEM et al [11]
analyzed the flow of Cu-blood nanofluid induced by
metachronal wave motion of cilia inside a curved
channel. NADEEM et al [12] considered the ciliary
flow of Carreau fluid inside a symmetrical channel
and obtained the analytical solution of problem by
homotopy perturbation method (HPM) for the
velocity, pressure and flow rate. AKBAR et al [13]
investigated the effects of velocity and thermal slips
on flow of Casson fluid caused by metachronal
wave of cilia. MANZOOR et al [14] obtained exact
solution for the motion of Jeffrey fluid inside a
ciliated tube with porous medium and analyzed the
viscoelastic effect on the ciliary flow. AKBAR et al
[15] formulated a mathematical model for pressure
driven flow of micro polar fluid induced by wavy
motion due to ciliary beat and closed form solutions
were obtained for axial and angular velocity, flow
rate and pressure. Recently, SADAF et al [16] made
an analysis for heat transfer of viscous fluid in a
curved ciliated channel under the effect of magnetic
field. BARTON et al [17] performed an
investigation on muco-ciliar motion of fluid by
assuming cilium as rod like structures. MILLER
[18] examined the dynamical behavior of mucus

transport in mechanically generated mucociliary
system similar to that of mammals. This study laid
down the foundation for the study of mucus
transportation as well as particle movement in
respiratory tract. ROSS et al [19] developed a
mathematical model for two-layered muco ciliary
motion of fluid. They assumed the mucus as
viscoelastic fluid which forms the upper layer and
other layer is assumed to be viscous fluid.
AGARWAL et al [20] proposed a model for the
study of planer mucus transport due to beating of
cilia in the respiratory tract. They considered a two-
layered model and observed an increase in transport
of mucus with decrease in shear modulus of
elasticity. NORTON et al [21] considered the mucus
as Jeffrey and Maxwell fluid and formulated a
mucus transport where the metachronal wave
exhibits simplectic behavior. JAYATHILAKE et al
[22] carried out a numerical study of mucus
transport induced by the diseased cilia and found
that there was a decrease in mucus velocity.
SHAHEEN et al [23] considered mucus as Jeffrey
nanofluid and investigated the flow caused by
metachronal beating of cilia.

Thermal and concentration analysis is very
important in biological flows, because biologically-
inspired pumping systems (artificial cilia) have
great applications in bioengineering due to high
efficiency. Industrial applications of mass diffusion
also contains feature of multi-phase (two-phase)
flows. Few core studies of thermal and
concentration analysis had been investigated in
Refs. [24 − 26]. Besides these studies, SHAHEEN
et al [27] analyzed the thermal and concentration
gradient effects on the peristaltic motion of non-
Newtonian Jeffrey fluid. ABDELSALAM et al [28]
studied the theoretical analysis of thermal and
concentration gradient on a fluid flowing due to
ciliary motion with inclined magnetic field.
Recently, several researchers [29 − 33] studied the
effect of heat and mass transfer on biological fluids
under the effects of different body forces. Two-
layered flows have major applications in
engineering and biomedical sciences. Therefore,
CHEN et al [34] and AHMADPOUR et al [35]
showed the numerical solutions of two-phase flows
in different conduits. ABD et al [36] and MISRA
et al [37] presented the mathematical analysis of
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two-phase biological fluid flow for electromagnetic
and power law fluid. The literature review [38−40]
of muco ciliary flow tell us that thermal and
concentration effect on viscous fluid flow due to
ciliary movement in two-phase flow has not been
addressed earlier, therefore, in this study, thermal
and concentration effects on ciliary flow of PTT
fluid was presented in peripheral layer. The novelty
of the present work is to analyze the mucus flow
trapping the viruses and dust particles in two layers
ACL and PCL and influence of surrounding
temperature and humidity.

Keeping in view, the importance of ciliary
movement with reference to MCC (mucociliary
clearance), we have considered the flow of mucus
as Phan-Thien and Tanner fluid (PTT Model) in a
symmetric ciliated channel under the effect of
peripheral layer. The governing partial differential
equations are modelled for velocity, temperature and
concentration in two layers. The exact solutions for
velocity, pressure, temperature and concentration
are found in the present study for both layers PCL
and ACL. The graphical results are included for the
velocity, temperature and concentration distribution
in both layers.

2 Mathematical model

We consider the two-dimensional channel flow
of PTT fluids with distinct densities, viscosities,
thermal conductivities and diffusion parameters in
two immiscible fluid layers, i. e., ACL and PCL
layers. The X-axis is taken along the direction of
metachronal wave and Y-axis is perpendicular to it
that is shown in Figure 1.

In symmetric channel, the cilia tips move in
elliptical path therefore position of fluid particles is

defined by the following expressions:

X * = g (X *, X *
0 ,t*)

= X *
0 + aϵα sin (2π (X * - ct*

λ )) (1)

Y * = f (X *, t*)= a + aϵα cos (2π (X * - ct*

λ )) (2)

According to no slip condition of velocity, the
velocities of cilia tips and fluid adjacent to cilia tips
are same, therefore X * and Y * components of
velocity are given as follows:

U * =
|

|
||

∂X *

∂t*

X * = X *
0

=
∂g
∂t*

+
∂g
∂X *

∂X *

∂t*
=
∂g
∂t*

+
∂g
∂X *

U *

(3)

V * =
|

|
||

∂Y *

∂t*

X * = X *
0

=
∂f
∂t*

+
∂f
∂X *

∂X *

∂t*
=
∂f
∂t*

+
∂f
∂X *

U *

(4)

Using Eqs. (1) − (2) into Eqs. (3) − (4), we
arrive at

U * =

-( )2π
λ

é

ë
êê

ù

û
úúϵαac cos ( )2π ( )X * - ct*

λ

1 - ( )2π
λ

é

ë
êê

ù

û
úúϵαa cos ( )2π ( )X * - ct*

λ

(5)

and

V * =

-( )2π
λ

é

ë
êê

ù

û
úúϵαac sin ( )2π ( )X * - ct*

λ

1 - ( )2π
λ

é

ë
êê

ù

û
úúϵαa cos ( )2π ( )X * - ct*

λ

(6)

The wave frame and fixed frame are related by
the following transformation:

x* = X * - ct*, y* = Y *, u* = U * - c, v* = V *,

p* (x, y) = P* (X *, Y *, T) (7)

where x*, y*, u*, v* and p* are the quantities in wave

frame and X *, Y *, U *, V * and P* are in fixed frame.
For the transportation of two immiscible mucus

layers in the airways, the continuity, momentum,
heat and concentration equations can be written as:

∇V ( )k = 0, k = 1, 2 (8)

ρ( )k dV ( )k

dt
= divτ ( )k , k = 1, 2 (9)

Figure 1 Geometry of problem
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ρ( )k c( )k
p

dT ( )k

dt
= κ( )k ∇2T ( )k + τ ( )k ⋅ L( )k , k = 1, 2 (10)

dC ( )k

dt
= D( )k ∇2C ( )k +

DkT

T0

∇2T ( )k , k = 1, 2 (11)

V ( )k = [u( )k (x, y) , v( )k (x, y) ] (12)

Stress tensor for PTT fluid model is given by

the following relation:

f (trace (τ ( )k ))τ ( )k + λ( )k τ̂ ( )k =2η( )k A( )k
1 (13)

where η( )k , λ( )k , τ( )k , A( )k
1 represent the coeffiecient of

viscosity, relaxation time, stress tensor and

deformation rate of fluid in both layers.

τ̂ ( )k =
dτ ( )k

dt
- τ ( )k ⋅ L( )k - (L( )k ) T ⋅ τ ( )k (14)

f (trace (τ ( )k )) = 1 +
ε( )k λ( )k

η( )k
trace (τ ( )k ) (15)

where superscript k denotes the fluids in two layers,

k = 1 shows the fluid in first layer and the fluid in

second layer is represented by k = 2. ε( )k denotes the

elongation behavior parameter and λ( )k denotes the

material parameters of fluids in both layers.

In the muco ciliary pumping, velocity, pressure

and shear stress need to be analyzed, therefore

continuity, momentum, heat and concentration

equation together with the stress and strain

relationship are expressed in the following manner:

∂u(k )

∂x +
∂v(k )

∂y = 0 (16)

ρ( )k (u( )k ∂u( )k

∂x + v( )k ∂u( )k

∂y ) = -
∂p
∂x +

∂τ (k )
xx∂x +

∂τ (k )
xy

∂y (17)

ρ( )k (u( )k ∂v( )k

∂x + v( )k ∂v( )k

∂y ) = -
∂p
∂y +

∂τ (k )
yx

∂x +
∂τ (k )

yy

∂y (18)

ρ(k )c(k )
p (u(k ) ∂T (k )

∂x + v(k ) ∂T (k )

∂y ) = κ(k ) ( ∂2T (k )

∂x2
+

∂2T (k )

∂y2 ) + trace (τ (k ) ⋅ L(k )) (19)

(u(k ) ∂C (k )

∂x + v(k ) ∂C (k )

∂y ) = D(k ) ( ∂2C (k )

∂x2
+
∂2C (k )

∂y2 ) +

DKT

( )T1 - T0

( ∂2T (k )

∂x2
+
∂2T (k )

∂y2 ) (20)

where stress tensors can be written as:

(1 +
ε( )k λ( )k

η( )k
trace (τ ( )k )) τ ( )k

xx +λ( )k (u( )k ∂u( )k

∂x +

v( )k ∂v( )k

∂y ) τ ( )k
xx -2λ( )k (τ ( )k

xx

∂u( )k

∂y + τ ( )k
xy

∂v( )k

∂y ) =

2η( )k ∂u( )k

∂x (21)

(1 +
ε( )k λ( )k

η( )k
trace (τ ( )k )) τ ( )k

xy +λ( )k (u( )k ∂u( )k

∂x +

v( )k ∂v( )k

∂y ) τ ( )k
xy -2λ( )k (τ ( )k

xx

∂u( )k

∂y + τ ( )k
xy

∂v( )k

∂y +

τ ( )k
xy

∂u( )k

∂x + τ ( )k
yy

∂v( )k

∂x ) =2η( )k ( ∂u( )k

∂x +
∂v( )k

∂y ) (22)

(1 +
ε( )k λ( )k

η( )k
trace (τ ( )k )) τ ( )k

yy +λ( )k (u( )k ∂u( )k

∂x +

v( )k ∂v( )k

∂y ) τ ( )k
yy -2λ( )k (τ ( )k

xy

∂u( )k

∂y + τ ( )k
yy

∂v( )k

∂y ) =

2η( )k ∂u( )k

∂y (23)

The biological flows are observed by velocity,

temperature and concentration that are assumed to

be maximum at the center line of the ciliated

channel whereas at the interface of both layers shear
stresses and velocities of fluids are equal as
mentioned in Ref. [41], therefore boundary

conditions for velocities and shear stress can be
written in following manner:

τ (1)
xy = 0 at y = 0 (24a)

τ (1)
xy = τ (2 )

xy at y = h1 (24b)

u(1) = u(2 ) at y = h1 (24c)

u(2 ) =

-( )2π
λ

é

ë
ê

ù

û
úϵaαc sin ( )2π

λ
x

1 - ( )2π
λ

é

ë
ê

ù

û
úϵaα cos ( )2π

λ
x

at y = h (24d)
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v(2 ) =
( )2π
λ

é

ë
ê

ù

û
úϵaαc sin ( )2π

λ
z

1 - ( )2π
λ

é

ë
ê

ù

û
úϵaα cos ( )2π

λ
z

at y = h (24e)

Similarly boundary conditions for temperature
and concentration profile can be written as:

∂T (1)

∂y = 0 at y = 0 (25a)

κ(1) ∂T (1)

∂y = κ(2 ) ∂T (2 )

∂y at y = h1 (25b)

T (1) = T (2 ) at y = h1 (25c)

T (2 ) = T0 at y = h (25d)

∂C (1)

∂y = 0 at y = 0 (26a)

D(1) ∂C (1)

∂y = D(2 ) ∂C (2 )

∂y at y = h1 (26b)

C (1) = C (2 ) at y = h1 (26c)

C (2 ) = C0 at y = h (26d)

where

x* =
x
λ

, y* =
y
a

, u* ( )k =
u( )k

c
, v* ( )k =

v( )k

βc
,

h* =
h
a

, h1
* =

h1

a
, p* =

aβ

cη( )1
p, β =

a
λ

,

τij
* ( )k =

a

η( )1 c
τ ( )k

ij, Re =
ρ( )1 ac

η( )1
,

Pr =
η( )1 cp

κ( )1
, Br =

η( )1 c2

κ( )1 ( )T1 - T0

,

θ( )k =
T ( )k - T0

T1 - T0

, ϕ( )k =
C ( )k - C0

C1 - C0

, SH =
η( )1

D( )1 ρ( )1
,

ST =
ρ( )1 DKT

η( )1 ( )C1 - C0

, ρ* ( )k =
ρ* ( )k

ρ( )1
, δ =

a1

a
,

η* ( )k =
η* ( )k

η( )1
, κ* ( )k =

κ* ( )k

κ( )1
, D* ( )k =

D* ( )k

D( )1
(27)

After dropping “*”, non-dimensional forms of
Eqs. (16)−(26) are given as follows:

∂u(k )

∂x +
∂v(k )

∂y = 0 (28)

Re (u( )k ∂u( )k

∂x + v( )k ∂u( )k

∂y ) = -
∂p
∂x +β2 ∂τ ( )k

xx∂x +
∂τ (k )

xy

∂y (29)

Reβ2 (u( )k ∂v( )k

∂x + v( )k ∂v( )k

∂y ) = -
∂p
∂y +β2

∂τ (k )
yx

∂x + β
∂τ (k )

yy

∂y
(30)

β (u( )k ∂θ( )k

∂x + v( )k ∂θ( )k

∂y ) =
∂2θ( )k

∂y2
+

Br

κ(k )
τ (k )

yx

∂u(k )

∂y (31)

β (u(k ) ∂C (k )

∂x + v(k ) ∂C (k )

∂y ) =
∂2ϕ(k )

∂y2
+

SHST

D(k )

∂2θ(k )

∂y2
(32)

(1 +
ε( )k λ( )k

η( )k
trace (τ ( )k )) τ ( )k

xx +λ( )k (βu( )k ∂u( )k

∂x +

β2v( )k ∂v( )k

∂y ) τ ( )k
xx -2λ( )k (βτ ( )k

xx

∂u( )k

∂x + β2τ ( )k
xy

∂v( )k

∂x ) =

2βη( )k ∂u( )k

∂x (33)

(1 +
ε( )k λ( )k

η( )k
trace (τ ( )k )) τ ( )k

xy + λ( )k (βu( )k ∂u( )k

∂x +

β2v( )k ∂v( )k

∂y ) τ ( )k
xy - 2λ( )k (τ ( )k

xx

∂u( )k

∂y + β2τ ( )k
xy

∂v( )k

∂y +

βτ ( )k
xy

∂u( )k

∂x + β2τ ( )k
yy

∂v( )k

∂x ) = η(k ) ( ∂u(k )

∂y + β2 ∂v( )k

∂x )
(34)

(1 +
ε( )k λ( )k

η( )k
trace (τ ( )k )) τ (k )

yy + λ( )k (βu( )k ∂u( )k

∂x +

β2v( )k ∂v( )k

∂y ) τ ( )k
yy - 2λ( )k (τ ( )k

xy

∂u( )k

∂y + βτ ( )k
yy

∂v( )k

∂y ) =

2η( )k ∂u( )k

∂y (35)

Also boundary conditions for velocity, stress,

temperature and concentration are given as follows:

τ (1)
xy = 0 at y = 0 (36a)

τ (1)
xy = τ (2 )

xy at y = h1 (36b)

u(1) = u(2 ) at y = h1 (36c)

u(2 ) = -1 - 2πϵαβ cos (2πx) at y = h (36d)
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v(2 ) = ±2πϵ (sin (2πx) + 2πϵαβ sin (2πx)cos (2πx))
at y = h (36e)

Similarly boundary conditions for temperature
and concentration profile can be written as:

∂θ(1)

∂y = 0 at y = 0 (37a)

κ(1) ∂θ(1)

∂y = κ(2 ) ∂θ(2 )

∂y at y = h1 (37b)

θ(1) = θ(2 ) at y = h1 (37c)

θ(2 ) = 0 at y = h (37d)

∂ϕ(1)

∂y = 0 at y = 0 (38a)

D(1) ∂ϕ(1)

∂y = D(2 ) ∂ϕ(2 )

∂y at y = h1 (38b)

ϕ(1) = ϕ(2 ) at y = h1 (38c)

ϕ(2 ) = 0 at y = h (38d)

where

h (x) = ±[1 + ϵ cos x ], h1 (x) = ±[ δ + δϵ cos x ].

Using long wavelength and small Reynolds’
number approximation (Re → 0, β → 0) [9, 10] in

Eqs. (28−38), one can get the following expressions:

∂p
∂x =

∂τ (k )
xy

∂y (39)

∂p
∂y = 0 (40)

∂2θ(k )

∂y2
= -

Br

κ(k )
τ (k )

yx

∂u(k )

∂y (41)

∂2ϕ(k )

∂y2
= -

SHST

D( )k

∂2θ( )k

∂y2
(42)

After using long wavelength approximation
and solving Eqs. (33)−(35), one can write following
expressions:

τ (k )
xx = 0 (43)

τ (k )
yy =

2λ( )k

η( )k
τ 2 (k )

xy (44)

τ (k )
xy + 2

ε( )k λ2 ( )k

η2 ( )k
τ 3(k )

xy = η( )k ∂u(k )

∂y (45)

with boundary conditions

τ (1)
xy = 0 at y = 0 (46a)

τ (1)
xy = τ (2 )

xy at y = h1 (46b)

u(1) = u(2 ) at y = h1 (46c)

u(2 ) = -1 - 2πϵαβ cos (2πx) at y = h (46d)

v(2 ) = ±2πϵ (sin (2πx) + 2πϵαβ sin (2πx)cos (2πx))
at y = h (46e)

∂θ(1)

∂y = 0 at y = 0 (47a)

κ(1) ∂θ(1)

∂y = κ(2 ) ∂θ(2 )

∂y at y = h1 (47b)

θ(1) = θ(2 ) at y = h1 (47c)

θ(2 ) = 0 at y = h (47d)

∂ϕ(1)

∂y = 0 at y = 0 (48a)

D(1) ∂ϕ(1)

∂y = D(2 ) ∂ϕ(2 )

∂y at y = h1 (48b)

ϕ(1) = ϕ(2 ) at y = h1 (48c)

ϕ(2 ) = 0 at y = h (48d)

where h (x) = ±[1 + ϵ cos x ], h1 (x) = ±[ δ +

δϵ cos x ].

3 Solution of problem

To find the following stresses, one can make

the integration of Eq. (39) w.r.t “y”

τ (k )
xy =

∂p
∂x y + A(k )

1 , k = 1, 2 (49)

where A(k )
1 are constants of integration.

Using conditions mentioned in Eq. (46a) into

the above equation for k=1, it is found that A(1)
1 = 0.

τ (1)
xy =

∂p
∂x y, 0 ≤ y ≤ h1 (50)

Similarly we use Eq. (46b) into Eq. (49) for
k = 2 and find that A(2 )

1 = 0.
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τ (2 )
xy =

∂p
∂x y, h1 ≤ y ≤ h (51)

Expressions in Eqs. (50) and (51) clearly show
that stresses τ (k )

xy in both regions are same.

τ (k )
xy =

∂p
∂x y (52)

Substituting Eq. (52) into Eq. (43), one can
write the following form:

τ (k )
yy =

2λ( )k

η( )k ( ∂p∂x )
2

y2 (53)

After using Eqs. (52) and (44), one can find the

following form of velocity:

∂u(k )

∂y =
∂p
∂x

y

η(k )
+ 2

ε( )k λ2 ( )k

η3( )k ( ∂p∂x )
3

y3 (54)

Integration of above equation yields the

following form:

u(k ) =
∂p
∂x

y2

2η(k )
+
ε( )k λ2 ( )k

η3( )k ( ∂p∂x )
3

y4

2
+ B(k ) (55)

Using boundary conditions given in Eqs. (46a)−
(46e) in above equation, one can get the following
velocity profiles in two regions.

u( )1 = u (h) +
∂p
∂x

1

2η( )1
(y2 - h2

1) +
ε( )1 λ2 ( )1

2η3( )1 ( ∂p∂x )
3

⋅

(y4 - h4
1) + +

∂p
∂x

1

2η( )2
(h2

1 - h2) +

ε( )1 λ2 ( )1

2η3( )1 ( ∂p∂x )
3

(h4
1 - h4) (56)

u( )2 = u (h) +
∂p
∂x

1

2η( )2
(y2 - h2) +

ε( )2 λ2 ( )2

2η3( )2 ( ∂p∂x )
3

⋅
(y4 - h4) (57)

After integrating Eq. (41) and using boundary

conditions given in Eqs. (47a)− (47d), one can get
following temperature profiles:

θ( )1 = -
Br

12κ( )1 η( )1 ( ∂p∂x )
2

(y4 - h4
1) -

2Brε( )1 λ2 ( )1

30κ( )1 η3( )1 ( ∂p∂x )
4

(y6 - h6
1) -

Br

12κ( )2 η( )2 ( ∂p∂x )
2

(h4
1 - h4) -

2Brε( )2 λ2 ( )2

30κ( )2 η3( )2 ( ∂p∂x )
4

(h6
1 - h6) +

( )-
Br

3η( )1 ( )∂p
∂x

2

h3
1 -

2Brε( )1 λ2 ( )1

5η3( )1 ( )∂p
∂x

4

h5
1 ⋅

( )h1 - h +
é

ë
êê-

Br

3η( )2 ( )∂p
∂x

2

h3
1 -

ù

û
úú

2Brε( )2 λ2 ( )2

5η3( )2 ( )∂p
∂x

4

h5
1 ( )h1 - h (58)

θ( )2 = -
Br

12κ( )2 η( )2 ( ∂p∂x )
2

(y4 - h4) -

2Brε( )2 λ2 ( )2

30κ( )2 η3( )2 ( ∂p∂x )
4

(y6 - h6) +

( - Br

3η( )1 ( ∂p∂x )
2

h3
1 -

2Brε( )1 λ2 ( )1

5η3( )1 ( ∂p∂x )
4

h5
1) ⋅

( 1

η( )2
-

1

η( )1 ) (y - h) (59)

Similarly, Eq. (42) can be written as follows:

ϕ( )1 =
SH*ST*Br

12D( )1 κ( )1 η( )1 ( ∂p∂x )
2

(y4 - h4
1) +

2SH*ST*Brε( )1 λ2 ( )1

30D( )1 κ( )1 η3( )1 ( ∂p∂x )
4

(y6 - h6
1) +

SH*ST*Br

12D( )2 κ( )2 η( )2 ( ∂p∂x )
2

(h4
1 - h4) +

2SH*ST*Brε( )2 λ2 ( )2

30D( )2 κ( )2 η3( )2 ( ∂p∂x )
4

(h6
1 - h6) +

( SH*ST*Br

3κ( )1 η( )1 ( ∂p∂x )
2

h3
1 +

2SH*ST*Brε( )1 λ2 ( )1

30κ( )1 η3( )1 ( ∂p∂x )
4

h5
1) (h1 - h) -

( SH*ST*Br

3κ( )2 η( )2 ( ∂p∂x )
2

h3
1 +

2SH*ST*Brε( )2 λ2 ( )2

30κ( )2 η3( )2 ( ∂p∂x )
4

h5
1) (h1 - h) (60)

ϕ( )2 =
SH*ST*Br

12D( )2 κ( )2 η( )2 ( ∂p∂x )
2

(y4 - h4) +

2SH*ST*Brε( )2 λ2 ( )2

30D( )2 κ( )2 η3( )2 ( ∂p∂x )
4

(y6 - h6) +

é

ë
êê
SH*ST*Br

3κ( )1 η( )1 ( )∂p
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2
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1 +
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ù

û
úú

2SH*ST*Brε( )1 λ2 ( )1

30κ( )1 η3( )1 ( )∂p
∂x

4

h5
1 ( )y - h -

é

ë
êê

SH*ST*Br
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2
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ù

û
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2SH*ST*Brε( )2 λ2 ( )2

30κ( )2 η3( )2 ( )∂p
∂x

4

h5
1 ( )y - h (61)

The total volumetric flow rate Q in

dimensionless form is given by the following
equation

Q = Q( )1 + Q( )2 (62)

Q = 2hu (h) + ( h3

6η( )1
-

hh2
1

2η( )1
-

5h3

6η( )2
+

hh2
1

2η( )2 ) ∂p∂x +

( h5ε( )1 λ2 ( )1

10η3( )1
-

hh4
1ε

( )1 λ2 ( )1

2η3( )1
-

9h5ε( )2 λ2 ( )2

10η3( )2
+

hh4
1ε

( )2 λ2 ( )2

2η3( )2 ) ( ∂p∂x )
3

(63)

4 Graphical results

In this section the effects of involved

parameters appearing in the immiscible PTT fluid
flow induced by cilia motion are displayed through
graphs. The effect of emerging parameters are
observed on the pressure rise, velocity, temperature
and concentration profile by fixing a=0.2, β =0.2,
η(1)=0.1, η(2)=0.5, ε(1)=0.1, ε(2)=0.5, λ(1)=0.1, λ(2)=0.5, x=
0.25, 􀆠=0.25, p=2, δ=0.5, κ(1)=0.1, κ(2)=0.5, Br=1, D(1)

=0.1, D(2)=0.5, SH=1, ST=1.

Figures 2(a) − (d) show the effects of various

parameters on pressure rise for two immiscible

fluids. These graphs show that with the increasing

values of viscosities (η(1), η(2 )), pressure difference

decreases in both layer and fluid becomes thick and
more pressure is required to maintain the same flux.

By increasing relaxation time (λ(1), λ(2 )), elastic

forces become dominant over the viscous forces that
result to grow the resistance in fluid layer and so

pressure difference rises. Figures 3(a)−(d) show the
effects of various parameters on velocity profiles for

two immiscible fluids. These graphs show that
velocity is maximum at the center of the tube and

continuity is clearly shown in graphs at the interface
of two fluids, i.e., ( x = 0.5).

Figure 2 Effect of η(1), η(2), λ(1) and λ(2) on pressure rise
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Figure 3(a) demonstrates the effect of distinct
values of η(1) on the velocities of the fluids. It is

observed that three curves in graph overlapped for
the fluid in layer II. It is also clearly indicated by
Eq. (57) that the expression u(2 ) does not involve the
coefficient of viscosity η(1) for fluid in layer I,

therefore the values of η(1) does not affect velocity of

the fluid in layer II. However, the expressions (46)
involve both parameters of viscosity, and velocities
of both fluids are affected by varying the value of
η(2 ) as shown in Figure 3(b). It is observed that with

the increasing values of η(2 ) fluid become thick and

the velocity profiles of the fluids appear slow.
Figures 3(d) and (d) show the effect of material

parameters λ(1) and λ(2 ) on velocity profile in both
regions. An increase in relaxation time produces
considerable retardation in the mucus flow and
elastic forces make the mucus thick by which the
resistive property of mucus enhances which makes
the flow slow. By increasing relaxation time λ(1),
fluid decelerates in first region whereas it has no
effect in second region, and by increasing λ(2 ), fluid
velocity decreases in both the layers because the
increase in relaxation time makes the fluid more

viscous.
Figures 4(a) − (c) show the effects of various

parameters on temperature profiles for two
immiscible fluids. Figure 4(a) shows that by
growing thermal conductivity κ(1), heat transfer
decreases in first layer but it does not have any
effect in second layer and κ(2 ) has the significant
effect in both the layers because increase in thermal
conductivity helps to reduce the rate of heat transfer
in fluid, which can be seen in Figure 4(b).
Figure 4(c) shows that with the increase in
Brinkman number Br temperature profile decreases
because the heat conduction from the boundary to
the viscous fluid increases that reduces the rate of
heat transfer.

Figures 5(a) − (d) show the effect of various
parameters on concentration profiles for two
immiscible fluids. Figure 5(a) shows that by
increasing D(1), concentration profile decreases in
first region because of the low diffusivity of the
fluid in layer I but it does not have significant effect
in second layer. Also D(2 ) has the noteworthy effect
in both the layers because diffusivity of the fluid in
layer II reduces the concentration profile in both

Figure 3 Effect of η(1), η(2), λ(1) and λ(2) on velocity profile
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layers. Figures 5(c) and (d) show that by increasing

SH and ST concentration profile decreases because

momentum diffusivity is dominant over the mass

diffusivity. It is also observed that mass flux due to

temperature gradient resists the diffusion process.

5 Conclusions

The mathematical analysis of ciliary flow in

two-layer model has been discussed in this research.

The diffusive convective heat and mass transfer of

ciliary flow in two-layer flow (liquid-liquid) is

modelled with the help of mass, momentum, energy

and concentration laws using linear PTT fluid model

in both layers with different viscosities and

densities. The momentum, energy and concentration

equations are simplified under the lubrication

approach.

Exact solutions for velocity, temperature and

concentration profiles have been constructed for

both layer and graphical results are also found by

the help of software “MATHEMATICA”. The flow

features, e. g., pressure rise, velocity, temperature

and concentration are analyzed for different values

of involved parameters and following observations

are noted.

1) Pressure rise surges in pumping region and

falls in pumping region by increasing the values of

viscosities of both fluid present in layer I and II and

PTT fluid parameters of layer I but reverse behavior

is observed for PTT fluid parameter in layer II.

2) Profiles of velocities, temperature and

concentration show that fluid flow is continuous at

the interface which is an essential requirement of

continuum fluid.

3) It is noted that velocity of fluid decreases in

first layer by increasing the viscosity and relaxation

time of the fluid of phase I but flow decreases in

both layer with the growing values of viscosity and

relaxation time of fluid in phase II.

4) Temperature profile decays in layer I with

the growing value of thermal conductivity of fluid

in layer I but the heat transfer decays with the

growing values of thermal conductivity and

Brinkman number of fluid of phase II.

5) Concentration in the fluid of Phase I and II

become slow with the growing values of

D( )2 , SH and ST but concentration in fluid of Phase I

decays D( )1 .

This study provides the results of mucus (PTT

fluid) flow in a ciliated channel with two-phase flow

in the presence of heat and concentration effects but

effects of inertial forces and buoyancy forces are

neglected in this study that will be considered in

future research.

Figure 4 Effect of k (1), k ( )2 and Br on temperature profile
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外周层纤毛运动引起的PTT流体流动的热和浓度分析

摘要摘要：：本文分析了两层纤毛诱导的 Phan-Thien-Tanner (PTT)流体的热效应和浓度效应。采用 Phan-

Thien-Tanner流体模型模拟呼吸道黏液。由于呼吸道上皮细胞上存在睫状体周液层(PCL)和气道睫状体

层(ACL)，因此采用两层模型方法进行模拟。采用长波长和小雷诺数近似简化了两层流动问题的数学

模型，所得到的带有移动边界的微分方程给出了两层中速度、温度和浓度分布的精确解。采用速度分

布计算了压力的变化，并采用沿通道壁面压力梯度的数值积分计算了压力的上升。利用曲线图说明了

物理参数对压力上升、速度、温度和浓度分布的影响。结果表明：流体内层(PCL)的速度和温度分布

最大，流体外层(ACL)的浓度分布最大。

关键词关键词：：纤毛流；PTT流体；两层模型；热分析；浓度效应
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