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Abstract: The traffic equilibrium assignment problem under tradable credit scheme (TCS) in a bi-modal stochastic 
transportation network is investigated in this paper. To describe traveler’s risk-taking behaviors under uncertainty, the 
cumulative prospect theory (CPT) is adopted. Travelers are assumed to choose the paths with the minimum perceived 
generalized path costs, consisting of time prospect value (PV) and monetary cost. At equilibrium with a given TCS, the 
endogenous reference points and credit price remain constant, and are consistent with the equilibrium flow pattern and 
the corresponding travel time distributions of road sub-network. To describe such an equilibrium state, the CPT-based 
stochastic user equilibrium (SUE) conditions can be formulated under TCS. An equivalent variational inequality (VI) 
model embedding a parameterized fixed point (FP) model is then established, with its properties analyzed theoretically. 
A heuristic solution algorithm is developed to solve the model, which contains two-layer iterations. The outer iteration 
is a bisection-based contraction method to find the equilibrium credit price, and the inner iteration is essentially the 
method of successive averages (MSA) to determine the corresponding CPT-based SUE network flow pattern. 
Numerical experiments are provided to validate the model and algorithm. 
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1 Introduction 
 

Tradable credit scheme (TCS) is a novel 
quantity-based instrument for managing traffic 
demand, which performs better than road 
congestion pricing (CP) in terms of social equity 
and revenue neutrality [1, 2]. With playing 
essentially the same role as CP in managing traffic, 
TCS has attracted more and more attentions from 

transportation research community in recent years. 
To the best of our knowledge, AKAMATSU [3] 
mathematically analyzed the effect of TCS with 
traffic equilibrium theory for the first time. He 
proposed a tradable bottleneck permits scheme 
(TBPS) to eliminate the queuing delay, and 
analytically investigate the relationships between 
TBPS and congestion pricing. However, such a 
TBPS has some implementation issues. The 
complicated permit  t rading market  and the  
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controversial market selling scheme can 
significantly devastate the effect of TBPS. To 
address these issues, YANG and WANG [1] 
proposed a new tradable credit distribution and 
charging scheme with only one type of credit. They 
quantitatively analyzed how to manage network 
mobility with TCS in user equilibrium (UE) model 
framework. This work has been widely extended 
thereafter for different applications including 
managing bottleneck congestions [4−7], network 
design problem under TCS [8−10], achieving 
special traffic objectives by optimizing TCS [11, 
12], considering multiclass users [13−16], market 
rules and transaction cost (TC) [17, 18], travelers’ 
loss aversion behaviors [18], mixed Cournot–Nash 
(CN) and Wardrop-equilibrium (WE) model [19] 
and some practical implementation strategies [20, 
21]. For the most recent reviews on TCS, readers 
can refer to Ref. [22]. Among these studies, the 
transportation network equilibrium model is the 
most commonly used model form, which can 
describe the traffic flow equilibrium and TCS 
market equilibrium simultaneously. The modeling 
methods and basic assumptions are summarized in 
Table 1. 
    However, nearly all the existing research 
mentioned above have neglected the variability of 
the traffic condition in both demand and supply, and 
thus travelers were assumed to choose the 
(perceived) shortest path. In such deterministic 
scenarios, the traditional UE/SUE model 
frameworks are capable of addressing the related 
problems. However, traffic condition is intrinsically 
stochastic due to the demand and supply uncertainty 
in a transportation network. The traditional model 
frameworks fail to capture the uncertainty, thus it is 
necessary to establish some more advanced models. 
Such models must be able to describe more 

realistically how travelers behave in an uncertain 
traffic environment. Actually, there are various 
different path choice models based on different 
behavioral assumptions on travelers’ risk-taking 
behaviors, such as the expected utility based model 
[23], the travel time budget (TTB) model [24−26], 
the late arrival penalty model [27], the mean-excess 
travel time (METT) model [28] and the cumulative 
prospect theory (CPT) based models [29−32]. For 
example, TTB model assumes that travelers always 
choose the route with the minimum TTB. And TTB 
is defined by a travel time reliability chance 
constraint, such that the probability that travel time 
exceeds the budget is less than a predefined 
confidence level. METT model assumes that 
travelers always minimize their METT, which is 
defined as the conditional expectation of travel 
times beyond the TTB. For the detailed 
comparisons and connections among these models, 
readers can refer to Refs. [28, 31]. 
    As stated in Ref. [31], the CPT-based user 
equilibrium model can incorporate nearly all the 
above mentioned models as special cases, thus has 
very excellent compatibility. With retaining the 
framework of the expected utility theory, CPT 
incorporates three behavior characters which are 
drawn from numerous behavioral experiments: 1) 
People would distinguish gains from losses before 
choosing any alternative. Based on certain reference 
point, the corresponding payoff of choosing each 
alternative is framed as gain or loss. 2) People 
always care more about potential losses than 
potential gains. They are risk averse over gains and 
risk seeking over losses simultaneously. 3) People 
tend to underweight average events, but they often 
overweight extreme, but unlikely events [33−35]. 
    Given that CPT possesses excellent 
compatibility and provides a well-supported 

 
Table 1 Modeling technologies of existing literatures 

Literature Perception error User class Transaction cost Equilibrium model Modeling form Traffic uncertainty 

[1, 2, 8−11, 18, 20, 21] No Single No UE MP/VI No 

[13−16] No Multiple No UE VI No 

[19] No Single No Mixed CN&WE VI No 

[17, 18] No Single Yes UE MP No 

[3−7] No Single/Multiple No Bottleneck model DE No 

[12] Yes Single No SUE MP No 

This paper Yes Single Yes CPT-based SUE VI Yes 
Note: mathematical programming (MP); differential equation (DE); stochastic user equilibrium (SUE). 
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descriptive paradigm for individuals’ decision 
making under uncertainty, this paper adopts the 
theory to describe travelers’ route choices in 
stochastic networks. Furthermore, the endogenous 
reference points are considered in CPT. With 
respect to a reference point, the realized payoff of a 
path is framed into either a gain or loss, and its 
travel prospect value (PV) can be subsequently 
determined. Travelers will choose paths with 
maximal PV, thus they will select the routes in 
accordance with the particular reference points. The 
outcome of his or her choice may induce a change 
in the reference point, which may lead to further 
adjustment in his or her route choice, and so on. 
Therefore, a model with endogenous reference 
points is more competent to predict the long-term 
stationary equilibrium flow pattern. 
    Considering the dramatic growth of private 
cars, the road traffic congestion becomes more and 
more serious. It is thus necessary and urgent to 
enhance the use of public transit for the sake of 
congestion mitigation and sustainable development 
of transportation system. Based on this 
consideration, the multi-modal transportation 
network is considered in this paper. Besides, the 
transaction costs (TC) of selling/buying credits are 
also considered to further improve the practicability 
of the study. 
    The contributions of this paper are threefold. 
First, a novel CPT-based traffic assignment model 
is established for a stochastic bi-modal 
transportation network under a given TCS. The 
endogenous reference points are considered in CPT, 
and meanwhile, the TC is considered in the credit 
trading market. Second, a tailored solution 
algorithm is developed to solve the proposed model. 
The algorithm contains two-level iterations, of 
which the outer iteration is a bisection-based 
contraction method to find the equilibrium credit 
price, and the inner iteration is essentially the MSA 
to determine the CPT-based SUE network flow 
pattern. Third, in order to avoid overestimating the 
travel demand on road sub-network in some 
extreme cases, the weighted average of the 
generalized path costs is used in the mode-split 
model, rather than the satisfaction function. 
    The remainder of this paper is organized as 
follows. Section 2 describes the CPT-based 
multi-modal equilibrium assignment problem under 
given TCS; Section 3 proposes a heuristic solution 

algorithm; Section 4 presents some numerical 
examples. In the final section, some concluding 
comments are provided. 
 
2 CPT-based SUE model for bi-modal 

traffic network under TCS 
 
2.1 Network representation and assumptions 
    Consider a general strongly connected road 
network G=(N, A), with a set N of nodes, and a set 
A of directed links. Let the set of O-D pairs be 
denoted by W, and the traffic demand on road 
network for O-D pair w∈W be denoted by auto ,wq  
let Rw denote the set of all paths between O-D pair 
w∈W, let w

rf  denote the flow on path r∈Rw, and 
let va denote the traffic flow on link a∈A. The 
following flow conservation equations should be 
satisfied:  

auto ,
w

w w
r

r R
f q w W


                       (1) 

 
, ,

w

w w
a r a r

w W r R
v f a A

 
                    (2) 

 
0, ,  w

r wf w W r R                        (3) 
 
where , ,w

a r which is an element of the link/path 
incidence matrix, is equal to 1 if path r∈Rw uses 
link a∈A and 0 otherwise. 
    Assume that the road network G=(N, A) is 
accompanied by a rail network G′=(N′, A′), where 
N′ and A′ denote the set of nodes and directed links 
on the rail network. The O-D pairs on rail network 
are the same as those on road network, i.e., W. For 
simplicity, it is assumed that only one exclusive 
metro line exists between each O-D pair. The travel 
time on metro line between O-D pair w∈W is 
denoted by ˆ ,wt  w∈W which is a flow-independent 
constant. Moreover, there exists a fare denoted by 
ˆ ,w  w∈W on each metro line, which is also 

flow-independent and predetermined. Let metroˆwq  be 
the traffic demand on rail network for O-D pair   
w∈W, thus it also denotes the path flow on the 
metro line between O-D pair w∈W. Thus, the O-D 
demands on two sub-networks fulfill this condition:  

auto metroˆ ,w w wq q q w W                      (4) 
 
where wq  is a constant representing the upper 
bound of traffic demand between OD pair w∈W. In 
this bi-modal transportation network, travelers 
would make their mode-choice based on overall 
travel impedance of using each mode. 
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    Assume that the government implements TCS 
to manage network mobility, and levies credit 
charges only on road network to promote transit 
trip-mode and improve the roadway congestion. Let 
K denote the total amount of credits issued to 
travelers initially, and each traveler between O-D 
pair w∈W is eligible to get some amount of credits, 
denoted as w, thus .w w

w
K q


 

W
 Let ka denote the 

credit charges on link a∈A, thus k=[ka, a∈A] 
denotes a link credit charge scheme on road 
network. Hence, the notation (K, k) represents an 
entire TCS. Since no credit is charged on rail 
sub-network, the feasible network flow patterns 
exist under any given TCS [1]. 
    In road network, the link performance function 
is assumed to be the Bureau of Public Roads (BPR) 
function, i.e., 0

0( ) [1 ( / ) ],n
a a a a at v t v C   where 0

at  
is the free-flow travel time on link a∈A and Ca is 
the link capacity. Thus, the path travel time w

rt  on 
route r∈Rw can be obtained,  

,( ) , ,  w w
r a a a r w

a A
t t v r R w W


                (5) 

 
    In fact, variability of travel time in road 
network often arises from an array of different 
sources: the stochastic traffic demand results in the 
varying network flows, or the link capacity of the 
road network is degraded unpredictably by 
accidents and incidents. In such situations, the O-D 
demands or link capacity are random variables, the 
corresponding notations defined above can 
represent their mean values. Note that with different 
uncertainty sources, the analytic expression of the 
mean link travel time ta, a∈A should be derived 
from the specific random variables, e.g., stochastic 
traffic demand or link capacity, based on BPR 
function [24, 25]. 
    Specifically, if the total O-D demand is 
assumed to be the source of uncertainty, and it 
follows a normal distribution, i.e., 

2~ ( , ( ) ),w w wQ N q cv q  where wQ  is the stochastic 
O-D demand and cv denotes the coefficient of 
variance of the demand. The path flows also follow 
normal distributions and have the same coefficient 
of variance with the O-D demand under a very mild 
condition of constant path-choice probability [25, 
31]. Furthermore, the probability distributions of 
path travel times can be derived as:  

2~ ( , ( ) ), ,  w w w
r r r wT N t r R w W               (6) 

where w
rT  and 2( )w

r  denote the stochastic path 
travel time and its variance on path r∈Rw, with the 
mean value w

rt and variance 2( )w
r  being calculated 

via the following equations:  
0 0 0

,
1

( ) ( ) ( 1)!!
( )

n
w w v i n i
r a r a a a an

a A ia

n
t t t v i

iC


  

 

  
       
   

(7)  
2

2 0 0
,( )

( )
w w
r a r a n

a A a
t

C


 


 
   

 
  

       
2

2

1

2
( ) ( ) ( 1)!!

n
v i n i
a a

i

n
v i

i
 



  
   

 
  

       
2

1
( ) ( ) ( 1)!!

n
v i n i
a a

i

n
v i

i
 



         
          (8) 

 

   2 22 ,
, ,( )

w w

v w w f w w
a a r r a r r

w W r R w W r R
cv f   

   
       

(9)  
where 2( )v

a  and , 2( )w f
r  are the variances of the 

link and path flows respectively. As mentioned 
above, va and w

rf  denote the mean values of link 
and path flows, thus the probability distribution of 
path travel time is actually parameterized by the 
mean values of link flow patterns. 
 
2.2 Generalized path cost in bi-modal network 
    In this study, the generalized path travel cost of 
road network comprise two parts, i.e., time PV and 
credit cost, while the generalized path travel cost of 
rail network comprise three parts, i.e., time PV, fare 
expense and credit income, as shown in Figure 1. 
Each part of travel cost is introduced in the 
following subsection. Note that the generalized path 
costs determine not only the travel demands of all 
trip modes, but also the network flow patterns in the 
bi-modal transportation network. Conversely, the 
network flow patterns would also influence the 
credit price in the credit trading market, as well as 
the path travel time and the corresponding path PV 
in the bi-modal network. 
2.2.1 Path-travel-time-based reference points and 

prospect values 
     Assume that travel times are random and 
their probability distributions are known to travelers, 
and that travelers have the same risk-taking attitude 
or on-time arrival probability [29−32]. Travelers 
have to make a budgeted time for a specific trip due 
to travel time variability. The budgeted time reflects  
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Figure 1 Generalized path costs and related models 
 
their probabilistic belief on travel times based on 
their preferences, and can thus potentially serve as 
reference points. More specially, when they depart 
from their origin, travelers use the budgeted time as 
a reference point to determine the gain or loss of 
each path based on its travel time distribution, and 
make their route choices accordingly. 
    Mathematically, suppose that travelers’ desired 
on-time arrival probability is no less than ζ, and the 
corresponding minimal budgeted time w

rb  for taking 
path r∈Rw can be written as:  

 min ( ) ,  ,  w w
r r wb b Pr T b r R w W         (10) 

 
    Clearly, the minimal budgeted time w

rb  is 
exactly the ζ th percentile value of the travel time of 
path r ∈ Rw. Since there exist multiple paths 
between each O-D pair, the path-travel-time-based 
reference point w  between O-D pair w∈W is 
assumed to be a function of the budgeted time w

rb  
for all paths between this O-D pair. In this study, the 
minimum of the budgeted times of all paths is 
adopted as the reference point between O-D pair  
w∈W,  

 min , ,  w w
r wb r R w W                  (11) 

 
    Essentially, the reference points are based 
upon the network flow pattern. The reference points 
will remain constant and are consistent in network 
equilibrium state, with the resulting CPT-based 
equilibrium flow pattern and the corresponding path 
travel time distributions. 
    Consider a trip between O-D pair w∈W with 

w  as the reference point. The relative payoff for 
choosing path r∈Rw can be defined as .w w

rT   
As postulated in CPT, travelers may consider the 
outcome of a trip as a gain, if the travel time is less 
than the reference point; as a loss if otherwise. To 
capture this kind of distortion in the perception of 
the outcomes, the S-shaped value function gw(·) can 
be defined as:  

( ) ,
( )

( ) ,

w w
w

w w

x x
g x

x x





 

  

   
  

              (12) 

 
where α and β determine the degree of diminishing 
sensitivity of the value function. Typically, 0<α, 
β<1 and thus the value function exhibits risk 
aversion over gains and risk seeking over losses. 
The parameter η≥1 measures the degree of 
loss-aversion, indicating that individuals are more 
sensitive to losses than gains. The variable x 
denotes a realized value of random variable ,w

rT   
r∈Rw, w∈W. 
    In the CPT context, travelers make their 
decisions based on the outcome probabilities they 
perceive, and typically, small probabilities are 
over-weighted while moderate and high 
probabilities are under-weighted [33−35]. In this 
paper, Prelec’s probability weight function is used 
[34]:  

( ) exp( [ ln( )] )                         (13) 
 
where Ψ(φ) and φ denote the perceived probability 
and actual probability of an event respectively. The 
parameter γ∈(0, 1) represents the distortion level in 
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probability judgment in the decision making 
process. 
    With the above value and probability weight 
functions, the travel-time-based PV for choosing 
path r∈Rw can be written as:  

d ( ( )) ( )d
d

w

w
r

w
w wr
r t

xu g x x
x

  
   

    d (1 ( )) ( )d , ,  
d

w
r
w

wt wr
w

x g x x r R w W
x

 
     

(14)  
where w

ru  is the time-based PV for choosing path  
r∈Rw; w

rt  and w
rt  are respectively the lower and 

upper bounds of the travel time on path r∈Rw. In 
this study, w

rt  is assumed to be the free-flow 
travel time and w

rt  is the 99.9999% of the random 
travel time w

rT . Note that the time PV w
ru  of path 

r∈ Rw is deterministic, even if travel time is 
stochastic. Clearly, w

ru  is also a function of 
network flow patterns. ( )w

r x  is the cumulative 
distribution function of ,w

rT i.e., ( )w
r x   

( ).w
rPr T x  

    In rail network, since the travel time on metro 
line is a constant rather than random variable, the 
time PV cannot be directly calculated based on   
Eq. (14). However, if we view the constant as a 
special random variable with probability density  

function 
ˆ1,

( ) ,
ˆ0,

w

w

x t
pdf x

x t

  


 the time PV on each 

metro line can be determined in a similar way as 
presented above. Under this circumstance, the 
probabili ty weight function becomes Ψ(φ)=  

1, 1
,

0, 0




 
 and the PV function would eventually 

reduce to the value function. Specifically, the 
expression of time-based PV on the metro line 
between O-D pair w∈W can be written as:  

ˆ ˆ( ) ,
ˆ ( )

ˆ ˆ( ) ,

w w w w
w w

w w w w

t t
u g x

t t





 

  

    
  

 

   ˆ ˆ[ ] [ ] ,w w w wt t w W                (15) 
 
where [a]+=a if a≥0, and 0 otherwise. In fact,    
Eq. (15) can be derived from the definition of PV of 
an alternative with finite discrete outcomes [35]. 
Furthermore, CONNORS and SUMALEE [30] 
provide an explicit derivation and show that     
Eq. (14) reproduces Eq. (15) when the probability 
density function represents a discrete distribution of 
outcomes [30]. 

2.2.2 Path credit costs in bi-modal network 
    In the bi-modal network, the government 
charges credits only on road network in order to 
promote rail trip-mode and improve the roadway 
congestion. Therefore, travelers have to bear some 
credit costs if choose auto-mode, or they can get 
some income by selling the credit if choose 
rail-mode. Moreover, travelers have to pay some 
transaction costs when trading credits. 
    Using mathematical expressions, for the 
travelers choosing rail-mode between O-D pair   
w∈W, the income they can get can be written as 
(1 ) ,w

s p   where [0,  1]s   is the TC rate of 
selling credits. The notation p is credit price 
measured in money unit. 
    Besides, the credit cost on the path of road 
network can be expressed as:  

, ,( ) [ ]w w w w w
r a a r s a a r

a A a A
c p k p k     

 

       

    ,[ ] ,  ,  w w
b a a r w

a A
p k r R w W   



        (16) 
 
where [0,  1]b   is the TC rate of buying credits. 
Equation (16) indicates that the travelers need to 
buy extra credits when choosing the route charging 
more credit than they possess, while they can sell 
the leftover credits when choosing the route 
charging less. 
2.2.3 generalized path costs of bi-modal network 
    Since the generalized path travel cost involves 
time PV and monetary cost, a conversion 
coefficient must be introduced to make them 
additive. In this paper, the conversion coefficient is 
assumed to be identical for all travelers. Note that 
PV and credit income represent utility rather than 
disutility, thus a negative sign must be added to 
them when calculating the generalized path travel 
cost. Moreover, assume that travelers have 
perception errors on the generalized path travel cost, 
and the perception errors follow a certain 
probability distribution, e.g., Gumbel or Normal 
distribution. 
    For road sub-network, the perceived 
generalized travel cost w

rC  on path r∈Rw can be 
formulated as the following expression:  

w w w w w w
r r r r r rC c u c           

   d ( ( )) ( )d
d

w

w
r

w
wr

t

x g x x
x

  
     

     d (1 ( )) ( )d
d

w
r
w

wt w w wr
r r

x g x x c
x

 
 


      (17) 
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where w
rc  is the expected generalized travel cost 

on path r∈Rw, i.e., ( ) .w w
r rE C c   The notation κ is 

the conversion coefficient between time-based PV 
and monetary cost. Without loss of generality, set 
κ=1. The notation w

r  is traveler’s perception error 
of road sub-network, with zero mean ( ) 0w

rE    
and constant variance ( ).w

rVar   
    For rail network, the perceived generalized 
travel cost on metro line between O-D pair w∈W 
can be expressed as:  
ˆ ˆˆw w wC c    

   
ˆˆ ˆ (1 )

ˆ ˆ[ ] [ ]

w w w w
s

w w w w

u p

t t 

    

    

      

       
 

     ˆˆ (1 ) ,w w w
s p w W                  (18) 

 
where ˆwc  is the expected generalized travel cost 
on metro line between O-D pair w ∈ W, i.e., 

ˆ ˆ( ) .w wE C c The notation ˆw is traveler’s perception 
error of rail sub-network. Actually, the travelers can 
easily get perfect information on the travel cost on 
rail sub-network, thus their perception errors in this 
case can be taken as zero. 
 
2.3 Mode-split model 
    In the bi-modal network, travelers are assumed 
to choose a travel mode before they make the trip 
on a specific route. In this study, a binary logit 
model is selected for the mode-split, in view of its 
simplicity for use and popularity in the mode-split 
studies [36−38]. Thus, for any O-D pair w∈W, the 
travel demands on road sub-network are equal to:  

auto
auto

auto

exp( )
ˆexp( ) exp( (1 ) )

w w
w

w w w
q c

q
c c


  




     
     (19) 

 
where   is the dispersion parameter of mode 
choice; auto

wc  is the weighted average of the 
expected generalized path costs between O-D pair 
w ∈ W in road sub-network, i.e., auto

wc   
( ),

w

w w w
r r

r R
c P


  c  where ( )w w

rP c is choice probability 

of the path r∈Rw evaluated at [ ,  ];w w
r wc r R  c  

and λw>0 is the exogenous attractiveness of metro 
line between O-D pair w∈W. Clearly, a large auto

wc  
(i.e., auto-mode travel cost), a small ˆwc (i.e., metro- 
mode travel cost) or a large λw (i.e., metro 
attractiveness) yields a large choice proportion of 
metro traffic. 
    Note that in road sub-network, the weighted 
average auto

wc  of the generalized path costs is taken 

as the auto-mode travel cost for O-D pair w∈W, 
rather than the commonly used satisfaction function 

auto
wS  [2, 37]. According to Ref. [39], the inequality 

auto automin{ , }w w w
r wS c r R c    always holds, thus the 

inequality auto ˆ min{ ,  }w w w
r wS c c r R    may exist in 

some extreme cases. Therefore, the travel demands 
of road sub-network might be overestimated 
unreasonably in such cases, if auto

wS  is adopted in 
Eq. (19). 
 
2.4 Variational inequality model for CPT-based 

bi-modal SUE with TCS 
    For the bi-modal network under a given TCS, 
a stationary equilibrium state can be achieved when 
no traveler can improve his or her perceived 
generalized path cost by unilaterally changing 
routes. Mathematically, the CPT-based network 
equilibrium (CPT-NE) conditions can be expressed 
as:  
( ) 0a a

a
K k v p                          (20) 

 
0a a

a
K k v                            (21) 
 

0p                                    (22) 
 

auto ( ), ,  w w w w
r r wf q P r R w W   c            (23)  

auto
auto

auto

exp( )
ˆexp( ) exp( (1 ) )

w w
w

w w w
q c

q
c c


  




     
     (24) 

 
As well as Eqs. (1)−(4) and (17)−(18). 
    Equations (20)−(22) represent the credit 
market equilibrium (ME) conditions, and      
Eqs. (1)−(4), Eqs. (17)−(18), Eqs. (23)−(24) 
represent the CPT-based bi-modal SUE conditions. 
At CPT-NE, the travelers no longer adjust their 
reference points, which thus remain constant and 
are consistent with the CPT-NE flow 
pa t te rn  and  the  cor responding  t rave l  t ime  
distributions. Note that ( )w w

rP c  has analytic forms, 

i.e., 
'

'

exp( )( )
exp( )

w

w
w w r

r w
r

r R

cP
c













c  under the assumption 

of Gumbel distributed perception errors, while 
( )w w

rP c  cannot be expressed analytically under 
the assumption of Normal distributed perception 
errors, but can be calculated with Monte Carlo 
method [39]. 
    The CPT-NE conditions defined above can be 
formulated as the following variational inequality 
(VI) model: 
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    Find  * 0p p p M     such that:  
* *( ) ( ) 0 ,a a

a A
K k v p p p p 



 
      

 
       (25) 

 
where M is a predetermined large number, which is 
far greater than the potential maximum credit price. 
Note that M does not influence the final solution to 
the VI model, as M is just a nonbinding upper 
bound; meanwhile, it is easy to know if M is big 
enough, via the solution algorithm presented in the 
next section. Notation *( )av p  is the SUE link flow 
pattern of road sub-network under the given 
parameter p*. In fact, a parameterized fixed-point 
(FP) model represented by Eqs. (1)−(4), (17)−(18) 
and Eqs. (23)−(24) is embedded in the VI model 
(25), which is exactly a CPT-based bi-modal SUE 
sub-problem. Thus, va(p*) is also the solution to the 
parameterized FP model, with the given credit price 
p*. 
    The equivalence between the VI model (25) 
and the CPT-NE conditions Eqs. (1)−(4), (17)−(18) 
and (20)−(24) can be established in a similar way to 
that (given by Proposition 4) in Ref. [40], thus 
omitted here. Assume that the PV function is 
continuous with respect to w

rf  (or va), which is a 
commonly used assumption in literatures [30−32]. 
Thus, the generalized path travel cost is also 
continuous with respect to w

rf  (or va), then the 
existence of SUE network flow pattern can be 
guaranteed. Based on Proposition 2 in Ref. [40],   
i t  can be fur ther  inferred  that  the funct ion  

( )a a
a A

K k v p


   is continuous with respect to p. 

With the non-empty, convex and compact set Γ, it 
can be concluded that the VI model (25) has at least 
one solution [41]. 
    The uniqueness of the ME credit price can be 
guaranteed if there exists at least one OD pair    
w∈W whose realized positive demand auto

wq  of 
road sub-network does not reach its upper-bound 

.wq  The proof is similar to the Proposition 4 in  
Ref. [1]. The uniqueness of the SUE network flow 
pattern is not established in this paper, as the PV 
function may be not strictly monotone with respect 
to w

rf (or va) due to the complicated function form. 
 
3 Solution algorithm 
 
    Considering that the VI model contains 
double-layer structures, and that the ME credit price 
is determined by the relationship of supply and 

demand in the credit market, a heuristic solution 
algorithm is developed based on these properties. 
The algorithm contains two-level iterations: The 
outer iteration is a bisection-based contraction 
method to find the ME credit price, and the inner 
iteration is essentially the MSA to determine the 
corresponding CPT-based SUE network flow 
pattern. 
    [Outer Iteration]: 
    Step 0: Initialization. Let (1)

LBp  and (1)
UBp  be 

the initial lower bound and upper bound of credit 

price, respectively. Set 
(1) (1)

(1) =
2

LB UBp p
p

 be initial 

credit price, and then set n=1; 
    Step 1: Invoking inner iteration. With the 
current credit price p(n), the original problem 
reduces to a bi-modal CPT-based SUE sub-problem, 
which can be solved by implementing the inner 
iteration; 
    Step 2: Checking the stopping criterion. If at 
least one of the following two stopping criteria 
holds, 
 

( ) ( )
1lg( )n n

UB LBp p    or                     (26) 
 

* ( )

2
( )lg 1

np
K


 

k v                      (27) 
 
where ε1 and ε2 are the prescribed convergence 
tolerances. Then, terminate the iteration and output 
the current credit price p(n), as well as the 
corresponding SUE link flow pattern v*(p(n)); 
otherwise, go to Step 3; 
    Step 3: Updating the credit price bounds and 
credit price. Update the lower bound ( )n

LBp  and 
upper bound ( )n

UBp  of credit price according to the 
following rules: 

    if 2
* ( )( ) 10 ,

np K
K

 


k v  then ( ) ( ) ,n n
LBp p  and 

( ) ( 1)n n
UB UBp p  ;  

    else if 2
* ( )( ) 10 ,

np K
K

 
 

k v  then ( ) ( ) ,n n
UBp p  

and ( ) ( 1) ;n n
LB LBp p   

    Then update the credit price 
( ) ( )

( 1) .
2

n n
n LB UBp p

p  
  Let n=n+1, and go back to  

Step 1. 
    [Inner Iteration]: 
Step 1.0 Initialization 
    Set m=1 and specify an initial path flow 
pattern f(1) and convergence tolerance ε3; 
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    Step 1.1 Determining reference points 
between each OD pair. Based on the current road 
flow pattern  f(m), calculate the probability 
distributions of road path travel time according to 
(7−9). Further, determine the reference 
points ,  w w W    that satisfy the constraints 
(10−11); 
    Step 1.2 Calculating generalized path cost on 
each path. Calculate the time PV and credit cost (or 
income) for each path of the bi-modal network 
according to Eqs. (14)−(16), with the current p(n). 
Then, the generalized path cost ,w

rc ˆwc can be 
obtained by Eqs. (17) and (18); 
    Step 1.3 Mode split. Determine the current 
travel demands auto

wq and metroˆ ,wq respectively, for 
auto-mode and metro-mode by the Eq. (19) ; 
    Step 1.4 Determining search direction. Based 
on the current travel demands and generalized path 
cost, obtain the search direction f(m) by 
implementing stochastic network loading via the  
Eq. (23); 
    Step 1.5 Convergence check: 

    If 
( ) ( )

3( )

m m

m





f f

f
, then stop and output the 

current path flow pattern f 
(m) (i.e., f 

(m)(p(n))). 
Otherwise, go to step 1.6; 
    Step 1.6 Updating path flows. Update the path 

flow pattern by ( 1) ( ) ( ) ( )1 ( ).m m m m

m
   f f f f Set 

m=m+1, and then go to step 1.1. 
    Remarks: The stop criterion in Eq. (26) can 
be used to verify the appropriateness of the preset 
initial bounds of credit price, i.e., (1)

LBp  and (1)
UBp . 

Meanwhile, Eq. (26) can also prevent the algorithm 
sinking into dead circulation, if the initial interval 

(1)[ ,LBp (1) ]UBp  doesn’t contain the final ME credit price 
p*. Generally speaking, it is only the stop criterion 
in Eq. (27) that would be satisfied when the 
algorithm converges, if the initial interval is 
appropriate. And it is only when the undesired 
situation (1) *

LBp p  or (1) *
UBp p  occurs, that the stop 

criterion in Eq. (26) could be satisfied. Under this 
circumstance, Eq. (27) could never be satisfied, 
thus Eq. (26) can stop the dead circulation of the 
algorithm. 
    Note that the reasonableness of the stop 
criteria in Step 2 must rely on the updating rules in 
Step 3 in outer iteration. Meanwhile, the 
appropriateness of (1)

LBp  and (1)
UBp  can be verified by 

using the following rules similar to those in Step 3. 

    Specifically, (1)
UBp  is set too low and must 

increase if 2

(1)*( )
10UBp K

K
 


k v  holds, whereas 

(1)
LBp  is set too high and must decrease if 

2

(1)*( )
10LBp K

K
 

 
k v holds. 

    According to Proposition 1 in Ref. [40], it can 
be easily inferred that the function *( )K p k v  is 
monotonically increasing with respect to p. Thus, 
function k·v*(p) is monotonically decreasing with 
respect to p, given that total credit amount K is 
constant. Therefore, the outer iteration can 
definitely find the ME credit price after finite 
iterations. The inner iteration is essentially the 
well-known MSA, which demonstrated a good 
convergence property in our numerical experiments. 
 
4 Numerical experiments 
 
    The Nguyen-Dupuis network is used as the test 
network, as shown in Figure 2. The bi-modal 
network consists of 13 nodes, 19 road links (solid 
line) and 4 metro links (dashed line). There are 4 
O-D pairs in the bi-modal network, 1–2, 1–3, 4–2 
and 4–3. The numbers of paths of road sub-network 
between those O-D pairs are 8, 6, 5, and 6, 
respectively. There exists only one exclusive metro 
line between each O-D pair. The mean O-D 
demands are q12=800, q13=1600, q42=1200, q43=400. 
The average link travel time function of road 
sub-network is the standard BPR function, i.e., 

0 4( ) [1 0.15 ( / ) ],a a a a at v t v C   and the link 
characteristics are given in Table 2. The constant 
travel times ˆwt  on each metro line are 35, 40, 35, 
40, respectively, and the transit fares ˆw  are 5, 5,  
4, 6, respectively. The metro attractiveness λw is 
0.04, 0.05, 0.06, 0.04, respectively. 
    The TCS is assumed to be imposed in the 
bi-modal transportation network, and total credit 
amount is K=900, initial credit amount w for the 
traveler of each O-D pair is 0.25, 0.2, 0.25 and 0.2, 
respectively. The credit is charged only on links of 
road sub-network, and the charge ka is presented in 
Table 2. The TC rates are ρs=0.08, ρb=0.1. 
    Assume that the path travel times are 
stochastic on road sub-network, due to the daily 
road traffic incidents. And the probability 
distribution is assumed to be following the normal  
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Figure 2 Nguyen-Dupuis network 
 
Table 2 Link characteristics of road sub-network 

Link 0
at  Ca ka 

1 7 900 0.1 

2 8 700 0.1 

3 9 700 0.1 

4 14 900 0.1 

5 5 800 0.1 

6 9 600 0.1 

7 5 900 0.1 

8 13 500 0.1 

9 5 300 0.2 

10 9 400 0.2 

11 10 700 0.1 

12 10 700 0.1 

13 9 600 0.1 

14 8 700 0.1 

15 9 700 0.1 

16 8 700 0.1 

17 7 300 0.1 

18 15 700 0.1 

19 11 700 0.1 

 
distribution, i.e.,  2~ , ( ) , ,w w w w

r r r r wT N t cv t r R    
,w W  and cv=[0.5, 0.01, 0.15, 0.2, 0.1, 0.3, 0.001, 

0.01; 0.3, 0.01, 0.3, 0.5, 0.02, 0.2; 0.1, 0.4, 0.001, 
0.35, 0.02; 0.6, 0.1, 0.3, 0.05, 0.01, 0.1]. 
    Assume that travelers’ desired on-time arrival 
probability is no less than ζ=95%. The parameters 
of the value function in Eq. (12) are assumed to be 
α=β=0.52, η=2.25, and the parameter of probability 
weight function in Eq. (13) is γ=0.74. The 
logit-based stochastic network loading is adopted 
with dispersion parameter θ=0.1, and the dispersion 
parameter for mode-split model is 0.1.   
    Based on the solution algorithm proposed 

above, the equilibrium solution is obtained after 7 
outer iterations and totally 51 inner iterations in this 
numerical example, as shown in Figure 3. At 
CPT-NE, the ME credit price p*=3.9375 and SUE 
link flow pattern vT=[629.20, 441.01, 482.41, 
235.81, 757.04, 354.57, 716.70, 400.35, 236.03, 
480.67, 317.04, 333.43, 256.94, 733.78, 506.11, 
708.34, 360.01, 81.00, 256.94]. Meanwhile, the 
travel demands auto

wq  on road sub-network are 
341.94, 728.28, 481.21, 237.00, and the reference 
points w  are 38.70, 45.18, 41.41 and 34.65, 
respectively. 
 

 
Figure 3 Convergence curve of solution algorithm 
 
    In order to reveal the impacts of various 
parameters on equilibrium solutions, the 
equilibrium solutions under different parameter 
values are compared in this study, as shown in 
Figures 4−8. Specifically, Figure 4 compares the 
equilibrium solutions under different risk levels (i.e., 
on-time arrival probability ζ); Figure 5 compares 
those under different route-choice dispersion 
parameters θ; Figure 6 compares those under 
different mode-choice dispersion parameters ;  
Figure 7 compares those under different TC rates 
(ρb and ρs); Figure 8 compares those under  
different link-based credit charge schemes k (with K 
fixed). 
    Figure 4 shows that the ME credit price and 
reference points will increase with the increasing of 
risk level. Thus, with the risk level increasing, the 
path credit costs also increase. It is interesting to 
see that the generalized path travel costs decrease 
while both the PV and credit costs are increasing, 
which indicates the decrease of generalized path 
travel costs caused by the rising PV is greater than 
the increase caused by the rising credit cost. 
    It can be seen from Figure 5 that the impacts 
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Figure 4 Comparison of solutions under different risk level values ζ: (a) Reference points (RP); (b) Prospect values 
(PV); (c) Credit price; (d) Path generalized cost (GC); (e) Auto travel demand (TD); (f) Path flow between OD 4-2 
 
of path-choice dispersion parameter θ on 
equilibrium solutions are more complicated. With 
the increasing of θ, both increasing and decreasing 
phases arise for ME credit price and reference 
points, as shown in Figures 5(a) and (c). Besides, 
the SUE path flow approaches to the UE path flow 
when θ=1, as shown in Figures 5(d) and (f). 
    Figure 6 shows that the mode-split dispersion 
parameter  has very little influence on the 
reference points and PV. However, the auto-mode 
travel demands of road sub-network, as well as the 

ME credit price, are influenced by   to a large 
extent. With  increasing, the travelers become 
more sensitive to the travel cost differences 
between the two traffic modes, and more travelers 
will choose the metro-mode. Thus, more credits 
will be left, and the credit price will decrease. As 
shown in Figure 6(c), the ME credit price will 
decrease to zero when  =0.7. 
    Figures 7(a)−(d) shows the equilibrium 
solutions under different TC rates ρb of buying 
credit, and Figures 7(e)−(h) shows those under 
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Figure 5 Comparison of solutions under different dispersion parameter θ: (a) Reference points (RP); (b) Prospect values 
(PV); (c) Credit price; (d) Path generalized cost (GC); (e) Auto travel demand (TD); (f) Path flow between OD 4-2 
 
different TC rates ρs of selling credit. It can be seen 
from Figure 7 that both reference points and PV 
have little change under different TC rates. 
However, the ME credit price will decrease with the 
increasing of ρb, while it will increase with the 
increasing of ρs. Figures 7(c) and (d) show that the 
path credit costs still increase even if the credit 
price decreases, which indicates that the increase of 
path credit cost caused by the rising TC is greater 
than the decrease caused by the declining credit 
price. 

    Figure 8 shows that the generalized path travel 
costs increase and the travel demands decrease in 
road sub-network, with the credit charges k 
increasing. These results indicate that TCS can 
effectively regulate the trip mode choice, thus is 
promising in improving service level of multimodal 
transportation system. Interestingly, the ME credit 
price may increase or decrease with k increasing, 
which demonstrates that the supply-demand 
relationship of credit market becomes more 
complicated in multimodal transportation network. 
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Figure 6 Comparison of solutions under different mode-split dispersion parameters  : (a) Reference points (RP); (b) 
Prospect values (PV); (c) Credit price; (d) Path generalized cost (GC); (e) Auto travel demand (TD); (f) Path flow 
between OD 4-2 
 
 
5 Conclusions 
 
    This paper has applied the cumulative prospect 
theory to describe travelers’ route choice behaviors 
in a stochastic bi-modal transportation network 
under a given TCS. In the bi-modal network, 
traveler’s generalized path travel cost consists of 

PV and credit cost in road sub-network, while it 
consists of PV, transit fare and credit income in rail 
sub-network. The CPT-based network equilibrium 
conditions are proposed to describe the stationary 
state of the bi-modal network based on the 
generalized path travel cost. At the equilibrium state, 
the reference points and PV will remain constant, as 
both of them depend on the equilibrium flow  
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Figure 7 Comparison of solutions under different TC rates (ρb and ρs): (a) Reference points (RP); (b) Prospect values 
(PV); (c) Credit price; (d) Path credit (PC) cost; (e) Reference points (RP); (f) Prospect values (PV); (g) Credit price;  
(h) Path credit (PC) cost 
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Figure 8 Comparison of solutions under different credit charge schemes k: (a) Reference points (RP); (b) Prospect 
values (PV); (c) Credit price; (d) Path generalized cost (GC); (e) Auto travel demand (TD); (f) Path flow between OD 
4-2 
 
pattern ultimately. An equivalent VI model is then 
established for the CPT-based network equilibrium 
conditions, in which a parameterized FP model is 
embedded as a subproblem. Some theoretical 
analyses are presented to guarantee the existence 
and uniqueness of the equilibrium solution. 
Considering that the VI model contains two-layer 
structures, and that the ME credit price is 

determined by the relationship of supply and 
demand in the credit market, a heuristic solution 
algorithm is developed based on these properties. 
The algorithm contains two-level iterations, of 
which the outer iteration is a bisection-based 
contraction method to find the ME credit price, and 
the inner iteration is essentially the MSA to 
determine the corresponding CPT-based SUE 
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network flow pattern. 
    The classical Nguyen-Dupuis network is taken 
as the test network to illustrate the proposed model 
and algorithm. The numerical results show that: 1) 
The ME credit price and reference points increase, 
with the on-time arrival probability increasing. 
However, the generalized path travel costs don’t 
increase necessarily. 2) With path-choice dispersion 
parameter θ increasing, the ME credit price and 
reference points may increase or decrease. When θ 
is great enough, CPT-based SUE path flow becomes 
equal to CPT-based UE path flow. 3) The 
mode-split dispersion parameter   has very little 
influence on the reference points and PV. However, 
the travel demands in road sub-network, as well as 
the ME credit price, are influenced by   to a large 
extent. 4) The reference points and PV change little 
under different TC rates, but the ME credit price 
decreases with the increasing of TC rates of buying 
credit ρb, while it increases with the increasing of 
TC rates of selling credit ρs. 5) With the credit 
charges k increasing, more travel demands in road 
sub-network would transfer to the metro mode, 
which indicates that TCS is promising in improving 
service level of multimodal transportation system. 
    For future research, the multiclass travelers 
with heterogeneous risk attitudes can be considered 
to extend this study. And the optimal TCS design 
problem based on the proposed traffic equilibrium 
model in this paper can also be further investigated. 
Besides, some further studies under more practical 
assumptions are worthy of devoting effort, such as 
considering park and ride choice behavior, route 
choice in large metro sub-network, transfer 
behavior between different metro lines, and so on. 
 
Nomenclature 
 
G A general strongly connected road network 
G′ Rail network 
N Set of nodes 
N′ Set of nodes on the rail network 
A Set of directed links, a∈A 
A′ Directed links on the rail network 
W Set of O-D pairs, w∈W 

auto
wq  Traffic demand on road network for O-D

pair, w∈W 
Rw Set of all paths between O-D pair, w∈W 

w
rf  Flow on path, r∈Rw 

va Flow on link, a∈A  

,
w
a r  Element of the link/path incidence matrix 

ˆwt  Travel time on metro line between O-D 
pair, w∈W  

ˆw  Fare on metro line between O-D pair, w∈
W  

metroˆwq  Traffic demand on rail network for O-D 
pair, w∈W  

K Total amount of credits issued 
w Initial credit amount distributed to each

traveler between O-D pair, w∈W  
ka Credit charges on link, a∈A 
k Credit charge scheme on road network,

k=[ka, a∈A]  
ta Mean travel time on link, a∈A  

w
rt  Path travel time on route, r∈Rw 

w
rT  Random path travel time on path, r∈Rw  

2( )w
r  Variance of path travel time on path, r∈Rw 

ζ Lower limit of travelers’ desired on-time 
arrival probability 

w
rb  The minimal budgeted time for taking 

path, r∈Rw  
w  Path-travel-time reference point between

O-D pair, w∈W 
gw(·) Value function 
Ψ(φ) Perceived probability of an event 
φ Actual probability of an event 

w
ru  Time prospect value for choosing path, r∈

Rw  
ˆwu  Time prospect values on the metro line

between O-D pair, w∈W  
w
rt  Lower bounds of the travel time on path, 

r∈Rw  
w

rt  Upper bounds of the travel time on path, 
r∈Rw  

ρs TC rate of selling credits, ρs∈[0, 1]  
ρb TC rate of buying credits, ρb∈[0, 1] 
p Credit price measured in money unit 

w
rC  Perceived generalized travel cost  on

path, r∈Rw 
w
rc  Expected generalized travel cost on path, 

r∈Rw 
κ Conversion coefficient between time PV

and monetary cost 
w
r  Traveler’s perception error of road

sub-network 
ˆwc  Expected generalized travel cost on metro
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line between O-D pair, w∈W 
ˆw  Traveler’s perception error of rail

sub-network 
  Dispersion parameter of mode choice 
θ Dispersion parameter of route choice 

auto
wc  Weighted average of the expected

generalized path costs between O-D pair,
w∈W 

( )w w
rP c  Choice probability of the path, r∈Rw

evaluated at [ , ]w w
r wc r R  c  

λw Exogenous attractiveness of metro line
between O-D pair, w∈W  

auto
wS  Satisfaction function between O-D pair,

w∈W 
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中文导读 
 

可交易路票策略下的双模式随机网络交通分配问题：累积前景理论方法 
 
摘要：本文研究了可交易路票策略(Tradable Credit Scheme, TCS)下双模式随机网络中的交通均衡配流

问题。采用累积前景理论(Cumulative Prospect Theory, CPT)来描述出行者在不确定环境下的风险决策

行为。假设出行者选择理解的广义路径费用(包括时间前景值和货币费用)最小的路径进行出行。在给

定路票策略下的交通均衡状态，内生的参考点和路票价格保持不变，而且与道路子网络中的均衡流量

形态和对应的出行时间概率分布一致。为了描述这种交通均衡状态，本文构建了路票策略下基于 CPT
的随机用户均衡(Stochastic User Equilibrium, SUE)条件。然后，建立了一个嵌套参数型不动点(Fixed 
Point, FP)模型的等价变分不等式(Variational Inequality, VI)模型，并在理论上分析了该模型的相关特

性。本文设计了一种启发式算法来求解该模型，该算法包含两层迭代过程。其中，外层迭代是一个基

于二分的收缩算法，用于寻找均衡路票价格；内层迭代本质上是相继平均算法(Method of Successive 
Averages, MSA)，用于确定对应的基于 CPT 的 SUE 网络流量形态。通过数值实验，本文验证了模型

和算法的正确性和有效性。 
 
关键词：可交易路票；累积前景理论；内生参考点；广义路径费用；随机用户均衡；变分不等式模型；

启发式算法 


