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Abstract: Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted 
track-subgrade system under train loading can pose safety concerns to the train operation. This paper introduced a 
computational model for analyzing probabilistic dynamic responses of three-dimensional (3D) coupled train-ballasted 
track-subgrade system (TBTSS), where the coupling effects of uncertain rail irregularities, stiffness and damping 
properties of ballast and subgrade layers were simultaneously considered. The number theoretical method (NTM) was 
employed to design discrete points for the multi-dimensional stochastic parameters. The time-histories of stochastic 
dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and 
efficiently by employing the probability density evolution method (PDEM). The model-predicted results were consistent 
with those by the Monte Carlo simulation method. A sensitivity study was performed to assess the relative importance of 
those uncertain structural parameters, based on which a case study was presented to explore the stochastic probability 
evolution mechanism of such train-ballasted track-subgrade system.  
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1 Introduction 
 

The dynamic, uneven track settlement caused 
by the uncertainty associated with the equivalent 
stiffness and damping properties of the coupled 
ballast-substructure system has long been the 

challenging engineering problem adversely affecting 
railroad operation safety for decades. Such 
settlement would severe the random track 
irregularities under the repeated wheel/rail 
interactions. Therefore, it remains indispensable and 
critical to efficiently assess the stochastic dynamic 
responses  and performance of  the  coupled 
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ballast-subgrade system from advanced 
computational models where the uncertain stiffness 
and damping properties of the ballast-substructure 
system, random track irregularities, and their 
interactions are coupled and properly considered. 

The dynamic simulation of the coupled   
train-ballast-subgrade systems is often indispensable 
to reveal the dynamic properties of structural 
components which are triggered by random 
excitations and parameter uncertainties. For  
example, the sensitivity and relative importance of 
system parameters including the car body, rails, 
ballasted track, subgrade to dynamic responses under 
random excitations can be obtained through 
numerical analyses of the coupled train-track model 
[1]. However, due to the complex nature and 
multiple sources of such random excitations, the 
majority of the existing publications were focused on 
the deterministic analysis with random excitation 
considered by varying one single factor at a time for 
simplicity. As one of the most important motivators, 
the track irregularity has been investigated in many 
publications. In the last decades, a large number of 
articles focused on the influence analysis of the track 
irregularity on the dynamic behaviors of the coupled 
train-track-substructure systems [2−10]. Furthermore, 
several researchers paid attention to the studies of 
random model of track irregularities in contrast to 
the deterministic analysis. At an early stage, a   
non-Gaussian model was developed by IYENGAR 
et al [11] based on the measured irregularities data to 
simulate the unevenness samples, after which this 
model is considered a standard way to estimate the 
expected values on level crossing and peaks [12]. 
Recently, YU et al [13] developed a nonstationary 
track irregularity model based on the stochastic 
harmonic function [14], which is proven to be highly 
efficient and reasonably effective for the coupled 
train-ballast-subgrade simulation. XU et al [15, 16] 
developed a probabilistic model for random track 
irregularities in the dynamic simulation of the 
coupled vehicle-track system, which is proven to be 
effective to better clarify the random vibration 
characteristics and probabilistic relations between 
random track irregularities and dynamic behaviors of 
the vehicle/track system. Also, considerable 
meaningful work has been done in data mining and 
stochastic modeling of track irregularities based on 
experimentally measured data [17−19]. On the other 
hand, besides the random track irregularity, 
researchers also focused on the influences of random 

system parameters involved in the coupled 
train/track system. The varying material properties 
and other mechanical uncertainties were investigated 
for stochastic vibration of the coupled        
train-ballast-subgrade system based on the 
perturbation method (PM) with several advanced 
models, e.g., JIN et al [20], MUSCOLINO et al [21], 
HUANG et al [22], and CAVDAR et al [23]. 

In the existing studies, either random track 
irregularity or uncertainty of system parameters has 
been well investigated in train-substructure coupled 
dynamics individually. XIN et al [24] have done well 
research on the uncertainty and sensitivity analysis 
for train-ballasted track–bridge system by employing 
PDEM, in which the material, geometry, structural 
damping of bridge superstructure and the  
temporal–spatial ergodic properties of track 
irregularities are highlighted. WAN et al [25] 
provided an investigation as to study the uncertainty 
in the parameter influencing the dynamic responses 
of time varying time-varying train-track-bridge 
system, which refers to dynamic sensitivity analysis 
in the context of stochastic dynamic system. Thus, in 
reality, these random factors interact with each other 
and are inseparable in the train-track coupled system. 
An advanced model, which is able to realistically 
consider the randomness, complexity and probability 
of track irregularities and system parameters, needs 
to be developed to fully characterize stochastic 
dynamic responses of the train-ballast-subgrade 
system so that the railway system performance and 
safety can be maintained or improved. 

The aim of this paper was to develop a 
probabilistic model of the coupled          
train-ballast track-subgrade system (TBTSS) for 
estimating the stochastic dynamic interactions 
between ballast and subgrade, where the coupling 
effect of track irregularities and the uncertainty of 
structural parameters of the coupled ballast-subgrade 
system was considered. The multi-dimensional 
system parameters were generated by the discrete 
points design method termed as the number 
theoretical method (NTM) [26] in hypercube space. 
The time histories of dynamic vibrations of TBSS 
under stochastic excitations including the 
uncertainty of system parameters (e.g., equivalent 
stiffness and damping of rail pad and equivalent 
stiffness and damping of the ballast-subgrade  
system) were computed accurately with high 
efficiency based on the probability density evolution 
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method (PDEM) [27, 28]. Results from numerical 
simulations and relevant sensitivity study on the 
TBSS model based on PDEM were presented and 
verified against those by the Monte Carlo method 
(MCM). Finally, a series of time-space stochastic 
dynamic responses were explored with significant 
conclusions drawn. 
 
2 Stochastic model of coupled      

train-ballast-subgrade system  
 

Apart from random track irregularities and 
certain other stochastic excitations, the stochastic 
dynamic responses of the coupled           
train-ballast-subgrade system are influenced by 
parameter uncertainties as well, e.g., stiffness 
uncertainties of the ballast-substructure system, and 
damping uncertainties of the subgrade system [29]. 
For example, the ballast equivalent stiffness kb is 
ranged from 165 to 220 MN/m, and the subgrade 
equivalent stiffness ks is ranged from 40 to      
133 MN/m. As evident from such wide ranges, the 
uncertainty of those values is so great that they 
cannot be neglected in the dynamic simulation. 
Therefore, the influence of stochastic parameters of 
the ballast-subgrade system on the dynamic 
responses of the train-ballast-subgrade system was 
investigated in this study. 
 
2.1 Model assumptions 

1) The train runs on the track at a constant speed. 
The wheel sets remain full contact with the rail 
surface, and there is no sliding, climbing derailment, 
or jumping derailment. 

2) The vehicle bodies, bogies, and wheel sets 
are assumed as rigid bodies, and no eccentricity of 
vehicle gravity occurs. The stiffness and damping 
properties of the vehicle spring between the first and 
second suspensions are linear. 

3) The coupled ballast-subgrade system is 

assumed to be a conservative system, which means 
that any inflow probability in the state space domain 
is exactly equal to the outflow probability transited 
through the boundary domain [30]. 

4) To highlight the impact of stochastic system 
parameters, only one representative track irregularity 
sample was used as the wheel/rail excitation in the 
simulation. 
 
2.2 Stochastic dynamic equation of coupled train-

ballast-subgrade system 
In this paper, a typical coupled ballast-subgrade 

system was established. As shown in Figure 1, the 
stochastic dynamic behavior of the coupled train-
ballast-subgrade system is a complex time-varying 
dynamic process under the vehicular loading, where 
the uncertainties of the ballast-subgrade system 
parameters should be considered. This section 
presents the numerical framework of modelling the 
coupled train-ballast-subgrade system. 
2.2.1 Equations of vehicle model and its wheel/rail 

interaction 
As shown in Figure 1, the coupled      

ballast-subgrade system involving random 
parameters was modeled as an elastic dynamic 
system. It was established with the invariant 
principle of total potential energy [31], based on 
which a vehicle model was also established (as 
shown in Figure 2). 

The train consists of two locomotives at both 
ends, between which are the Nv-2 passenger cars. 
Each of the vehicles consists of one car body, two 
bogies, four wheel-pairs and the spring-damper 
connections between the first and second 
suspensions [32]. Each car body and bogie has six 
degrees of freedom (DoF), which are respectively 
designated by the longitudinal displacements xci and 
xtji

, lateral displacements yci and ytji
, vertical 

displacements xci and ztji
, roll displacements θci and 

θ t j i, yaw displacements ψc i  and ψ t j i, and pitch 
 

 
Figure 1 Stochastic model of coupled train-ballast-subgrade system 
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Figure 2 Three-dimensional vehicle model involving random parameters: (a) Side view; (b) Top view; (c) Front view 

 
displacements φci and φtji

. Each wheel-set has five 
DOFs, including longitudinal displacement xwki, 
lateral displacement ywki, vertical displacement zwki, 
roll displacement θwki, and yaw displacement ψwki, 
where j=1, 2 and k=1, 2, 3, 4 in the ith vehicle. The 
subscripts “c”, “t1”, “t2” and “w” denote the vehicle 
body, front bogie, rear bogie, and wheel-pair. In total, 
the vehicle model used in this paper has 38 DoFs, of 
which the suspension connections between the car 
body and bogies and between the bogies and wheel-
sets are represented using linear springs and viscous 
dashpots.   

Considering the excitations of wheel/rail 
interaction, the vehicle dynamic equation can be 
expressed as follows: 

 
     vv v v vv v v  vv
 M X C X K X F             (1) 

 
where Mvv, Cvv and Kvv denote the mass, damping 
and stiffness matrices of the vehicle, respectively; 
{Xv} is the corresponding displacement vector; Fv is 
the force vector generated from the wheel/rail 
interactions including the excitation of track 
irregularities. The details on forming these matrices 
can be referred to Ref. [32]. 

As shown in the 3D wheel/rail contact model 
[33] in Figure 3, the wheel/rail interaction consists of 
contact forces formulated by the Hertz theory of 
normal elastic contact for a normal plane [34] and the 
Kalker linear rolling contact theory in the tangential 
plane [35], of which the detailed information can be 
referred to Refs. [36, 37]. 

The wheel/rail creep forces cr
L ,xF cr

LyF   and 
cr
LzM  on the left wheel and cr

R ,xF cr
RyF  and cr

RzM  on 
the right wheel can be calculated using the Kalker 
linear creep theory. Specifically, the wheel/rail creep 
forces can be written as: 
 

 
Figure 3 Wheel/rail interaction model used in coupled 

train-ballast-subgrade system 
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         

   (2) 

 
where L

mki  and R
mki  (m=11, 22, 23, 33) denote the 

creep coefficients between the kth wheel set and the 
left and right rail in the ith vehicle, respectively, 
which can be obtained according to Ref. [37];    
and L ,xki L

yki  and L
ki  denote respectively the 

longitudinal wheel/rail creepage, lateral wheel/rail 
creepage and spin wheel/rail creepage between the 
kth wheel-set and the left rail in the ith vehicle, 
whereas R

xki , R
yki  and R

ki  are for the right rail. 
2.2.2 Equations of coupled ballast-subgrade model 

The cross-section A-A of the coupled   
ballast-subgrade system subjected to the vehicle load 
in Figure 1 is shown in Figure 3. As mentioned 
before, the uncertainty of the ballast-subgrade 
system parameters is considered to be the only 
stochastic source in the ballast-subgrade model. The 
six different types of parameters are independently 
assumed to be normally distributed, but non-
independent and related to each other for the sub-
parameters in each type of parameters. 

Without loss of generality, set symbol 

 1 2= ,  ,  ,  ,  ,  
selq n       as the vector space of 

the random parameters in the ballast-subgrade 
coupled system. The subvector q   can be written 

as 
 

 1, 2, , ,,  ,  ,  ,  ,  q q q m q S q      

 pc pc b b s s,  ,  ,  ,  ,  ,  
q

f    k c k c k c         (3) 
 
where sel1,  2,  ,  ;q n   f(·) is the transfer function 

of the vector of stochastic parameters;

pc pc b b s s,  ,  , ] [ ,  ,  ,  k c k c k c  is the vector of stochastic 
target parameters that are of interest in the model, 
e.g., the equivalent stiffness kpc and equivalent 
damping cpc of rail pads and fasteners, the equivalent 
stiffness kb and equivalent damping cb of ballast, the 
equivalent stiffness ks and equivalent damping cs of 
subgrade; nsel is the total number of representative 
discrete point sets; S is the number of random 
variables. 

Taking the major parameters of ballast-
substructure system as an example, if there are only 
six types of parameters considered in the calculation, 
e.g. the equivalent stiffness and damping parameters 
presented in the random variable vector in Eq. (3), it 
is rewritten as: 

 1, 2, 6 ,= = ,  ,  ,  q q q N q     

pc pc b b s s
pt= ,  ,  ,  ,  ,  , =1,  2,  ,  q q q q q q q n 

  k c k c k c       

(4) 
 

where the submatrices in state space Θ are 

represented as  ,1 ,2 ,= ,  ,  ,  ,I I I I N
q q q q     I=kpc, 

cpc, kb, cb, ks and cs, of which the details on forming 
the discrete variables are presented in the following 
sections. 

In order to better illustrate the physical model 
in Eq. (4), the close-up view of a specific portion of 
the ballast-subgrade structures in Figures 1 and 4 is 
provided as follows. 
 

 
Figure 4 Ballast-subgrade coupled system involving 

stochastic system parameters 

 
The ballast-subgrade structure shown in  

Figure 3 was modeled using discrete lumped mass 
blocks connected by a series of springs and dampers. 
The rails were simulated with finite element method 
as uniform Bernoulli-Euler beams and the sleepers 
were regarded as rigid beams. The track foundation 
and subgrade soil were treated as linear elastic. 
Considering the stochastic parameters of the ballast-
subgrade system that are consistently involved in the 
random variable space Θ, the general form of the 
motion equation is expressed as follows: 

 
     bb b bb b bb b b( ) ( )   M X C X K X F         (5) 
 

w h e r e   b ,X    b
X   a n d   bX   d e n o t e  t h e 

acceleration, velocity and displacement vectors of 
the ballast-subgrade structure; Mbb, Kbb(Θ) and 
Cbb(Θ) denote the mass matrix, stochastic equivalent 
stiffness matrix and stochastic equivalent damping 
matrix, which represents the randomness of   
ballast-subgrade system parameters involved in the 
parameter space Θ; Fb denotes the force vector 
acting onto the coupled ballast-subgrade system that 
involves the excitations of track irregularities and 
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vehicle loads. 
Due to the flexibility of the ballast and subgrade 

foundation, each of these mass blocks in Figure 4 
was allowed to move longitudinally (x direction), 
vertically (y direction) and laterally (z direction), but 
the rotation of each axis was ignored. The two rails 
of track have six DoFs and are connected to the 
sleepers which are assumed as rigid elements. 
Therefore, the mass matrix Mbb can be written as: 

 
 bb r t b s=diag [ ,  ,  ,  ]M M M M M                 (6) 

 
where Mr, Mt, Mb and Ms denote the mass 
submatrices of rails, sleepers, ballast and subgrade 
that are divided into blocks, respectively. 

On the basis of stochastic model in Figure 5, 
since there exists the only stochastic parameter 
presented in Eq. (4), the stochastic equivalent 
stiffness matrix in Eq. (5) can be written as: 
 

r rt

tr t tb
bb

bt b bs

sb s

( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( )

 
 
 
 
 
 

0 0

0

0

0 0

K K

K K K
K

K K K

K K

 
  


  

 

    (7) 

 
where Kr(Θ) and Kt(Θ) are the equivalent stiffness 
matrices of rail elements and concrete sleepers, 
respectively; T

rt tr( )= ( )K K   and T
tb bt( ) ( )K K   

are the equivalent interaction stiffness matrices 
between rails and concrete sleepers, the concrete 
sleepers and upper surface boundary of ballast, 
respectively; b( )K   and s ( )K    are the stochastic 
equivalent stiffness matrices of ballast and subgrade 
involving random parameters, respectively; 

T
bs sb( ) ( )K K   is the equivalent interaction 

stiffness matrix between the ballast and subgrade, 
respectively; superscript T denotes the transposed 
matrix. 

The equivalent damping matrix Cbb(Θ) in Eq. (5) 
has the same form as the equivalent stiffness matrix 

Kbb(Θ), i.e., it just needs to replace the equivalent 
stiffness symbol K in Eq. (7) with the equivalent 
damping symbol C. 

The load vector Fb which includes the direct 
influence of track irregularity is written as: 

 
g r

b bb= +F F F                                (8) 
 

where g
bF  is the dead axle load vector transferred 

from vehicle, r
bF  is the force vector induced by the 

wheel/rail interaction and includes the excitation of 
track irregularity. More details on forming these 
matrices are presented elsewhere [32]. 
2.2.3 Dynamic equation of coupled train-ballast-

subgrade system 
Combining Eq. (1) and Eq. (5) with the given 

wheel-rail interaction, the stochastic dynamic 
equation of the coupled ballast-subgrade system can 
be established as: 

 
vv vbvv v v

bb b bbv bb

0
+

0 ( )

     
            

 
 

C CM X X

M X XC C 
 

vv vb v
g r

bbv bb

= ( )+ ( )
( )

t t
   

  
   

K K X
F F

XK K 
          (9) 

 
where Mbb, Cbb(Θ) and K′bb(Θ) are the mass, 
stochastic equivalent damping, and stochastic 
equivalent stiffness matrices associated with the 
coupled rail-ballast-subgrade system involving 
stochastic parameters, as well as the contribution 
from the wheel/rail interaction force of the vehicle’s 
wheel pairs; T

vb bv=K K   and T
vb bvC C   are the 

equivalent stiffness and equivalent damping matrices 
representing the wheel/rail interactions; the matrices 

bbC   and vbC   have the same form as bbK   and 

vb ,K  so one can obtain the matrices bbC and vbC  
by simply replacing K with C and k with c; Fg(t) 
represents the deterministic excitation vector due to 
the gravity acting on the vehicles; Fr(t) represents the 
excitations that due to the track irregularities acting  

 

 
Figure 5 Partially enlarged model of coupled ballast-subgrade system with stochastic parameters   
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on the ballast-subgrade system. For greater clarity 
and convenience, by using the principle of 
superposition, the stochastic dynamic equation in  
Eq. (9) can be rewritten as: 
 

     ( ) ( ) ( )t   M X C X K X F            (10) 

 
2.3 Point design of stochastic parameters 

As the stochastic dynamic equation of   
ballast-subgrade coupled system involving random 
systemically parameters established in Eq. (10), the 
probability density evolution method (PDEM) [27, 
28] is employed to solve the stochastic problem. 
PDEM is a newly developed method that is used to 
capture the probabilistic properties of stochastic 
processes, especially the probability density function 
(PDF) of linear or nonlinear dynamic systems 
through the stochastic dynamic responses. On this 
basis, some effective uniform points set of stochastic 
parameters mentioned in Eq. (10) should be 
elaborately designed for the better calculation by 
PDEM. 

It is worth noting that each parameter might not 
have the same target probability distribution function 
due to material property differences, which may 
result in the multi-dimensional point design with 
different probability distributions. The traditional 
uniform design methods, i.e., the good point (gp) 
method and the good lattice point (glp) method [38], 
are developed for uniform designs with 
multidimensional parameters and collectively 
known as number theoretical method (NTM) for 
point design. Meanwhile, continual further 
investigations also are extended on uniform designs 
with large-size variables [39, 40]. Here, an approach 
named as “Number theoretic method of multi-target 
probability distribution” (NTM-mp) [32] which 
developed based on NTM is employed for the point 
design of stochastic parameters in TBSS. 

As the random vector point set
pc pc b b s s= ,  ,  ,  ,  ,  ,q q q q q q q

  
k c k c k c         q=1, 2, …, 

npt) mentioned in Section 2.2 is combined with the 
sub-vector point set of stochastic parameters of 
equivalent stiffness and damping of           
rail-ballast-subgrade coupled system, these 
parameters are independently assumed to be normal 
distribution for the different structure layer, but  
non-independent and related to each other in the 

same layer. The correlation between the parameters 
is non-uniform, which means a closer distance 
between two parameters, indicating a larger 
correlation between them. Therefore, the correlation 
coefficients [41] can be assumed to be: 
 

, max max min= ( )I I I I
i j

i j
R R R

N



    

with pc pc b b s s= ,  ,  ,  ,  ,  I k c k c k c            (11) 
 
where i and j are the numbers of rows and columns 
in correlation coefficient matrix, and i=1, 2, …, N, 
j=1, 2, …, N; max

IR  and min
IR  are the maximum and 

minimum correlation coefficient, respectively. N is 
the total number of random variables in each kind of 
parameters, such as the ballast equivalent stiffness Kb. 

Therefore, referring to Ref. [42], the correlation 
coefficient matrix of random variables in the state 
space Θ that obey the normal distribution in 6N 
dimensions can be derived by: 
 

 pc pc b b s sdiag ,  ,  ,  ,  ,  N N N N N N N N N N N N      k c k c k cR R R R R R R  

(12) 
 

where the submatrix of correlation coefficient is 
written as: 
 

12 1

21 2

1 2

1

1

1

I I
N

I I
I N
N N

I I
N N

I I

 

 

 



 
 
   
 
  




 



R  

with pc pc b b s s= ,  ,  ,  ,  ,  I k c k c k c            (13) 
 

Using the Cholesky decomposition on account 
of its symmetries and positive definiteness, the upper 
triangular matrix I

N NC  of correlation coefficient 

matrix I
N NR  can be obtained T=[ ]I I

N N N N  R C
I
N NC  with b b s s= ,  ,  ,  I k c k c . On this basis, the total 

upper triangular matrix of correlation coefficient 
matrix in Eq. (12) is derived as:  

 pc pc b b s
6 6 diag ,  ,  ,  ,  ,N N N N N N N N N N N N     R k c k c kC C C C C C  

s
N N
cC                                (14) 

 
Return to the initial status in Eq. (4), without 

loss of generality, as the number theoretic method of 
multi-target probability distribution (NTM-mp) 
mentioned in Ref. [32], and assume that there exists 
a vector Ps in the s-dimensional hypercube 

 0, 1 ,
ss   which follows: 

 1, 2, ,= =[ ,  ,  ,  ] ;s
s q q q s q   P   
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pt=1,  2,  ,  ; =6q n s N                    (15) 
 

where the point set 1, 2, ,=[ ,  ,  ,  ]q q q s q    in 
hypercube space s  can be well designed using 
traditional number theory. 

Herein, the discrete point set in s-dimensional 
hypercube in Eq. (15) is designed by the gp method 
which is mentioned in the number theoretical method 
(NTM) [38]. The evenly scattered point set ,i q  is 
derived as: 

 
1 1

, int( ) (0, 1]s si i
i q q q         

( 1,  2,  ,  4 )i N                        (16) 
 

where   denotes a prime number. 

As the random variable pc pc b= ,  ,  ,q q q q



k c k   
b s s,  ,  ,q q q


c k c     q=1, 2, …, npt is assumed to be 

non-uniform probability distributions, the inverse 
transformation of probability function distribution 
[38] is employed to transform the uniform designed 
discrete points of q   into non-uniform designed 
discrete points ˆ .q   Here, each random variable is 
assumed to be normal distribution functions. There 
exists: 

 

, ,

, T ,

ˆ

ˆ ˆ, , , , ,

ˆ ( )

ˆ ˆ ˆ( )d ( )d ( )i q i q

q q q

i q i q

i q i q i q i q i qf f P
 

 

    
 





  



  

 

(17) 
 
where i=1, 2, …, 6N; q=1, 2, …, npt; T ( )  is the 

Rosenblatt transformation function; ˆ ,ˆ( )
q i qf   is the 

target normal probability density function; ˆ ,ˆ( )
q i qP 

denotes the probability distribution function. 
On this basis, considering the correlation 

coefficient matrix 4 4N N
RC  in Eq. (14), the final 

designed discrete point set pc pc b= ,  ,  ,q q q q



k c k     

b s s,  ,  q q q


c k c     can be constructed as follows: 
 

ptˆ , 1,  2,  ,  q q N N q n     R C       (18) 
 
In this case, the discrete point set of          

multi-dimensional random parameters with target 
probability density functions is designed. The total 
probability satisfies: 

 
pt pt

0
1 1

( , )d
q

n n

q q
q q

P p t
 

     

1

0( , )dnpt

q
q

qp t


  
   

0( , )d =qp t
   

Θ

                    (19) 
 
where Pq is the initial probability of each designed 
point set .q 0( , )qp t   denotes the joint probability 
density function, and the initial conditions of each 
design point set are partially discretized 
correspondingly as follows: 
 

0 0
q 0 0 q( , , ) ( ) ( , ) ( )UΘ Θ qt t t t

p u t u u p t u u P 
 

      

(20) 
 
where δ(·) is the Dirac delta function. 
 
2.4 Solution with PDEM 

The ballast-subgrade coupled system is a 
conservative system which means that the total 
probability of the systems is equal whenever the 
probability is inflow or outflow in any domain of the 
state space. With the initial conditions given above, 
the randomness of dynamic equation of ballast-
subgrade coupled system is from the stochastic 
parameters set Θ and the solution is real and unique 
[44]. 

The steps for calculation of ballast-subgrade 
coupled system with PDEM are shown as follows: 

1) After the numerical point design above, the 
representative points set ξq in the random 
systemically parameters space Θ with the initial 
probability Pq is obtained. 

2) Considering the stochastic parameters in  
Eq. (4), the stochastic dynamic responses of  
ballast-subgrade coupled system in Eq. (10) with the 
deterministic analysis with the Newmark-β 
integration method step, for more general form, the 
stochastic dynamic response vector can be derived  
as: 

 
 ( ),  ( ),  ( )q q q qt g t t t       X X X             (21) 

 
where g{·} denotes the conversion function, and

q t  Ζ   denotes the vector involving the stochastic 
dynamic responses interested, of which the velocity 
is q t  Ζ  . 

3) With the initial condition q 0 0t   Ζ z  , the 
ballast-subgrade coupled system is considered the 
probability conservation system. Based on the 
Reynold transform theorem and its relevant 
derivation, the stochastic response q t     
obtained in Step 2) is presented into the discretized 
version of PDEM [45], the probability density 
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evolution equation writes:  
, ,

0q q
q

p t p t
Ζ t

t z
        

    
 

z zz z 
          (22) 

 
The initial condition 0 0( )t Z z  is given when

pt( 1,  2,  ,  ),q q n      the initial probability of 
Eq. (22) is determined by:  

0 0
0 0( , , ) ( ) ( , ) ( )ZΘ q q qt t t t

p t p t P 
 

   z z z z z   

(23)  
4) Then, the stochastic dynamic equation can be 

solved with the finite element method of bilateral 
difference method and the total variation diminishing 
(TVD) scheme [28]. In this step, the response  
space-time (z, t) in probability function ( , , )ZΘ qp tz  

should be meshed, and the nodes denoted as (zi, 

tk),i=0, ±1, ±2, …, k=0, 1, 2, …,, where ,iz i z   
tk=kΔt, Δz is the space step in the direction of z and 
Δt is the time step. 

5) Finally, synthesize the results in Step 4), and 
then the instantaneous probability density function 
through the discretized probability values is shown 
as:  

pt

1

( , ) ( , , )d ( , , )
n

z z q z q
q

p t p t p t  


  z z z       (24) 

 
The calculation frame chart of          

train-ballast-subgrade coupled system is shown in 
Figure 6, and for more details of the derivation 
process of PDEM can refer to Ref. [28]. 
 
3 Model verification and case studies 
 

A ballast-subgrade coupled model featuring 
four sections of rail-sleeper-ballast-subgrade    
sub-models involving stochastic parameters is 
established in Figure 7, where the ballast-subgrade 
structure is divided into four sections with each 15 m 
length in the middle and two sections at each end 
with infinite length. The mass blocks of ballast and 
subgrade are divided by Lx=0.615 m in the 
longitudinal direction and Ly=0.80 m in the lateral 
direction. The ballast thickness is Hb=0.5 m, and the 
subgrade thickness is Hs=1.5 m with the slope angle 
α=35°. The major parameters in the middle four 
sections considered the stochastic parameters are 
shown in Table 1, and the major data are referred 
from Ref. [29], e.g., the stiffness and rail pad 
damping with fastener, ballast and subgrade are 
distributed within random ranges. Assume that all of 
random parameters used in the present paper satisfy 
the normal distributions. 

 

  
Figure 6 Calculation frame chart of train-ballast-subgrade 

coupled system 

 
The train model contains eight vehicles, with 

four motor cars and four trailer cars as the 
marshalling. The major parameters of the vehicles 
are listed in Table A-1 in Appendix. The train is 
assumed to run along the ballast-subgrade system 
with a constant velocity of 250 km/h. Although the 
track irregularities are normally considered the 
random excitations in many prevent studies, only a 
determined track irregularity sample at each position 
is considered, e.g., the vertical track irregularity 
sample shown in Figure 8. The track irregularity 
samples used as the wheel/rail excitation are 
generated by German low-interference track    
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Figure 7 Ballast-subgrade coupled model with stochastic parameters in numerical study 

 
Table 1 Value range of parameters used in ballast-

subgrade coupled system 

Parameter Value in Ref. [29]

Rail pad stiffness, kpc/(MN·m−1) 53−104 

Rail pad damping, cpc/(kN·s·m−1) 30−63 

Ballast stiffness, kb/(MN·m−1) 165−220 

Ballast damping, cb/(kN·s·m−1) 55−82 

Subgrade stiffness, ks/(MN·m−1) 40−133 

Subgrade damping, cs/(kN·s·m−1) 90−100 

Lateral stiffness of sleepers, k1/(MN·m−1) 402.5 

Lateral damping of sleepers, c1/(MN·m−1) 11.5 

Lateral and vertical shearing stiffness at 
ballast-subgrade interface, kbs/(MN·m−1) 

20 

Lateral and vertical shearing stiffness at 
subgrade-rigid interface, ksg/(MN·m−1) 

6 

Vertical shearing stiffness of ballast, 
kbb/(MN·m−1) 

8 

Vertical shearing stiffness of subgrade, 
kss/(MN·m−1) 

9 

Wheel-track contact stiffness, kw/(MN·m−1) 1225−1500 

 

 
Figure 8 Vertical track irregularity sample used on left rail 

 
spectrum, whose cut-off spatial frequency ranges 
from 0.04 to 3.14 rad/m. 
 
3.1 Numerical verification 

As mentioned in many publications, the Monte 
Carlo method (MCM) was normally used for the 
verification of other new random theories for its 
efficiency at an acceptable calculation precision. The 

mean values (Mean) and the standard deviation 
values (Std) are frequently used. 

In order to reduce the computational cost of 
large amount calculation of MCM, the number of 
vehicles used in the train model is reduced to one 
motor car and one trailer car. Only one stochastic 
parameter is considered in the verification model, 
which is the random rail pad stiffness. The random 
rail pad stiffness krp is assumed as normal 
distribution, with the mean value 

pc
=79k  MN/m 

and the standard deviation value 
pc

=k  8.5 MN/m. 
The train speed is 250 km/h. 

On the basis of the track irregularity samples 
and the track-subgrade model mentioned in  
Section 3.1, the calculations are carried out using 
PDEM and MCM. According to the curves shown in 
Figure 9, the results obtained by PDEM coincide 
well with the ones obtained by MCM, where only 
400-representative-points design is used in the the 
probability density evolution method (PDEM) 
calculation while MCM uses as many as 9999 
samples. In details, the maximum deviation between 
the random responses obtained by PDEM and MCM 
is less than 1.0 %. Obsoletely, PDEM shows a higher 
efficiency at the same calculation precision when 
compared to MCM. 
 
3.2 Sensitivity analysis of structural parameters 

based on the deterministic model 
As the data shown in Table 1, there are several 

major stochastic parameters referred to Ref. [26], e.g. 
the rail pad stiffness ranges from 53 to 104 MN/m 
while the stiffness of subgrade ranges from 40 to  
133 MN/m. With such huge uncertainty on these 
parameters, it is hard to point out which one is the 
most important just through defining their value 
ranges. The sensitivity analysis on these structural 
parameters is extremely needed. 

The sensitivity analysis of stochastic 
parameters is designed through several simple    
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Figure 9 Verification of results got by PDEM and MCM: (a) Mean value of vertical rail displacement; (b) Standard 

deviation of vertical rail displacement; (c) Mean value of vertical rail acceleration; (d) Standard deviation of vertical rail 

acceleration (v=250 km/h) 

 
numerical calculations. On the basis of the stochastic 
model of train-ballast-subgrade coupled system 
established the sections before, all the stochastic 
parameters are defined as the deterministic ones. 
Taking the rail pad stiffness which ranges from 53 to 
104 MN/m as an example, the data ranges are 
divided into 13 equal parts from 53 to 104 MN/m, 
named S1 to S13 with the values gradually 
increasing. The same rules with the other stochastic 
parameters are listed in Table 1. The major stochastic 
parameters in the sensitivity analysis are the rail pad 
stiffness kpc and damping cpc, the ballast stiffness kb 
and damping cb, the subgrade stiffness ks and 
damping cs. When considering the uncertainty of a 
special parameter in the numerical case studies, the 
values of other ones are determined using the middle 
values in the case of S7. Therefore, there are totally 
6×13=78 calculation cases in the sensitivity analysis. 
All case studies present in the sensitivity analysis use 
the same track irregularity samples mentioned in 
Section 3.1. 

As one of the most important responses that 
directly act on the running safety of wheel/rail 
interaction, the rail deformations under vehicle 

loading normally attract attentions. The sensitivity 
analysis of the systematically stochastic parameters 
on rail displacement at the position of rail pad is 
shown in Figure 10. The rail displacement curves at 
rail pad distributed on a huge range and showing 
great uncertainty at a total number of 78 numerical 
case studies under the influence of uncertain 
parameters. This shows that the influence of 
randomness of parameters on rail vibration 
responses can not be ignored. 

Calculating the minimum value (maximum in 
absolute values) of the rail displacement curves at 
different cases, one can plot the minimum data with 
the cases from S1 to S13 by different kinds of 
parameters in Figure 10(c). The value of the case S7 
is considered the standard value at each parameter 
analysis case. The increment or decrement (Δ) of the 
response value can be calculated by 

 
 
 7

max Response( )
= 100% 100%

max Response( )
iS

S
           (25) 

 
where i=1, 2, …, 13; max(Response(Si)) presents the 
maximum absolute value of response in the case ‘Si’. 

As shown in Figure 10(c), these lines have   
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Figure 10 Sensitivity analysis of systematically stochastic parameters on rail displacement at position of rail pad:      

(a) Time travel curves of vertical rail displacement under 78 calculation cases; (b) Partial enlarged figure of Figure 10(a); 

(c) Sensitivity analysis of random parameters (v=250 km/h) 

 
mostly continuous decreasing trend, and the ranges 
are comparatively large for the lines of the stiffness 
of rail pad krp, ballast kb and subgrade ks. Especially, 
for the subgrade stiffness ks, the maximum values of 
rail displacement in the vertical position do not 
decrease in linearity when the subgrade stiffness is 
increasing. Actually, the stiffness of subgrade has a 
huge impact on the rail displacement, especially at 
the S1 case (ks=40 MN/m) the maximum extremum 
displacement increased by 48% while at the S13  
case (ks=133 MN/m) the maximum extremum 
displacement decreased only by 12%. Compared 
with the sensitivity analysis of other stochastic 
parameters in the present study, the most important 
parameters should be considered their uncertainty, in 
turn the stiffness of subgrade, the stiffness of rail pad 
and then the stiffness of ballast. As for the rail 
displacement, the damping uncertainty of ballast-
subgrade system may be ignored due to the 
negligible effects acting on the responses, the 
difference of which is even less than 0.05%, referring 
to the local magnified drawing in Figure 10(c). 

To further fully validate the results in Figure 10, 
the accelerations of each typical structure of full 
train-ballast-subgrade coupled system are shown in 
Figure 11. The acceleration of each substructure is 
obviously influenced by the stiffness of subgrade, 

then the stiffness of rail pad, and the third one is the 
stiffness of ballast. The accelerations decreased with 
the increase of stiffness and damping in linearity or 
small nonlinearity. The stiffness of subgrade is 
always one of the most important factors that should 
be seriously considered. The trend curves of 
maximum responses values drawn in Figure 11 show 
that enhancing the subgrade and improving its 
stiffness in the extend permit will greatly reduce the 
vibration amplitude. 

It is worth mentioning that, referring to      
Figure 11(a), the systematically structural parameter 
uncertainty does not so greatly impact the vehicle 
acceleration maybe because the amplitude change of 
rail displacement is not so large, compared to the 
amplitude of track irregularity samples. In    
Figure 11(b), the rail pad damping is also a great 
important factor that should not be ignored for the 
rail accelerations control. The greater the damping of 
rail pad, the smaller the acceleration of rail element. 
In the opposite, increasing the stiffness of rail pad 
and ballast, the accelerations of the ballast and 
subgrade will increase, which will also make 
disadvantages for the ballast-subgrade interaction. 

Totally, in order to get better control of 
structural responses of train-ballast-subgrade 
coupled model established in the present paper, the    
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Figure 11 Sensitivity analysis of systematically random parameters on different dynamic responses: (a) Vertical vehicle 

acceleration; (b) Vertical rail acceleration; (c) Vertical ballast acceleration; (d) Vertical subgrade acceleration (v=250 km/h) 

 
stiffness uncertainty of subgrade, rail pad and ballast, 
as well as the damping uncertainty of rail pad, should 
be considered. Meanwhile, the uncertainty of ballast 
damping and subgrade damping may be ignored due 
to its insensitivity. 
 
3.3 Case studies and probability interval 

estimation 
Except for the excitations of random track 

irregularities, how great the stochastic systematically 
structural parameters will affect the dynamic 
responses needs investigation. The stochastic 
systematically structural parameters used in the 
present case study are shown in Table 2, where μ 
denotes the mean value and σ denotes the standard 
deviation value. 
3.3.1 Probability interval estimation of random 

responses 
Based on the train-ballast-subgrade coupled 

model established in the present paper, combining 
the randomness of the major structural parameters 
such as the stiffness of subgrade ks, rail pad kpc and 
ballast kb, the damping of rail pad cpc synchronously,  

Table 2 Stochastic systematically structural parameters 

Parameter 
Range  

in Ref. [29] 
Value used in 
present study 

Coefficient 
of variation

Rail pad stiffness, 
kpc/(MN·m−1) 

53−104 
μkpc=79, 
σkpc=8.5 0.108 

Rail pad damping,
cpc/(kN·s·m−1) 

30−63 
μcpc=45, 
σcpc=5 0.111 

Ballast stiffness, 
kb/(MN·m−1) 

165−220 
μkb=192,  
σkb=9 0.047 

Subgrade stiffness,
ks/(MN·m−1) 

40−133 
μks=86,  
σks=15 0.174 

 
the point set of stochastic parameters in Eq. (4) can 
be reconstructed as: 
 

pc pc b s, , , ,   q q q q q
  
 

k c k k       q=1, 2, npt      (26) 
 

All of the stochastic parameters are assumed to 
be normal distribution functions. The maximum and 
minimum correlation coefficients of the variables in 
Eq. (26) are assumed as 0.6 and 0.0. The stochastic 
parameters for the rail-ballast-subgrade models are 
listed in Table 1, and the vehicle parameters are listed 
in Appendix I. 

Deriving Eq. (26) into the dynamic equation of  



J. Cent. South Univ. (2021) 28: 2238−2256 

 

2251

Eq. (10) and solving the investigative procedures 
following the illustration in Figure 6, one can get the 
probability density function of random responses

( , )p z tZ . Therefore, there is 
 

f ( , ) ( , )d
z

zP z t p z t z
                      (27) 

 
where f ( , )P z t   is the cumulative distribution 

function and satisfies f ( , ) | = 1zP z t  . 

The time-history expectation values of random 
responses Ez(t) can be calculated by 

 

( ) ( , )dz zE t z p z t z



                     (28) 

 
It is convenient to get the dynamic indices of 

probability extreme estimation that evolve over 
time-history procedures. Define the time-history 
dynamic probability values of interval estimation 
with lower and upper limit values at specified 
probability value as zl(t) and zu(t), respectively. If the 
given confidence probability is ptarget, it satisfies 
 

( ) ( )

target ( ) ( )
( , )d ( , )dz u

l z

E t z t

z zz t E t
p p z t z p z t z          (29) 

 
where the sub-equations in Eq. (29) also satisfy 
 

( )

target ( )
( )

target ( )

2 ( , )d

2 ( , )d

z

l

u

z

E t

zz t
z t

zE t

p p z t z

p p z t z












                  (30) 

 
Therefore, the interval estimation with upper 

limit value zl(t) and lower limit values zu(t) can be 
calculated by 
 

 
 

f target

f target

( ) ( , ) 0.5 0.5

( ) ( , ) 0.5 0.5

l

u

z t P z t p

z t P z t p





   


  
            (31) 

 
where ( )   denotes the inverse function of 
cumulative distribution function f ( , )P z t . 
3.3.2 Dynamic analysis of random responses 

With the same track irregularity samples acting 
on former cases, the same typically results of random 
responses are shown as follows. 

As a schematic diagram, the three-dimensional 
time-history probability density function (3D PDF) 
of the vertical vehicle acceleration when the train 
speed is 250 km/h is shown in Figure 12, where the 
mountain-resembled time-history processes of PDF 
fully demonstrate the random dynamic 
characteristics of vehicle acceleration. 

Taking the vehicle response as an example, the 
random displacement and random acceleration of 

 

 
Figure 12 3D probability density functions (PDF) of 

vertical vehicle acceleration (v=250 km/h) 

 
car-body in the vertical position are plotted in  
Figure 13. The probability contours of vertical 
vehicle acceleration in Figure 13(d) are drawn from 
3D probability density functions in Figure 12. 

As shown in Figure 13(a) and the partial 
enlarged plot in Figure 13(b), the vertical 
displacement of car-body at the gravity center 
distributed in a range from −6.62 to −7.35 mm at the 
local peak, of which the expectation value at the peak 
is −6.99 mm and a huge difference reaches to    
0.73 mm between the two limit values. Therefore, 
the possible vehicle displacement under the 
influence of the systematically structural parameters 
randomness maybe increased by 4.86% or decreased 
by 5.29%. The phenomenon clearly defines the 
interval of PDF contours in Figure 13(b), where the 
time-history interval estimations with lower values 
zl(t) and upper values zu(t) at a confidence probability 
ptarget=99.74% are well coincided. Using the similar 
analysis ideas, the vertical accelerations of car-body 
at the gravity center distributed in a range from 0.34 
to 0.48 m/s2 at the local peak, with the expectation 
value 0.39 m/s2. The possible vehicle acceleration 
under the influence of the systematically structural 
parameters randomness maybe increased by 12.82% 
or decreased by 23.08%. Therefore, it is clear that the 
randomness of systematically structural parameters 
considered in Table 2 has the unnegligible effect on 
the vehicle’ random dynamic responses. 

The smoothness of rail surface is one of the 
most important factors that will greatly influence the 
railway running safety. Except for the track 
irregularity existing on the rail, the dynamic rail 
deformation randomness that occurs under vehicle 
loading due to the substructural stiffness and 
damping uncertainty is also extremely important. 

Similar with the plots in Figure 13, the random 
rail responses (displacement and acceleration) of rail    
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element at the rail pad in the vertical position are 
shown in Figure 14, where the possible time-history 
interval estimation is calculated by the probability 
density functions. From the subfigures in Figure 14, 
one can clearly know that the vertical displacement 
of rail element at the rail pad is distributed in a range 
from −1.29 to −2.01 mm at peak with the expectation 
value at −1.56 mm. A huge difference between the 
two limit values reaches to 0.72 mm, which means 
the possible rail displacement under the influence of 
the systematically structural parameters randomness 

maybe increased by 28.84% or decreased by 17.31%. 
Similar results are got from the random rail 
acceleration in Figures 14(c) and (d). 

It is worth noting that the difference of vehicle 
displacement between the upper and lower limit 
values at the peak in Figure 13(b) is 0.73 mm while 
the difference of rail displacement at peak in  
Figure 14(b) is 0.72 mm, under the influence of 
systematically structural parameters uncertainty. 
This phenomenon confirms the coupled vibration 
between the train and rail-ballast-subgrade system 

 

 
Figure 13 Random dynamic responses of car-body at gravity center: (a) Contours of PDF and its probability extremum 

values on random vertical displacement; (b) Partial enlarged figure of Figure 13(a); (c) Contours of PDF and its probability 

extremum values on random vertical acceleration; (d) Partial enlarged figure of Figure 13(c) 

 

 
Figure 14 Random dynamic responses of rail at rail pad: (a) Contours of PDF and its probability extremum values on 

random vertical displacement; (b) Partial enlarged figure of Figure 14(a); (c) Contours of PDF and its probability 

extremum values on random vertical acceleration; (d) Partial enlarged figure of Figure 14(c)   
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and the train can be directly deformed by the rail 
deformation caused by the systematically structural 
parameters uncertainty. 

Combined with the sensitivity results got in 
Section 3.2, the results discussed are strong to 
support the opinion that the change of the stiffness 
and damping of ballast-subgrade system due to the 
systematically structural parameter uncertainty will 
greatly influence the dynamic rail deformation, and 
directly influence the railway running stability and 
safety. When designing the rail-ballast-subgrade 
system, the uncertainty of systematically structural 
parameters, such as the stiffness of subgrade, rail pad, 
ballast and the damping of rail pad, needs to be 
priorly considered, especially the stiffness of 
subgrade and rail pad. 
 
4 Conclusions 
 

A computational probabilistic dynamic model 
of 3D train-ballast track-subgrade coupled system 
(TBTSS) for the stochastic dynamic estimation of 
train-ballast-subgrade interaction is established, 
where the coupling effect of track irregularities, the 
stiffness and damping uncertainty of ballast-
subgrade system are simultaneously considered. 
Number theoretical method was employed to the 
discrete multidimensional parameters points design. 
Several cases and sensitivity analysis are presented 
for detailed numerical investigation.  

1) Compared with MCM, the time-varying 
stochastic dynamic vibrations of train-ballast-
subgrade coupled system under systematically 
structural parameters uncertainty can be solved 
accurately with high efficiency by employing the 
probability density evolution method. 

2) With a series of parameter sensitivity 
analysis, the results show that the uncertainty of 
subgrade stiffness, rail pad stiffness, ballast stiffness 
and rail pad damping needs to be priorly considered 
in the railway design. Meanwhile, the uncertainty of 
ballast damping and subgrade damping is insensitive 
in the present study. 

3) The systematically structural parameter 
uncertainty of rail-ballast-subgrade system will 
greatly influence the dynamic rail deformation, and 
directly influence the railway running stability and 
safety. 

4) Using the present probabilistic model 

established in the paper, the stochastic probability 
evolutionary interval estimation of random dynamic 
responses can be accurately estimated at the given 
confidence probability. 
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Appendix  
 
Table A-1 Major parameters of vehicle used in this study 

Vehicle parameter Tractor Trailer 

Mass of the body, Mc/kg 48×103 44×103

Roll mass moment of the body, 
Jcx/(kg·m2) 

115×103 100×103

Pitch mass moment of body, Jcv/(kg·m2) 2700×103 2700×103

Yaw mass moment of the body, 
Jcz/(kg·m2) 

2700×103 2700×103

Mass of the bogie, Mt/kg 3200 2400 

Roll mass moment of the bogie, 
Jtx/(kg·m2) 

3200 2400 

Pitch mass moment of the bogie, 
Jtv/(kg·m2) 

6800 6800 

Yaw mass moment of the bogie, 
Jtz/(kg·m2) 

7200 7200 

Mass of the wheel-set, mw/kg 2400 2400 

Roll mass moment of the wheel-set, 
Jwx/(kg·m2) 

1200 1200 

Yaw mass moment of the wheel-set, 
Jwz/(kg·m2) 

1200 1200 

Longitudinal stiffness of the 1st 
suspension system, per side, 

k1x/(kN·m−1) 
9000 15000 

Lateral stiffness of the 1st suspension 
system, per side, k1v/(kN·m−1) 

1040 700 

Vertical stiffness of the 1st suspension 
system, per side, k1z/(kN·m−1) 

3000 5000 

Longitudinal stiffness of the 2nd 
suspension system, per side, 

k2x/(kN·m−1) 
240 280 

to be continued 
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Continued 
Vehicle parameter Tractor Trailer 

Lateral stiffness of the 2nd suspension 
system, per side, k2v/(kN·m−1) 

400 300 

Vertical stiffness of the 2nd suspension 
system, per side, c1x/(kN·m−1) 

480 560 

Longitudinal damping of the 1st 
suspension system, per side, 

c1v/(kN·s·m−1) 
50 0 

Lateral damping of the 1st suspension 
system, per side, c1z/(kN·s·m−1) 

50 50 

Vertical damping of the 1st suspension 
system, per side, c2x/(kN·s·m−1) 

30 30 

Longitudinal damping of the 2nd 
suspension system, 

per side, c2v/(kN·s·m−1) 
60 120 

Lateral damping of the 2nd suspension 
system, per side, c2y/(kN·s·m−1) 60 60 

Vertical damping of the 2nd suspension 
system, per side, c2z/(kN·s·m−1) 

30 25 

Full length of vehicle, L/m 24.775 24.775

Half-distance of two bogies, Lc/m 17.375/2 17.375/2

Half-distance of two wheel-sets, Lt/m 1.25 1.25 

Half-span of the 2nd vertical 
suspension system, b1/m 

1.00 1.00 

Half-span of the 1st vertical 
suspension system, b2/m 

0.95 0.95 

Half-span of the 2nd horizontal 
suspension system, b3/m 

1.00 1.00 

Half-span of the 1st horizontal 
suspension system, b4/m 

0.95 0.95 

Half-span of wheel-set, b0/m 1.496/2 1.496/2

Lateral distance from wheel-set 
to bridge center, e/m 

2.50 2.50 

Vertical distance from rail to bridge 
center, h/m 

1.80 1.80 

Height of body above the 2nd 
suspension system, h1/m 

0.80 0.80 

Height of the 2nd suspension system 
above bogie, h2/m 

0.30 0.20 

Height of bogie above wheel-set, h3/m -0.05 0.10 

Height of wheel-set above bridge 
centroid, h4/m 

2.30 2.30 

Initial rolling radius of wheel, Rw0/m 0.92/2 0.92/2 
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中文导读 
 

基于结构参数不确定的列车-轨道-路基系统耦合振动概率分析 
 
摘要：列车荷载作用下有砟轨道-路基耦合系统结构参数的不确定性引起的随机振动对行车安全的影

响不可忽略。本文提出了一种基于概率密度演化理论的三维列车-有砟轨道-路基耦合系统随机振动概

率仿真分析模型，该模型可同时考虑轨道随机不平顺、道砟层和路基层随机刚度、随机阻尼等耦合效

应，为列车-轨道-路基系统随机振动分析提供了一种全新的计算分析方法。采用数论方法对多维随机

参数进行代表性离散数组点设计。结果表明，与蒙特卡罗模拟方法相比，概率密度演化模型开展随机

振动分析更为准确、高效。基于算例开展了多维随机参数的敏感性分析，系统地评估了不确定结构随

机参数的相对重要性，并在此基础上探讨了列车-轨道-路基系统的随机概率演化机制。 
 
关键词：列车-轨道-路基耦合系统；结构参数不确定性；随机振动；概率密度演化方法；轮轨关系 


