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Abstract: In this work, synchronous cutting of concave and convex surfaces was achieved using the duplex helical 
method for the hypoid gear, and the problem of tooth surface error correction was studied. First, the mathematical model 
of the hypoid gears machined by the duplex helical method was established. Second, the coordinates of discrete points on 
the tooth surface were obtained by measurement center, and the normal errors of the discrete points were calculated. Third, 
a tooth surface error correction model is established, and the tooth surface error was corrected using the Levenberg–
Marquard algorithm with trust region strategy and least square method. Finally, grinding experiments were carried out on 
the machining parameters obtained by Levenberg–Marquard algorithm with trust region strategy, which had a better effect 
on tooth surface error correction than the least square method. After the tooth surface error is corrected, the maximum 
absolute error is reduced from 30.9 μm before correction to 6.8 μm, the root mean square of the concave error is reduced 
from 15.1 to 2.1 μm, the root mean square of the convex error is reduced from 10.8 to 1.8 μm, and the sum of squared 
errors of the concave and convex surfaces was reduced from 15471 to 358 μm2. It is verified that the Levenberg–Marquard 
algorithm with trust region strategy has a good accuracy for the tooth surface error correction of hypoid gear machined 
by duplex helical method. 
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1 Introduction 
 

Owing to the influence of factors such as 
machining error, deformation caused by force and 
heat, the tooth surface of hypoid gear deviates from 
the designed tooth surface, which affects the 
transmission quality of the gear pair, and ultimately 

reduces the stability and durability of the car. In order 
to obtain a high precision tooth surface, the 
coordinate of discrete points on the tooth surface is 
obtained using three-coordinate measurement, and 
an error correction model is established to correct the 
machining parameters, which is an effective method 
to achieve compensation of tooth surface error [1−5]. 
At present, some scholars have done some research 
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on tooth surface error correction. LITVIN et al [6] 
established an error sensitive matrix of machining 
parameters increments, and minimized tooth surface 
errors by modifying the machining parameters. 
WANG et al [7] established a tooth shape error 
correction method based on proportional correction 
parameters to correct the tooth surface error, 
avoiding the solution of complex equations. TIAN  
et al [8] selected correction variables by analyzing 
the linear correlation between each machining 
parameter and the measured error, so that fewer 
machining parameters were selected to correct the 
tooth surface error. SU et al [9] established a tooth 
surface error correction model based on numerical 
control, machining tool. Through multiple 
optimizations and changing the weighting 
coefficients, it is possible to obtain higher precision 
correction requirements for tooth surfaces. LI et al 
[10] established a mapping relationship between 
machine tool motion parameters and tooth surface 
errors, and minimized tooth surface errors through 
automatic correction of machine tool motion 
parameters. SHIH et al [11, 12] and JIANG et al [13] 
used numerical control machine tools to make  
high-order corrections to the tooth surface error. In 
terms of the algorithm used to correct the tooth 
surface error, the least square method was first used 
[6]. Subsequently, in order to improve the stability 
and accuracy of the solution, singular value 
decomposition singular value decomposition     
[14, 15] and sequential quadratic program [16] 
methods were proposed. But for excessive morbidity 
problems, Levenberg–Marquard [17−19] has a better 
effect. 

The above literatures on the tooth surface error 
correction of spiral bevel gears are mainly aimed at 
the spiral bevel gears cut by the five-cut method, and 
limited research has been conducted on the duplex 
helical method. When using the five-cut method, the 
concave and convex surfaces are cut separately, so 
the error correction of the tooth surface is easy 
relatively. However, the duplex helical method has 
the characteristics of concave and convex surfaces 
simultaneous cutting, it is more difficult to obtain 
accurate tooth surfaces compared with the five-cut 
method. Moreover, due to the characteristics of high 
processing efficiency and good quality consistency, 
the duplex helical method is replacing the five-cut 
method as the mainstream machining method of 
hypoid gears [20]. Therefore, it is the main purpose 
of this paper to study the tooth surface error 

correction method of hypoid gears machining by 
duplex helical method. 
 
2 Mathematical model of hypoid gear 

machining by duplex helical method 
 

The concave and convex cutting cones of pinion 
are shown in Figure 1. The coordinate systems 
applied for the pinion generation are shown in  
Figure 2, where Sp is a coordinate system rigidly 
fixed to the head cutter; Sa is the auxiliary coordinate 
system; Sm1, Sc and Sd are fixed coordinate systems 
rigidly fixed to the cutting machine; Sb and S1 are the 
movable coordinate systems rigidly fixed to the 
cradle and pinion, respectively; q1, sr1, i, and j 
represent the center roll position, radial distance, tilt 
angle, and swivel angle, respectively; e1, xb1, m1, xg1, 
mb1 and hl represent the work offset, sliding base, 
machine root angle, the machine center to the cross 
point, ratio of roll and the velocity coefficient of 
helical motion, respectively; φ is the rotation angle 
of the pinion. When the pinion is cut by the duplex 
helical method, the cradle rotates around the axis zm1 
while moving as a helix along the axis  zm 1.  
 

  
Figure 1 Concave and convex cutting cone of pinion:   

(a) Concave; (b) Convex 
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Figure 2 Coordinate systems applied for pinion 

generation 

 
Simultaneously, the pinion makes a rotary motion 
around the axis xd. The mathematical model of the 
tooth surface of pinion machined by the duplex 
helical method is derived as follows: 

First, the vector function rp and its unit normal 
np of the cutting point on the cutting cone for the 
pinion cutter are established. As shown in Figure 1, 
in the sp coordinate system, rp and np can be 
expressed as [21−23]: 
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where sp and θp are the Gaussian coordinates of the 
pinion tooth surface, αp and rc1 are the blade angle 
and cutter point radius, respectively. The upper and 
lower signs in Eqs. (1) and (2) correspond to the 
convex and tooth surface error correction concave 
surfaces of the pinion. 

Then, the rp and np are converted into the 
coordinate system S1 according to the coordinate 
systems applied for the pinion generation shown in 
Figure 2. As a result, the tooth surface equation r and 
its unit normal vector n of the pinion in the 
coordinate system S1 can be obtained by the 
following equation: 
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where matrix M1p represents the transformation 
matrix from the coordinate system Sp to S1, and 

matrix L1p is the third-order submatrix of matrix M1p. 
M1p and L1p can be expressed as: 
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1p 1p= (1: 3,  1: 3)L M                           (5) 

 
where q=q1+φ·mb1, xb=xb0−hl·φ·mb1. 

In addition, the meshing equation should be 
satisfied when forming a pinion [24, 25]: 
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Combine Eqs. (2) and (6) to eliminate the 
variable up, and the tooth surface equation of pinion 
can be expressed as [26]: 
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where ξl (l=1, 2, …, 10) represents the machining 
parameters of the machine tool q1, sr1, mb1, γm1, xb1, 
xg1, e1, hl, mb1 and i. 
 
3 Tooth surface dispersion and tooth 

surface error calculation 
 

The tooth surface error is defined as the 
deviation of the actual tooth surface and the 
theoretical tooth surface in the normal vector 
direction of the theoretical tooth surface. And the 
tooth surface error needs to be compared at the same 
position of the actual tooth surface and the 
theoretical tooth surface. Therefore, the tooth surface 
needs to be discretized, that is, the tooth surface is 
divided into uniform grid points. Figure 3 shows the 
schematic diagram of tooth surface dispersion. 
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Figure 3 Schematic diagram of tooth surface dispersion 

 

According to the Gleason technical standard, 
after shrinking the tooth surface, a total of 45 points 
in 5 rows and 9 columns are taken in the direction of 
tooth length and tooth height. The relationship 
between the coordinate (L, R) of the discrete point on 
the rotating projection surface and the tooth surface 
equation can be expressed as: 
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where p is the unit vector of the axis direction of the 
pinion. According to the geometric parameters of the 
pinion blank, the discrete point coordinates (L, R) on 
the rotation projection surface can be obtained, and 
then the simultaneous Eqs. (7) and (8) can obtain the 
radial vector rt (x, y, z) and normal vector nt (x,y,z) of 
the spatial coordinates for the discrete points. The 
coordinate rt

*
 (x, y, z) of the discrete points can be 

obtained using the coordinate measuring system. 
Therefore, the calculation formula of the normal 
error for the tooth surface can be expressed as: 
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where t=1, 2, …, 90. 

It is worth noting that the normal error of the 
tooth surface is calculated in the measurement 
coordinate system. Therefore, it is necessary to 

convert the discrete point coordinates of the 
theoretical tooth surface into the coordinate system 
of the three-coordinate measuring system. When the 
pinion is machined by the duplex helical method, the 
concave and convex surfaces are cut simultaneously. 
Therefore, t in Eq. (9) is 90 discrete points, and εt is 
expressed as the normal error of the 90 discrete 
points on the tooth surface. 
 
4 Influence of machining parameters on 

tooth surface error 
 

In order to analyze the influence of machining 
parameters on the tooth surface error. Let the angle 
change to 0.05°, the linear parameter change to  
0.05 mm, and the roll ratio parameter to 0.005. 
Figures 4−13 show the corresponding tooth surface 
error ease-off diagrams when 10 machining 
parameters change.  
 

 
Figure 4 Radial distance sr1: (a) Concave; (b) Convex 

(Unit: μm) 

 

 
Figure 5 Tilt angle i: (a) Concave; (b) Convex (Unit: μm) 

 

 
Figure 6 Swivel angle j: (a) Concave; (b) Convex   

(Unit: μm) 
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Figure 7 Work offset e1: (a) Concave; (b) Convex   

(Unit: μm) 

 

 
Figure 8 Machine root angle γm1: (a) Concave; (b) Convex 

(Unit: μm) 

 

 
Figure 9 Machine center to back xg1: (a) Concave;      

(b) Convex (Unit: μm) 

 

  
Figure 10 Sliding base xb1: (a) Concave; (b) Convex  

(Unit: μm) 

 

It can be seen from Figures 4−13 that the 
machining parameters that have an influence on the 
helix angle error include radial distance, sliding base 
and center roll position, of which the radial distance 
has the greatest influence on the helix angle error. 
The machining parameters that have influence on the 

 

 
Figure 11 Ratio of roll mb1: (a) Concave; (b) Convex  

(Unit: μm) 

 

 
Figure 12 Center roll position q1: (a) Concave;        

(b) Convex (Unit: μm) 

 

 
Figure 13 Velocity coefficient of helical motion hl:     

(a) Concave; (b) Convex (Unit: μm) 

 
diagonal error are tilt angle, swivel angle, work 
offset, ratio of roll and velocity coefficient of helical 
motion, of which the ratio of roll has the greatest 
influence on the diagonal error. The machine root 
angle and the machine center to back have different 
effects on the error shape of the concave and convex 
surfaces. And the concave and convex surfaces of the 
machine center to back have an effect on the pressure 
angle error and the diagonal error, respectively. In 
the subsequent tooth surface error correction process, 
the influence of machining parameters on the tooth 
surface error can provide a theoretical reference for 
parameter selection and initial value selection. 
 
5 Tooth surface error correction model 
 

When machining parameters have errors, the 
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tooth surface will also produce errors. Therefore, the 
tooth surface error can be minimized by modifying 
the machining parameters of theoretical tooth 
surface. The tooth surface error of each discrete point 
of the theoretical tooth surface is the superposition of 
the tooth surface error caused by small changes in 
various machining parameters, that is, the total 
differentiation of Eq. (7): 
 

w w
t t t t
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l ll l
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Multiply both sides of Eq. (10) by unit normal 

vector n, and the coordinate parameters θ and φ are 
located in the tangent plane of the tooth surface, so 
the normal error of the tooth surface can be obtained 
as: 
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Simultaneous Eqs. (9) and (11) establish the 

minimum optimization model of tooth surface error: 
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where Δξl is the correction amount of the machining 
parameters after the tooth surface error correction. 
The implementation of the Levenberg–Marquard 
algorithm with trust region strategy is to introduce 
the damping coefficient to control the size and 
direction of the iteration step within the radius of the 
trust region, thereby ensuring that each iteration step 
is accurate and efficient. Therefore, in this paper, the 
Levenberg–Marquard algorithm with trust region 
strategy [27] is used to solve Eq. (12), among them, 
when updating the radius of the trust region, tangent 
single dogleg method is selected [28]. 
 
6 Numerical examples and verification 
 

Take the hypoid gear pair as an example, in 
which the gear is machined by the forming method, 
and the pinion is machined by the duplex helical 
method, and the tooth surface error of the pinion is 
corrected. It is worth noting that in order to ensure 
that the cutter head and the set of machine 
parameters can synchronously control the meshing 
characteristics of concave and convex when the 
duplex helical method is used to machine the pinion, 
the design and cutting of the pinion need to meet the 

following two conditions. First, the tooth blank of 
the pinion should be designed for duplex tapered 
tooth depth. Second, the machine tool for machining 
pinion must have the functions of tilt and spiral 
motion, and the tilt and spiral motion can be obtained 
by using the five-axis linkage CNC spiral bevel gear 
machine tool. The main geometric parameters of the 
pinion are listed in Table 1. The initial values of 
machining parameters for the pinion are shown in 
Table 2. The discrete point measurement of tooth 
surface is shown in Figure 14. The initial tooth 
surface error diagram measured and calculated by 
the three-coordinate measuring system is shown in 
Figure 15. The Levenberg–Marquard algorithm with 
trust region strategy is used to correct the tooth 
 

Table 1 Main geometric parameters of pinion 

Parameter Value 

Number of teeth 9 

Shaft angle/(°) 90 

Pinion offset/mm 44.45 

Face width/mm 77.11 

Mean cone distance/mm 186.085 

Pitch angle/(°) 17.833 

Face angle of blank/(°) 20.433 

Root angle/(°) 16.667 

Addendum/mm 15.470 

Dedendum/mm 6.470 

 

Table 2 Initial value of machining parameters for pinion 

Item Initial value 

Blade angle/(°) 
Concave 14 

Convex 31 

Point radius/mm 
Concave 151.955

Convex 148.405 

Radial distance/mm 172.791 

Tilt angle/(°) 18.940 

Swivel angle/(°) 307.350 

Work offset/mm 51.185 

Machine root angle/(°) 355.370 

Machine center to back/mm 0.943 

Sliding base/mm 48.464 

Ratio of roll 4.101 

Center roll position/(°) 59.840 

Velocity coefficient of helical motion 8.214 
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Figure 14 Discrete point measurement of tooth surface 

 

surface error shown in Figure 15 and compared with 
the least square method used in Ref. [29]. When 
selecting the machining parameters that need to be 
corrected, it is better to select 10 machining 
parameters to correct the tooth surface error 
compared to selecting fewer machining parameters. 
The corrected values of the machining parameters 
after tooth surface error correction are listed in  
Table 3. 

Based on the corrected values of the machining 
parameters shown in Table 3, the theoretical tooth 
surface errors corrected by Levenberg–Marquard 
algorithm with trust region strategy and least square 
method are calculated respectively. After the tooth 

surface error is corrected, the maximum absolute 
value of normal errors corresponding to the 
Levenberg–Marquard algorithm with trust region 
strategy and the least square method are 5.0 and  
6.7 μm, respectively. The sums of squared errors of 
the concave and convex surfaces corresponding to 
the Levenberg–Marquard algorithm with trust region 
strategy and the least square method are 251 and  
626 μm2, respectively. Therefore, the    
Levenberg–Marquard algorithm with trust region 
strategy has a better correction effect on the tooth 
surface error. In order to further check the actual 
effect of the Levenberg–Marquard algorithm with 
trust region strategy on the tooth surface error 
correction, the corrected machining parameters are 
used to grind the tooth surface on the eight-axis five-
link CNC spiral bevel gear grinding machine 
H650GA. Figure 16 shows the actual tooth surface 
error diagram after grinding. Table 4 lists the initial 
and corrected tooth surface error data. 

It can be seen from Table 4 that the corrected 
tooth surface error is greatly reduced, the maximum 
absolute error is reduced from 30.9 μm before 
correction to 6.8 μm, the root mean square of the 
concave error is reduced from 15.1 to 2.1 μm, the 
root mean square of the convex error is reduced from 
10.8 to 1.8 μm, and the sum of squared errors of the 
concave and convex surfaces is reduced from 15471 
to 358 μm2. Correction effect fully meets 
engineering application requirements. 

 

 
Figure 15 Initial tooth surface error diagram (Unit: μm)   



J. Cent. South Univ. (2021) 28: 1402−1411 

 

1409
 
Table 3 Correction value of machining parameters for pinion 

Parameter Levenberg-Marquard algorithm with trust region strategy Least square method 

Radial distance/mm 0.846 0.761 

Tilt angle/(°) 0.127 0.046 

Swivel angle/(°) 0.292 0.242 

Work offset/mm 0.934 0.811 

Machine root angle/(°) −0.112 −0.036 

Machine center to back/mm 0.297 0.225 

Sliding base/mm 0.202 −0.05 

Ratio of roll 0.022 0.020 

Center roll position/(°) 0.029 0.010 

Velocity coefficient of helical motion 0.475 0.433 

 

 
Figure 16 Actual tooth surface error after grinding (Unit: μm) 

 
Table 4 Initial and corrected tooth surface error data 

Tooth 
surface 

Maximum 
absolute 
error/μm 

Root mean 
square of 
concave 
error/μm

Root mean 
square of 
convex 

error/μm 

Sum of 
squared 

errors/μm2

Initial 30.9 15.1 10.8 15471 

Corrected 6.8 2.1 1.8 358 

 
7 Conclusions 
 

In this work, the tooth surface error of hypoid 
gears cutting machined by the duplex helical method 
is corrected, and the tooth surface grinding 
experiment is carried out using the modified 
machining parameters. The conclusions are 
summarized as follows: 

1) The mathematical model of the hypoid gears 

machined by the duplex helical method is  
established; 

2) A tooth surface error correction model is 
established. The Levenberg–Marquard algorithm 
with trust region strategy and the least square method 
are used to correct the error tooth surface. 
Comparison shows that the Levenberg–Marquard 
algorithm with trust region strategy has a better 
effect on the tooth surface error correction. 

3) The machining parameters obtained by the 
Levenberg–Marquard algorithm with trust region 
strategy are used to grind the tooth surface, and the 
following results are obtained. The corrected tooth 
surface error is greatly reduced. The maximum 
absolute error is reduced from 30.9 μm before 
correction to 6.8 μm, the root mean square of the 
concave error is reduced from 15.1 to 2.1 μm, the 
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root mean square of the convex error is reduced from 
10.8 to 1.8 μm, and the sum of squared errors of the 
concave and convex surfaces is reduced from 15471 
to 358 μm2. It is verified that the Levenberg–
Marquard algorithm with trust region strategy has a 
good accuracy for the tooth surface error correction 
of hypoid gear processed by double helix method. 
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中文导读 
 

双螺旋法切削准双曲面齿轮的齿面误差修正 
 
摘要：本文研究了双重螺旋法同步切削准双曲面齿轮凹凸两面的齿面误差修正问题。首先，建立了双

重螺旋法切削准双曲面齿轮的数学模型；其次，通过测量中心得到齿面离散点的坐标，计算离散点的

法向误差；第三，建立了齿面误差修正模型，并采用含信赖域策略的 Levenberg-Marquard 算法和最小

二乘法对齿面误差进行修正；最后，利用对齿面误差的修正效果更好的含信赖域策略的 Levenberg-
Marquard 算法得到的加工参数对齿面进行磨削实验。实验结果表明，对齿面误差进行修正后，最大绝

对误差从初始的 30.9 μm 降低为 6.8 μm，凹面误差均方根从初始的 15.1 μm 降低为 2.1 μm，凸面误差

均方根从 10.8 μm 降低为 1.8 μm，凹凸两面误差平方和从初始的 15471 μm2降低为 358 μm2。验证了

含信赖域策略的 Levenberg-Marquard 算法对双螺旋法切削准双曲面齿轮的齿面误差修正具有良好的

精度。 
 
关键词：双重螺旋法；准双曲面齿轮；误差测量；含信赖域策略的 Levenberg-Marquard 算法；齿面误

差修正 


