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Abstract: Discernment of seismic soil liquefaction is a complex and non-linear procedure that is affected by diversified 
factors of uncertainties and complexity. The Bayesian belief network (BBN) is an effective tool to present a suitable 
framework to handle insights into such uncertainties and cause–effect relationships. The intention of this study is to use 
a hybrid approach methodology for the development of BBN model based on cone penetration test (CPT) case history 
records to evaluate seismic soil liquefaction potential. In this hybrid approach, naive model is developed initially only 
by an interpretive structural modeling (ISM) technique using domain knowledge (DK). Subsequently, some useful 
information about the naive model are embedded as DK in the K2 algorithm to develop a BBN-K2 and DK model. The 
results of the BBN models are compared and validated with the available artificial neural network (ANN) and C4.5 
decision tree (DT) models and found that the BBN model developed by hybrid approach showed compatible and 
promising results for liquefaction potential assessment. The BBN model developed by hybrid approach provides a 
viable tool for geotechnical engineers to assess sites conditions susceptible to seismic soil liquefaction. This study also 
presents sensitivity analysis of the BBN model based on hybrid approach and the most probable explanation of liquefied 
sites, owing to know the most likely scenario of the liquefaction phenomenon. 
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1 Introduction 
 

Assessment of seismic soil liquefaction 
potential is a probabilistic issue rather than 
deterministic owing to the complexity and 

uncertainty involved in earthquake and soil 
parameters and site conditions. 

Previous deterministic methods of seismic soil 
liquefaction potential present no insight to the 
liquefaction probability and offer only whether 
seismic soil liquefaction occurs or not. Therefore,  
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presently probabilistic methods can better cater 
engineering requirements of seismic risk analysis. 
In recent few decades, with the increasing 
accumulation of in-situ data, soft computing 
methods, such as artificial neural network (ANN) 
[1−3], support vector machine (SVM) [4−6], 
relevance vector machine (RVM) [7], stochastic 
gradient boosting (SGB) [8] and genetic 
programming (GP) [9, 10], have been used to 
evaluate the potential of seismic soil liquefaction. 
Nevertheless, most of the existing soft computing 
methods have the following limitations [11]: 1) due 
to limited use of prior knowledge, they can not 
easily conclude the assessment results; 2) they 
remain difficult to integrate various information 
sources into one unified system; 3) they are not 
proficient in assessing uncertainty. 
    Bayesian belief network (BBN) is a proficient 
tool for knowledge presentation and reasoning 
under the influence of uncertainties [12]. It can 
integrate domain knowledge (DK) and various 
source data into a coherent system, primarily, it 
allows not only sequential inference (from causes to 
results) but also reverse inference (from results to 
causes). Recently, BBN has been used widely in 
diversified fields such as regional risk assessment 
[13], seismic hazard assessment [14, 15], risk 
assessment for buildings [16−18], loss assessment 
[19, 20], optimization and reliability [21−23]. 
WEBER et al [24] conducted a comprehensive 
review of the application of BBN in risk analysis in 
2010. However, limited research work is reported in 
the literature regarding assessment of seismic soil 
liquefaction potential using BBN. JUANG et al [25] 
developed a probability-based liquefaction potential 
assessment method using logistic regression and 
Bayesian mapping. BAYRAKTARLI [26] 
explained the application of BBN in assessing 
seismic soil liquefaction. HUANG et al [27] 
considered parameters uncertainty to determine the 
model uncertainty of seismic soil liquefaction 
evaluation model. HU et al [28] proposed a BBN 
model based on standard penetration test (SPT) case 
histories in sandy soils. In this study, the intention is 
to use a hybrid approach methodology using K2 
algorithm and DK for the development of 
probabilistic graphical model based on cone 
penetration test (CPT) case history records data to 
assess seismic soil liquefaction potential. The study 
examines the capability of CPT-based BBN model 
developed by hybrid approach with the C4.5 

decision tree (DT) and available artificial neural 
network models in literature. This study also 
presents sensitivity analysis of the BBN model 
based on hybrid approach and the most probable 
explanation of liquefied sites. 
    This paper is structured into seven sections. In 
Section 2, the basics of BBN are summarized. 
Section 3 describes the details of hybrid approach 
for the development of a BBN model. The 
development of probabilistic BBN models is 
presented in Section 4, which is the main objective 
of this work. Section 5 presents the evaluation 
measures which include metrics of overall accuracy, 
Matthews correlation coefficient (MCC), recall, 
precision and F-measure. Results of training (74 
cases) and testing (35 cases) phases of BBN models 
are compared and validated with the available 
models in literature in Section 6, and Section 7 sets 
out the most relevant conclusions and future work 
of the study. 
 
2 Basics of Bayesian belief network 
 
    Bayesian belief network is a graphical model 
that allows a probabilistic relationship between a set 
of variables [12]. BBN is a directed acyclic graph 
(DAG), which consists of nodes and arcs. Nodes 
denote variables of interest, and the arcs among 
them represent causal relationships or dependencies 
between variables [12, 22, 23]. The absence of an 
arc among two variables is a sign of conditional 
independence between the respective variables. The 
BBN is composed of the following components as 
depicted in Figure 1: 

1) Variables set (e.g. B1, B2 and B3) and 
directed arcs linking the variables; 

2) Mutually exclusive states for each variable 
(e.g. for B1 and B2 the states are High, Medium and 
Low); 

3) Specified conditional probability for each 
variable by parents (e.g. for B3). 
    In the BBN, relationships among the variables 
are represented in the form of family relationship, 
where a variable B1 is called to be the parent of B3 
and B3 is the child of B1. The dependencies are 
measured by the conditional probability table of 
each node in a given network; for variables without 
parents, the probabilities are reduced to an 
unconditional probability (UP) (e.g. B1 and B2 in  
at Table 1). The effectiveness of BBN lies in     
its flexibility to acquire top-down inference,  
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Figure 1 Schematic of Bayesian belief network 

 
Table 1 Conditional probability table 

B1 B2 
B3 

High Medium Low 

High High P(B3=High|B1=High, B2=High) P(B3=Medium|B1=High, B2=High) P(B3=Low|B1=High, B2=High) 

High Medium P(B3=High|B1=High, B2=Medium) 
P(B3=Medium|B1=High, 

B2=Medium) 
P(B3=Low|B1=High, B2=Medium) 

…
 

…
 

…
 

…
 

…
 

Low Medium P(B3=High|B1=Low, B2=Medium) 
P(B3=Medium|B1=Low, 

B2=Medium) 
P(B3=Low|B1=Low, B2=Medium) 

Low Low P(B3=High|B1=Low, B2=Low) P(B3=Medium|B1=Low, B2=Low) P(B3=Low|B1=Low, B2=Low) 

 
considering the cause (or parent) and inferring the 
possible effect (or child), and bottom-up inference, 
considering the effect (child) and inferring the 
possible cause (parent). The posterior probability 
can be found by using Bayesian formulas and 
conditional independence rule as follows: 
 

     
 

P Y X P X
P X Y

P Y
                    (1) 

 
     1 1 2 1,  ,  nP x x P x P x x   

     1 2 1, ,  ,  n nP x x x x                     (2) 
 

    1
1

,  ,  
n

n i i
i

P x x P x x


                (3) 

 
where P(X|Y) is one’s belief for hypothesis X upon 
observing evidence Y which is termed as posterior 
probability; P(Y|X) is the likelihood that Y is 
observed if X is true; P(Y) is called prior probability 
that the hypothesis holds true; P(X) is the 
probability that the evidence takes place, and π(xi) 
is a set of values for the parent of xi. In seismic soil 
liquefaction, a lot of historic information about 
liquefaction are accumulated, for instance 
liquefaction surface manifestation, relationship 

between significant factors of soil liquefaction, and 
standard specification, which can be served as an 
effective prior knowledge for fixing the BBN 
structure. Therefore, the prior knowledge is utilized 
to develop the structure of BBN models to prevent 
unreasonable relationships caused by overfitting, 
and data learning is utilized to acquire the 
conditional probability tables of nodes in the 
network structure. 
 
3 Hybrid approach 
 
    In this section hybrid approach for the 
development of a BBN model is highlighted. The 
naive model is developed initially by using 
interpretive structural modeling (ISM) approach 
which is based on DK. DK is a specific, specialized 
and valid field knowledge that can provide certain 
information, such as the relationship between 
variables, from the literature review or from field 
experts. The naive model built by ISM approach 
can thereafter provide several significant 
information in the K2 algorithm to perform 
structure-based learning from the CPT case history 
records data to develop a BBN model. 
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3.1 Naive model based on ISM 
    The ISM methodology was presented by 
WARFIELD [29] to study complex socioeconomic 
systems. ISM can be used as a systematic means to 
recognize the contextual relationships between the 
measured elements linked with an issue to be 
examined. The ISM approach has been effectively 
utilized in diversified set of problems, for instance 
identification and benchmark of seismic soil 
liquefaction significant factors [30], risk 
management in supply chains [31], and energy 
conversation [32]. ISM can be illustrated in the 
subsequent steps, for the present study, as suggested 
by SUSHIL [33]: 
    Step 1: Identification of factors related to the 
problem or issue through literature review, etc. 
    Step 2: Fixing the contextual relationships 
between such factors, i.e., V (row factor influences 
the column factor), A (column factor influences the 
row factor), O (no relationship between the row and 
column factors), or X (bidirectional relations from 
row to column and column to row factors) 
according to domain knowledge whether or not one 
factor leads to another. 
    Step 3: Construct a structural self-interaction 
matrix (SSIM) based on comparison. 
    Step 4: SSIM is converted to initial 
reachability matrix, by replacing 1 or 0 for the 
original symbols, V, A, X and O as per the rules for 
transformation. 
    Step 5: Transitivity of the initial reachability 
matrix is checked in order to develop the final 
reachability matrix. The transitive relationships 
mean that if variable d is associated with variable e 
and variable e is associated with variable f, then 
variable d is certainly associated to variable f. 
    Step 6: The reachability and antecedent sets of 
factors are developed from the final reachability 
matrix. The reachability set for a particular factor 
includes the factor itself and other factors which it 
may achieve, and antecedent set includes factor 
itself and other factors that can help achieve it. 
Subsequently, the intersection of these sets is found 
for the entire factors. The factor for reachability and 
intersection sets are identical listed in the first level. 
This factor is then separated from other factors for 
the next iteration process. Repeat the same level of 
iteration process until all levels of each factor are 
established. 
    Step 7: Removing the transitivity links and 

drawing a directed graph (digraph) from the final 
reachability matrix. 
    Step 8: Converting the digraph into an 
ISM-based hierarchical model by replacing the 
nodes with statements. 
    Step 9: The conceptual discrepancy of model 
is verified and improved for necessary 
modifications and corrections. 
    The hierarchical structure can be easily 
constructed according to the steps mentioned above 
and more details can be found in Section 4.3. 
 
3.2 BBN model based on hybrid approach 
    BBN is a probabilistic graphical network 
based upon Bayes’ theorem, which constitutes a 
dynamic theoretical model in the field of uncertain 
knowledge representation and reasoning. The 
development of BBN model is complicated and 
could be constructed in any one of three ways: 1) 
based on DK; 2) using algorithms to directly learn 
from the data; 3) combining DK and machine 
learning algorithm. The third method is typically 
utilized in practical applications with large number 
of variables and immense datasets, as it not only 
decreases the search space by integrating prior DK, 
but also affirms the effectiveness of the model. 
    AHMAD et al [34] investigated the 
performance of K2 machine learning (ML) 
algorithm to evaluate earthquake-induced 
liquefaction potential of soil using Bayesian belief 
network learning software, Netica, and found that 
BBN-K2 model outperform the Tabu search and 
Hill climbing BBN models in terms of predictive 
performance measures. The algorithm has low data 
dependence in structure learning process and is a 
score-based method that may be used to perform 
actual data analysis and fitting, as proposed by 
COOPER et al [35]. Therefore, K2 algorithm is 
used in this work. The algorithm has several 
requirements: 1) variables in the dataset are discrete; 
2) events are independent; 3) acquired data are 
integrated; 4) order of the entire nodes is defined; 5) 
the maximum parent nodes are identified. 
 
4 Development of probabilistic BBN 

models 
 
4.1 CPT case history records data for seismic soil 

liquefaction 
    The CPT case history records data collected by 
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GOH ANTHONY [2] is used in this study. It 
includes 109 case records mainly from sites having 
level ground conditions with sand or silty sand 
deposits. The data consisted of 79 case records from 
China, 16 from Japan, 9 from Unites States, and 5 
from Romania, and they are all taken from 5 
earthquakes that occurred in the period of 
1964−1983. In all 109 case records, 74 sites 
contained surface evidence of liquefaction, 35 sites 
did not contain. The ratio of liquefaction to 
non-liquefaction cases is 2.11:1, which indicates 
that there is class imbalance in the case records. The 
descriptive statistics of the CPT case history records 
data is shown in Table 2. 
    The output consisted of a single node 
representing the liquefaction potential. The node 
was given a binary class of yes for liquefied sites 
and a class of no for non-liquefied sites. In the 
present study, a total of 74 case records are 
considered for the training phase, and other 
remaining 35 case records are considered for the 
testing phase. The training and testing case records 
are the same as the ones used by GOH ANTHON [2] 
and ARDAKANI et al [36]. The records of the 
training and testing phases are summarized in 
Tables 3 and 4, respectively. τ/σ'v denotes the cyclic 
stress ratio. 
 
4.2 Parameters selection 
    There are numerous factors affecting the soil 
liquefaction caused by earthquakes, such as 
earthquake magnitude, peak ground acceleration, 
closest distance to rupture surface, depth of soil 
deposit, groundwater level, cone tip resistance etc. 
The general principle of selecting parameters of 
seismic soil liquefaction [37] are: 1) main 
contributing factors; 2) factors presented in mostly 
field case records data; 3) factors that are simply to 
ascertain and assess. Bearing in mind the cited 
points and the limitation of the significant factors in 
the case history records, we considered five 

significant factors in this paper, namely earthquake 
magnitude, peak ground acceleration, cone tip 
resistance, mean grain size, and effective vertical 
stress same as the factors used by GOH ANTHONY 
[2]. In order to fulfill the first demand of the K2 
algorithm, earthquake magnitude, peak ground 
acceleration, mean grain size and vertical effective 
stress factors of seismic soil liquefaction are graded 
according to HU et al [38] grading standard criteria 
as shown in Table 5. While the cone tip resistance is 
divided into four grades that are super (10 MPa≤qc), 
big (7 MPa≤qc<10 MPa), medium (3.5 MPa≤qc<  
7 MPa), and small (0≤qc<3.5 MPa) as per the 
statistical aspect-mean and domain knowledge. 
Optimal multi-splitting discretization algorithm [39] 
can be used to automatically determine the optimal 
subdivisions and to discretize factors for BBN. The 
liquefaction potential given 0 (non-liquefied sites) 
and 1 (liquefied sites) values as the output was. 
 
4.3 BBN models based on ISM and K2-DK 
    In order to develop naive model based on ISM 
technique, in step 1, we identified the factors that 
are most related to the seismic soil liquefaction. 
Five significant factors of seismic soil liquefaction 
are considered as described in Section 4.2. These 
factors are earthquake magnitude (F1), peak ground 
acceleration (F2), cone tip resistance (F3), mean 
grain size (F4), vertical effective stress (F5), and 
liquefaction potential (F6). 
    In step 2, the interrelationship between these 
factors is obtained. Since ISM methodology 
proposes the use of DK in developing the 
contextual relationship between factors, so 
relationships are ultimately examined by the field 
experts who approved the contextual relationship 
between seismic soil liquefaction factors (Table 6). 
    In step 3, structural self-interaction matrix for 
seismic soil liquefaction potential factors is 
converted to a binary matrix, called the initial 
reachability matrix, by replacing with 1 or 0 for the 

 
Table 2 Statistical aspects of seismic soil liquefaction data 

Factor Factor of seismic soil liquefaction Range Mean Standard deviation Coefficient of variation 

F1 Earthquake magnitude, M 6.60−7.80 7.64 0.35 0.05 

F2 Peak ground acceleration, amax/g 0.10−0.80 0.28 0.18 0.64 

F3 Cone tip resistance, qc/MPa 1.00−31.40 6.76 5.65 0.84 

F4 Mean grain size, D50/mm 0.06−0.48 0.19 0.10 0.52 

F5 Vertical effective stress, σ'v/kPa 17.00−122.00 59.50 25.26 0.42 
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Table 3 Summary of training data 

Earthquake Site M σ'v/kPa qc/MPa amax/g τ/σ'v D50/mm 
Field 

liquefaction 

Niigata 1964 Kawagishicho 7.5 36 3.2 0.16 0.15 0.33 Yes 

Niigata 1964 Kawagishicho 7.5 52 1.6 0.16 0.16 0.33 Yes 

Niigata 1964 Kawagishicho 7.5 58 7.2 0.16 0.17 0.33 Yes 

Niigata 1964 Kawagishicho 7.5 83 5.6 0.16 0.17 0.33 Yes 

Niigata 1964 Kawagishicho 7.5 63 5.45 0.16 0.14 0.33 Yes 

Niigata 1964 Kawagishicho 7.5 80 8.84 0.16 0.15 0.33 Yes 

Niigata 1964 Kawagishicho 7.5 120 9.7 0.16 0.15 0.33 Yes 

Niigata 1964 South Bank 7.5 46 8 0.16 0.19 0.30 No 

Niigata 1964 South Bank 7.5 50 14.55 0.16 0.18 0.30 No 

Nihonkaichubu 1983 Noshirocho 7.7 48 10 0.23 0.18 0.32 No 

Nihonkaichubu 1983 Noshirocho 7.7 54 16 0.23 0.2 0.32 No 

Nihonkaichubu 1983 Noshirocho 7.7 65 15.38 0.23 0.21 0.32 No 

Nihonkaichubu 1983 Noshirocho 7.7 46 1.79 0.23 0.17 0.32 Yes 

Nihonkaichubu 1983 Noshirocho 7.7 52 4.1 0.23 0.19 0.32 Yes 

Nihonkaichubu 1983 Noshirocho 7.7 67 7.95 0.23 0.21 0.32 Yes 

Nihonkaichubu 1983 Noshirocho 7.7 75 8.97 0.23 0.22 0.32 Yes 

Tangshan 1976 T-10 7.8 42 1.7 0.4 0.35 0.06 Yes 

Tangshan 1976 T-10 7.8 69 9.4 0.4 0.41 0.25 Yes 

Tangshan 1976 T-10 7.8 85 5.7 0.4 0.42 0.25 Yes 

Tangshan 1976 T-10 7.8 92 7.6 0.4 0.42 0.30 Yes 

Tangshan 1976 T-11 7.8 17 1.5 0.4 0.27 0.17 Yes 

Tangshan 1976 T-11 7.8 21 1 0.4 0.32 0.17 Yes 

Tangshan 1976 T-11 7.8 25 5 0.4 0.36 0.17 Yes 

Tangshan 1976 T-12 7.8 34 2.5 0.4 0.29 0.14 Yes 

Tangshan 1976 T-12 7.8 43 2.6 0.4 0.34 0.14 Yes 

Tangshan 1976 T-12 7.8 52 3.2 0.4 0.37 0.16 Yes 

Tangshan 1976 T-12 7.8 58 5.8 0.4 0.39 0.16 Yes 

Tangshan 1976 T-12 7.8 74 3.5 0.4 0.40 0.16 Yes 

Tangshan 1976 T-12 7.8 102 8.4 0.4 0.41 0.16 Yes 

Tangshan 1976 T-13 7.8 29 1.7 0.4 0.35 0.12 Yes 

Tangshan 1976 T-13 7.8 29 3.5 0.4 0.36 0.12 Yes 

Tangshan 1976 T-13 7.8 35 4.1 0.4 0.38 0.12 Yes 

Tangshan 1976 T-14 7.8 27 5.5 0.4 0.29 0.17 Yes 

Tangshan 1976 T-14 7.8 40 9 0.4 0.37 0.32 Yes 

Tangshan 1976 T-15 7.8 21 7 0.4 0.29 0.48 Yes 

Tangshan 1976 T-15 7.8 26 1.18 0.4 0.35 0.48 Yes 

Tangshan 1976 T-15 7.8 33 4.24 0.4 0.38 0.48 Yes 

Tangshan 1976 T-16 7.8 71 11.47 0.4 0.27 0.16 No 

Tangshan 1976 T-16 7.8 111 15.76 0.4 0.34 0.2 No 

Tangshan 1976 T-17 7.8 56 11.39 0.2 0.14 0.21 No 

Tangshan 1976 T-17 7.8 65 12.12 0.2 0.15 0.21 No 

Tangshan 1976 T-17 7.8 75 17.76 0.2 0.17 0.14 No 

to be continued 
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continued 

Earthquake Site M σ'v/kPa qc/MPa amax/g τ/σ'v D50/mm 
Field 

liquefaction 

Tangshan 1976 T-23 7.8 49 2.65 0.2 0.19 0.14 Yes 

Tangshan 1976 T-24 7.8 35 4.4 0.2 0.2 0.16 Yes 

Tangshan 1976 T-24 7.8 39 3 0.2 0.2 0.16 Yes 

Tangshan 1976 T-25 7.8 81 9 0.2 0.23 0.08 Yes 

Tangshan 1976 T-26 7.8 55 2 0.1 0.11 0.14 Yes 

Tangshan 1976 T-27 7.8 52 1.1 0.2 0.23 0.07 Yes 

Tangshan 1976 T-28 7.8 106 15.5 0.1 0.11 0.08 No 

Tangshan 1976 T-28 7.8 110 6.5 0.1 0.11 0.08 No 

Tangshan 1976 T-29 7.8 53 9 0.1 0.11 0.1 No 

Tangshan 1976 T-29 7.8 58 2.5 0.1 0.11 0.1 No 

Tangshan 1976 T-29 7.8 63 16.5 0.1 0.11 0.1 No 

Tangshan 1976 T-30 7.8 68 13.65 0.1 0.06 0.25 No 

Tangshan 1976 L-1 7.8 58 8.47 0.2 0.24 0.062 No 

Tangshan 1976 L-1 7.8 112 4.55 0.2 0.23 0.067 No 

Tangshan 1976 L-1 7.8 122 5.79 0.2 0.22 0.067 No 

Tangshan 1976 L-2 7.8 55 2.48 0.2 0.25 0.062 Yes 

Tangshan 1976 L-2 7.8 56 1.57 0.2 0.25 0.062 Yes 

Tangshan 1976 L-2 7.8 103 1.45 0.2 0.23 0.067 Yes 

Tangshan 1976 L-2 7.8 106 2.15 0.2 0.23 0.067 Yes 

Tangshan 1976 L-2 7.8 111 2.6 0.2 0.23 0.067 Yes 

Tangshan 1976 L-3 7.8 103 2.73 0.2 0.23 0.067 Yes 

Tangshan 1976 L-3 7.8 106 1.78 0.2 0.23 0.067 Yes 

Tangshan 1976 L-5 7.8 108 7.64 0.2 0.22 0.067 No 

Imperial valley 1979 Herber road 6.6 29 25.6 0.8 0.44 0.11 No 

Imperial valley 1979 A1 6.6 36 24.7 0.8 0.57 0.11 No 

Imperial valley 1979 A1 6.6 42 31.4 0.8 0.64 0.11 No 

Imperial valley 1979 A2 6.6 29 1.43 0.8 0.44 0.11 Yes 

Imperial valley 1979 A2 6.6 42 2.48 0.8 0.64 0.11 Yes 

Imperial valley 1979 A3 6.6 54 4.03 0.8 0.72 0.11 Yes 

Imperial valley 1979 A3 6.6 29 3.3 0.8 0.44 0.06 No 

Imperial valley 1979 A4 6.6 36 8.8 0.8 0.57 0.06 No 

Imperial valley 1979 A4 6.6 42 6.7 0.8 0.64 0.06 No 

 

Table 4 Summary of testing data 

Earthquake Site M σ'v/kPa qc/MPa amax/g τ/σ'v D50/mm 
Field 

liquefaction 

Tangshan 1976 T-18 7.8 78 1.65 0.2 0.14 0.17 Yes 

Tangshan 1976 T-18 7.8 83 3.65 0.2 0.15 0.17 Yes 

Tangshan 1976 T-19 7.8 25 1.03 0.2 0.15 0.19 Yes 

Tangshan 1976 T-19 7.8 37 5 0.2 0.19 0.31 Yes 

Tangshan 1976 T-19 7.8 47 2.91 0.2 0.21 0.18 Yes 

Tangshan 1976 T-19 7.8 61 6.06 0.2 0.21 0.18 Yes 

Tangshan 1976 T-20 7.8 22 13.24 0.2 0.14 0.17 No 

to be continued 
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continued 

Earthquake Site M σ'v/kPa qc/MPa amax/g τ/σ'v D50/mm 
Field 

liquefaction 

Tangshan 1976 T-20 7.8 26 13.06 0.2 0.16 0.17 No 

Tangshan 1976 T-20 7.8 30 16.59 0.2 0.18 0.17 No 

Tangshan 1976 T-21 7.8 59 10.59 0.2 0.13 0.26 No 

Tangshan 1976 T-21 7.8 61 9.12 0.2 0.13 0.26 No 

Tangshan 1976 T-21 7.8 67 11.29 0.2 0.15 0.26 No 

Tangshan 1976 T-22 7.8 41 1.94 0.2 0.22 0.16 Yes 

Tangshan 1976 T-22 7.8 44 5 0.2 0.22 0.16 Yes 

Tangshan 1976 T-23 7.8 47 2.24 0.2 0.19 0.14 Yes 

Tangshan 1976 T-30 7.8 79 14.12 0.1 0.09 0.25 No 

Tangshan 1976 T-30 7.8 102 18.94 0.1 0.09 0.28 No 

Tangshan 1976 T-31 7.8 44 3.52 0.2 0.13 0.16 Yes 

Tangshan 1976 T-31 7.8 51 2.73 0.2 0.15 0.16 Yes 

Tangshan 1976 T-32 7.8 50 3.29 0.2 0.15 0.21 Yes 

Tangshan 1976 T-32 7.8 52 4.12 0.2 0.15 0.21 Yes 

Tangshan 1976 T-32 7.8 57 2.94 0.2 0.16 0.21 Yes 

Tangshan 1976 T-33 7.8 52 3 0.2 0.15 0.15 Yes 

Tangshan 1976 T-33 7.8 68 5.85 0.2 0.18 0.32 Yes 

Tangshan 1976 T-33 7.8 73 9 0.2 0.18 0.32 Yes 

Tangshan 1976 T-34 7.8 48 1.88 0.2 0.13 0.13 Yes 

Tangshan 1976 T-35 7.8 64 2.55 0.2 0.15 0.17 Yes 

Tangshan 1976 T-35 7.8 65 4.5 0.2 0.15 0.17 Yes 

Tangshan 1976 T-35 7.8 79 4.24 0.2 0.17 0.17 Yes 

Tangshan 1976 T-36 7.8 77 8 0.2 0.18 0.22 No 

Vrancea 1977 Dimbovitza site 1 7.2 48 5.22 0.22 0.21 0.2 Yes 

Vrancea 1977 Dimbovitza site 1 7.2 55 3.73 0.22 0.22 0.2 Yes 

Vrancea 1977 Dimbovitza site 1 7.2 64 3.11 0.22 0.22 0.2 Yes 

Vrancea 1977 Dimbovitza site 1 7.2 73 1.32 0.22 0.22 0.2 Yes 

Vrancea 1977 Dimbovitza site 1 7.2 82 5.22 0.22 0.22 0.2 Yes 

 

Table 5 Grading standards for seismic soil liquefaction factors 

Category Factors of earthquake-induced soil liquefaction Number of grade Interpretation Range 

Earthquake 
parameter 

Earthquake magnitude, M 4 

Super 8≤M 

Big 7≤M<8 

Strong 6≤M<7 

Medium 4.5≤M<6 

Peak ground acceleration, amax/g 4 

Super 0.40≤amax 

High 0.30≤ amax<0.40 

Medium 0.15≤amax<0.30 

Low 0≤amax<0.15 

Soil parameter Cone tip resistance, qc/MPa 4 

Super 10≤qc 

Big 7≤qc<10 

Medium 3.5≤qc<7 

Small 0≤qc<3.5 

to be continued 
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continued 
Category Factors of earthquake-induced soil liquefaction Number of grade Interpretation Range 

Soil parameter Mean grain size, D50/mm 4 

Super 2≤D50 

Big 0.425≤D50<2 

Medium 0.075≤D50<0.425 

Small 0<D50<0.075 

Site condition Vertical effective stress, σ'v/kPa 4 

Super 150≤σ'v 

Big 100≤σ'v<150 

Medium 50≤σ'v<100 

Small 0≤σ'v<50 

 
Table 6 Structural self-interaction matrix for seismic soil 

liquefaction factors 

F1 F2 F3 F4 F5 F6 Factor 

 V O O O V F1 

  O O O V F2 

   A A V F3 

    O V F4 

     V F5 

      F6 

Note: V−row factor influences the column factor; A−column factor 
influences the row factor; O−no relationship between the row and 
column factors. 

 
original symbols as shown in Table 7. 
    After obtaining initial reachability matrix, the 
transitivity property is checked to obtain the final 
reachability matrix as discussed in Section 3.1. The 
final reachability matrix with the driving and 
dependence power is shown in Table 8. 
 
Table 7 Initial reachability matrix 

F1 F2 F3 F4 F5 F6 Factor 

1 1 0 0 0 1 F1 

0 1 0 0 0 1 F2 

0 0 1 0 0 1 F3 

0 0 1 1 0 1 F4 

0 0 1 0 1 1 F5 

0 0 0 0 0 1 F6 

 
    In step 5, the factors together with their 
reachability set, antecedent set and intersection set 
are used for deriving multilevel hierarchy structure 
levels are shown in Table 9. Results revealed that 
there are three levels partition as follows: 
 
L1={F6}; L2={F2, F3}; L3={F1, F4, F5}. 
 
    For next steps, multilevel hierarchy structure 

Table 8 Final reachability matrix 

Factor F1 F2 F3 F4 F5 F6 
Driving 
power 

F1 1 1 0 0 0 1 3 

F2 0 1 0 0 0 1 2 

F3 0 0 1 0 0 1 2 

F4 0 0 1 1 0 1 3 

F5 0 0 1 0 1 1 3 

F6 0 0 0 0 0 1 1 

Dependence 
power 

1 2 3 1 1 6 14/14 

 
of seismic soil liquefaction potential is developed 
from the final reachability matrix. The transitivity 
links among two factors such as the direct link 
between mean grain size and liquefaction potential 
is removed owing that the mean grain size can 
affect the soil liquefaction via cone tip resistance. 
    In the last step, there is no conceptual 
discrepancy in the structural model, so the 
interpretive structural model for seismic 
liquefaction is shown in Figure 2. In the interpretive 
structural model, there is a restriction of no direct 
relation among skipping-level’s nodes, for example, 
earthquake magnitude and liquefaction potential. 
    The following interpretation are concluded 
from the cited above naive model based on ISM 
(Figure 2): 1) the order of the nodes is earthquake 
magnitude (M), mean grain size (D50), vertical 
effective stress (σ'v), peak ground acceleration (amax), 
cone tip resistance (qc), and liquefaction potential; 2) 
restriction number of the parent nodes is 5; and 3) 
some nodes are not related to other nodes in the 
same level or next level. For instance, peak ground 
acceleration is not related to the cone tip resistance 
at the same level, and vertical effective stress is not 
related to peak ground acceleration in the next level. 
Once the useful information is integrated into K2 
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Table 9 Level partition−iteration 

Iteration Factor, Fi Reachability set, R Antecedent set, A Intersection set, R∩A Level, Li 

1 

F1 F1, F2, F6 F1 F1 — 

F2 F2, F6 F1, F2 F2 — 

F3 F3, F6 F3, F4, F5 F3 — 

F4 F3, F4, F6 F4 F4 — 

F5 F3, F5, F6 F5 F5 — 

F6 F6 F1, F2, F3, F4, F5,F6  F6 L1 

2 

F1 F1, F2 F1 F1 — 

F2 F2 F1, F2 F2 L2 

F3 F3 F3, F4, F5 F3 L2 

F4 F3, F4 F4 F4 — 

F5 F3, F5 F5 F5 — 

3 

F1 F1 F1 F1 L3 

F4 F4 F4 F4 L3 

F5 F5 F5 F5 L3 

 

 
Figure 2 ISM of seismic soil liquefaction potential 

 
algorithm and structure learning is carried through 
learning 74 case history records data as shown in 
Table 3, FullBNT-1.0.7 is utilized to conduct 
structure learning via MATLAB. The Bayesian 
belief network structure is finally developed, as 
shown in Figure 3. The network is composed by 6 
nodes and several lines. The 6 nodes refer to 6 
variables, and the lines between nodes indicate the 
relationships among the variables. 
    The ISM, K2 and DK network structures of 
seismic soil liquefaction are directly constructed in 
Netica free version software to perform parameter 
learning, because acquiring conditional probability 
distribution of the nodes and Bayesian belief 
network models are determined to assess the 
liquefaction potential of seismic soil. Comparing 
these two models, the BBN-K2 and DK model 
developed by the hybrid method compensates the 
limitations of other models: 1) skipping-level’s 
fac tors  are  connected  (e .g .  the  ear thquake 

 
Figure 3 BBN structure for earthquake-induced soil 

liquefaction based on K2 algorithm and DK 

 

magnitude and liquefaction potential); and 2) some 
factors connections are avoided by integrating DK 
(e.g. earthquake magnitude is linked to cone tip 
resistance). The graphical results of seismic soil 
liquefaction of both BBN models are presented in 
Figure 4. 
 
5 Evaluation measures 
 
    BBN models are compared with the C4.5 
decision tree and ANN models available in 
literature to examine their capability. To measure 
the performance of the BBN models, several 
metrics are used, namely, overall accuracy (OA, a), 
Matthews correlation coefficient (MCC, cm), 
precision (p), recall (r), and F-measure (mF). These 
metrics can be computed from confusion matrix in 
Table 10. 
    In binary class case, i.e., liquefaction and 
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Figure 4 Graphical results of seismic soil liquefaction potential models: (a) BBN-ISM; (b) BBN-K2 and DK 

 

Table 10 Confusion matrix 

Actual class 
Predicted class 

Yes No 

Yes True positive (TP) False negative (FN) 

No False positive (FP) True negative (TN) 

 
non-liquefaction, there are four possible outputs for 
a single prediction. The true negative (TN) and true 
positive (TP) are correct classification [40]. The 
false positive (FP) represents that the outcome is 
wrongly predicted as positive while a false negative 

(FN) occurs when the output is wrongly classified 
as negative. Overall accuracy is a measure of the 
total number of predictions that were correct. a is 
computed as follows: 
 

TP+TN

TP+FN+FP+TN
a                      (4) 
 
    In seismic soil liquefaction problem, 
liquefaction cases are usually more than non- 
liquefaction cases so it may be deceptive when 
evaluating the predictive ability based on the OA 
alone owing to the class imbalance in the data set. 
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The best choice is F-measure, which combined 
precision and recall into a single evaluation index to 
predict the performances of binary classification 
model. Precision measures the accuracy of the 
predictions for a single class (liquefaction instances 
or non- liquefaction instances), whereas the recall 
measures accuracy of predictions only considering 
predicted values. They can be found from the 
confusion matrix as: 
 

TP TN
 or 

TP+FP FN+TN
p                       (5) 

 
TP TN

 or 
TP+FN FP+TN

r                       (6) 
 

F
2 pr

m
p r




                              (7) 

 
    mF has ranged from 0 (worst value) to 1 (best 
value). 
    In this study, Matthews correlation coefficient 
is used to present the degree of correlation between 
observed and predicted classes and is expressed as: 
 

    m
TP TN FN FP

TP+FN TN+FP TP+FP TN+FN
c

  
      (8) 

 
    The value range of cm is [−1, 1], where 1 
means complete agreement; −1 means complete 
inconsistency; and 0 means that the prediction is 
independent of the observed results. 
 
6 Results and discussion 
 
6.1 Performance comparison of training data 
    Performance of the BBN models was 
compared with C4.5 decision tree model in present 
study and with ANN model in Ref. [2] on 74 CPTs 
(48 liquefaction cases and 26 non-liquefaction cases) 
training phase data. The results of the training data 

set that included various metrics such as overall 
accuracy, MCC are presented in Table 11. 
Comparing OA, the BBN-K2 and DK model in 
present study showed at par performance with ANN 
model developed by GOH ANTHONY [2] for the 
same input factors and training phase data. As OA 
cannot be used alone, model performance may be 
deceptive owing to the class imbalance in the data 
set and this performance is higher when liquefied 
samples in the majority class are favorably 
predicted. Therefore, F-measure was used. In case 
of yes class (liquefaction) all the models showed at 
par recall value (i.e., 0.979) whereas in case of 
precision, the BBN-K2 and DK and ANN [2] 
models showed highest value (i.e., 1.000); when 
F-measure is calculated the BBN-K2 and DK and 
ANN [2] models have the highest value (i.e., 0.989) 
for yes class. For no class, the BBN-K2 and DK 
and ANN model [2] have the same highest recall, 
precision, and F-measure whereas BBN-ISM has 
the worst performance. Moreover, BBN-K2 and DK 
and ANN [2] models have the highest value of 
MCC relative to the BBN-ISM and C4.5 DT 
models. Generally, BBN-K2 and DK showed 
compatible and at par performance results with 
ANN [2] model and relatively better performed 
than the C4.5 DT and BBN-ISM models for 
liquefaction and non-liquefaction cases in training 
phase data. 
 
6.2 Predictive performance comparison of 

testing data 
    The predictive performance results of the BBN, 
C4.5 DT and ANN [2] models on the remaining 35 
cases (26 liquefaction cases and 9 non-liquefaction 
cases) are shown in Table 12. It can be noted clearly 
that the ANN [2] model has the slightly better than   

 

Table 11 Performance evaluation of training phase case history records 

Model Class a/% cm r p mF 

BBN-K2 and DK 
(this work) 

Yes 
98.649 0.971 

0.979 1.000 0.989 

No 1.000 0.963 0.981 

BBN-ISM 
(this work) 

Yes 
87.838 0.734 

0.979 0.855 0.913 

No 0.692 0.947 0.800 

C4.5-DT 
(this work) 

Yes 
95.946 0.911 

0.979 0.959 0.969 

No 0.923 0.960 0.941 

ANN [2] 
Yes 

98.649 0.971 
0.979 1.000 0.989 

No 1.000 0.963 0.981 



J. Cent. South Univ. (2020) 27: 500−516 

 

512

 

Table 12 Predictive performance evaluation of testing phase case history records 

Model Class a/% c r p mF 

BBN-K2 and DK 
(this work) 

Yes 
94.286 0.850 

1.000 0.929 0.963 

No 0.778 1.000 0.875 

BBN-ISM 
(this work) 

Yes 
94.286 0.850 

1.000 0.929 0.963 

No 0.778 1.000 0.875 

C4.5-DT 
(this work) 

Yes 
94.286 0.850 

1.000 0.929 0.963 

No 0.778 1.000 0.875 

ANN [2] 
Yes 

94.286 0.869 
0.923 1.000 0.960 

No 1.000 0.818 0.900 

 
the BBN-K2 and DK, ISM and C4.5 DT models in 
terms of MCC and F-measure for non-liquefaction 
instances. It is worthwhile to mention that the 
accuracy of the ANN [2] model for no class 
(non-liquefied) instances is better than the yes class 
(liquefied) instances which does not match the 
requirement of the engineering practice, whereas 
both BBN and C4.5 DT models showed opposite 
pattern. The BBN model provides an appropriate 
understandable semantic interpretation framework 
to predict seismic soil liquefaction and handle 
insights into cause–effect relationships and 
uncertainties. Whereas, the knowledge acquired by 
the ANN model in the training stage is stored 
implicitly, and it is very difficult to reasonably 
explain the overall structure of the network. 
Therefore, the ANN model has little insight into the 
basic mechanism of the problem. In general, all the 
models performed well in the testing data phase and 
it revealed that the predictive performance should 
be further investigated for larger dataset with 
almost no class imbalance in the database and 
sampling bias in training and testing phases. 
 
6.3 Analysis of BBN-K2 and DK model 
6.3.1 Comparison with available C4.5 DT model in 

literature 
    To compare and validate the proposed 
BBN-K2 and DK model which was developed by 
hybrid approach it is compared with C4.5 DT 
model [36] in Table 13. As shown, the BBN-K2 and 
DK model developed by hybrid approach performs 
most similar with the C4.5 DT model although with 
only difference of one additional parameter i.e., 
cyclic stress ratio was used by ARDAKANI et al 
[36] for same training and testing data sets. It 
should be noted that the BBN-K2 and DK model is 
developed based on 5 direct significant factors 

while the C4.5 DT used cyclic stress ratio which is 
an indirect parameter and required determination. It 
is also noted that increasing the number of input 
factors or variables using C4.5 DT algorithm the 
predictive accuracy increased by 2.857% in testing 
data. 
    In this study, we focus to construct a BBN 
model based on effective hybrid approach to 
evaluate accurately seismic soil liquefaction 
potential. Comparatively in terms of training and 
testing data performance, the BBN-K2 and DK 
model is relatively better than BBN-ISM model. 
Considering the BBN-K2 and DK model 
compatibility with ANN model [2] in its OA, MCC, 
recall, precision, F-measure, simplicity to perform 
in practice and adaptive nature, the use of BBN-K2 
and DK model in evaluating earthquake-induced 
soil potential is quite promising. The proposed 
BBN-K2 and DK model can continuously upgrade 
its conditional probability table of each node to 
enhance its predictive strength while new data is 
integrated. The BBN-K2 and DK model also has 
some limitations, such as heavily relying on large 
amounts of data and the learning requirements of 
K2 algorithm. It is not suitable for incomplete data. 
    Since the present study is a data-driven 
approach without resorting to the fundamental 
physics of liquefaction. Advanced numerical 
modeling such as micromechanical [41, 42], 
modified bounding surface hypoplasticity [43] and 
coupled numerical model (fluid-structure-seabed 
interaction CAS 2D) [44], can be used to study 
fundamental mechanism of liquefaction 
phenomenon and related hazards once well 
calibrated. 
6.3.2 Sensitivity analysis 
    The sensitivity analysis function of Netica 
software is utilized to find which factors have more  
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Table 13 Comparison of BBN-K2 and DK model and C4.5 DT model  

Model Dataset Input variable 
Performance accuracy/% 

Training Testing Overall 

C4.5 DT[36] GOH ANTHONY [2] M, σv, σ'v, qc, amax, τ/σ'v, D50 95.946 97.143 96.330 

BBN-K2 and DK (this work) GOH ANTHONY [2] M, D50, σ'v, amax, qc 98.649 94.286 97.248 

 
influence in seismic soil liquefaction potential. The 
liquefaction potential node is selected to make 
sensitivity analysis in Netica and the result is listed 
in Table 14. Table 14 presents that the mutual info 
of 0.03882 of cone tip resistance (qc) is the largest, 
which interprets that it has the strongest influence 
on soil liquefaction, followed by peak ground 
acceleration and vertical effective stress, which 
have mutual info of 0.00529 and 0.00329, 
respectively. These results are highly consistent 
with Ref. [45], whereas the earthquake magnitude is 
least sensitive factor which has mutual info of 
0.00180. 
 
Table 14 Sensitivity analysis result of liquefaction 

potential 

Variable Mutual info Percentage/% 
Variance of 

beliefs 
Liquefaction 

potential 
0.98640 100.000 0.2453003 

qc 0.03882 3.940 0.0132054 

amax 0.00529 0.536 0.0018168 

σ'v 0.00329 0.334 0.0011196 

D50 0.00221 0.224 0.0007544 

M 0.00180 0.182 0.0006164 

 
6.3.3 Most probable explanation 
    Netica function is utilized to draw the most 
probable explanation (MPE) to perceive which 
scenario is most likely the cause set of earthquake- 
induced liquefaction potential. The developed 
BBN-K2 and DK model is used to make the MPE 
and the result is shown in Figure 5. 
    The combination of MPE cause set is that the 
cone tip resistance, qc and vertical effective stress, 
σ'v are in small grade (0≤qc<3.5 MPa and 0≤σ'v<50 
kPa), peak ground acceleration, amax and mean grain 
size, D50 are in medium level (0.15 g≤amax<0.30 g 
and 0.075 mm≤D50<0.425 mm), and earthquake 
magnitude, M is of big-sized (7≤M<8) which fits 
well with the engineering practice. 

 
7 Conclusions and future work 
 
    In this paper, a hybrid approach is used to 
develop a BBN model for seismic soil liquefaction 
assessment. Five significant factors that are 
earthquake magnitude, mean grain size, vertical 
effective stress, peak ground acceleration and cone 
tip resistance are considered for earthquake-induced 
soil liquefaction potential assessment. The BBN 
model developed by hybrid approach showed 
relatively better performance than BBN model 
developed by ISM technique as overall 
performance accuracy of BBN-K2 and DK model is 
97.248%, whereas that of the BBN-ISM model is 
89.908%. Moreover, the hybrid approach 
methodology integrates the strengths of DK and K2 
algorithm, and eludes the shortcomings of utilizing 
one method (i.e., DK or machine learning 
algorithms) to conclude BBN. The BBN-K2 and 
DK model overall classification success rate for the 
entire data set is compatible and promising in both 
instances of liquefaction and non-liquefaction with 
those calculated using ANN and C4.5 DT model. 
Moreover, the BBN model can always be updated 
to yield better results, as new data becomes 
available. The assessment of seismic soil 
liquefaction potential is a prime aspect of site- 
specific seismic hazard assessment, so accuracy is 
significantly important for a better model. BBN-K2 
and DK model successfully identified the 
liquefaction occurrence with 94.286% success rate 
in testing phase data which is found at par with 
C4.5 DT and ANN models that highlighted its 
compatibility. Sensitivity analysis of BBN-K2 and 
DK model result concludes that the cone tip 
resistance is the most sensitive factor and 
earthquake magnitude is the lest sensitive factor in 
prediction of seismic soil liquefaction potential. The 
most probable explanation based on the input 
significant factors is that the earthquake magnitude 
is of big-sized, peak ground acceleration and mean 
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Figure 5 Most probable explanation of seismic soil liquefaction potential when evidence state is “yes” 

 
grain size are in medium levels, and cone tip 
resistance and vertical effective stress is in small 
grade value, which matches well in line with 
engineering practice. 
    In this study, only five significant factors of 
seismic soil liquefaction are considered owing to 
the limitation of significant factors in the case 
history records data and additionally more concerns 
are needed in the future work to quantify the 
uncertainties of variables involved in the directed 
acyclic graph based on a larger dataset. The 
following aspects can be considered as an extension 
of this work: 
    1) Adding more liquefaction factors such as 
closest distance to rupture surface, fines content, 
total vertical stress to expand the BBN-K2 and DK 
model for assessment of earthquake-induced soil 
liquefaction, the predictive performance is 
improved. 
    2) Adding the nodes of the utility and decision 
operations into the BBN model, the new model can 
be used as significant information for decision 
making in the case of expected utilities of loss. 
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中文导读 
 

基于贝叶斯置信网络的 CPT 地震液化势混合评估方法 
 
摘要：地震液化评估是一个复杂的非线性过程，受多种因素的不确定性和复杂性的影响。贝叶斯置信

网络(BBN)是一个可靠有效的工具，可以提供一个合适的框架来处理这些不确定性和因果关系。本研

究采用一种混合方法来建立基于静力触探试验(CPT)案例记录数据的贝叶斯置信网络(BBN)模型，以评

估土壤的地震液化势。在这种混合方法中，先通过结合领域知识(DK)的解释结构建模(ISM)技术建立

朴素模型，再在 K2 算法中嵌入朴素模型的相关信息建立 BBN-K2 和 DK 模型。将 BBN 模型的结果

与现有的人工神经网络(ANN)和C4.5决策树(DT)模型进行了比较和验证，发现用混合方法建立的BBN
模型在液化势评估中具有良好的适应性和应用前景。用混合方法建立的 BBN 模型为岩土工程师评估

易受地震液化影响的场地环境提供了可行的工具。最后对基于混合方法的 BBN 模型进行了灵敏度分

析，并对液化场地进行了最可能的解释，以了解液化现象的最可能情况。 
 
关键词：贝叶斯置信网络；静力触探；地震液化；解释结构模型；结构学习 


