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WU Xun(Z:H1)"% 2, SHI Jian-yong(jitiZ 5)" 2, LEI Hao(75%)" 2, LI Yu-ping(Z= L #)" %, Leslie OKINE'?

1. Geotechnical Engineering Research Institute, Hohai University, Nanjing 210098, China;
2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,
Hohai University, Nanjing 210098, China;

3. College of Mechanics and Materials, Hohai University, Nanjing 211100, China

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract: The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In
this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat
generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann
or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account.
The solutions are derived by basic methods, including the superposition method, separation variable method and
orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and
applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of
the proposed analytical solutions for solving the wide range of applied transient heat conduction problems.
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1 Introduction

In various engineering fields, the study of one-
dimensional transient heat conduction with time-
dependent boundary conditions and arbitrary heat
generation is widely used. In the thermal analysis of
building external walls, the exterior walls of a
building are made up of composite materials. It is
common for researchers to analyse the heat
preservation performance of a building’s external
wall by a multilayered heat conduction equation
[1-3]. The second application is the analysis of the
transient response of multilayered materials with
moving heat sources, such as machining [4],
welding [5] and laser heating [6]. The consolidation
of layered soils and multilayered diffusion model

all have the similar form as the heat conduction
equation. Therefore, the multilayered heat
conduction model can be extended to calculate the
consolidation of layered soil [7, 8] or multilayered
diffusion [9-11]. The multilayered heat conduction
model can also be used to predict the temperature
distribution in a landfill. Heat generation occurs in
municipal solid waste (MSW) landfills due to the
biodegradation of the organic content of the waste.
The waste layer and soil layer can be regarded as a
multilayered heat transfer structure. It is important
to predict the temporal and spatial distribution of
temperature inside a landfill, which is helpful for
the operation and management of the landfill [12,
13].

There are several different approaches that can
be used to analyse the transient heat conduction in a
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multilayered medium such as: orthogonal and
quasi-orthogonal expansion techniques [14-16],
Green’s function approach [17, 18], Laplace
transform method [19-21], finite integral transform
technique [22], distributed transfer function method
[23], finite element method [24], and finite
difference method [25]. These techniques can be
divided into analytical methods [14-23] and
numerical methods [24, 25]. Among the above
listed approaches, the analytical solutions have the
advantage of accuracy and efficiency. The
analytical solutions can also provide deep physical
insight. Furthermore, the analytical solutions can be
used to analyse the inverse problem. Therefore, it is
important to identify the analytical solutions [26].
Continued effort has been made recently to
advance the analytical solutions of one-dimensional
transient heat conduction in multilayered slabs.
MONTE [27, 28] solved the double-layered and
multilayered heat conduction problems using the
orthogonal expansion method. The boundary
conditions used were homogeneous Robin
boundary conditions. SUN et al [29] solved the
three-layered and multilayered heat conduction
model with constant Dirichlet boundary conditions
using the separation variables method. LU et al [30]
used the Laplace transform method to solve the heat
conduction model of a multilayered composite slab.
The boundary conditions used were time-dependent
Robin boundary conditions. ZHOU et al [31] solve
the heat conduction problem in one-dimensional
double-layered composite medium with
homogeneous Robin boundary conditions by the
natural eigenfunction expansion method. There
were no heat generations in the governing equations
of the above researches. BELGHAZI et al [32]
presented an analytical approach of transient heat
conduction in double-layered material with
different heat generations in layers by the
separation of variables method. Only the
homogeneous Robin boundary conditions were
taken into account in BELGHAZI et al’s study.
TIAN et al [33] obtained the solutions of transient
heat conduction in multilayered slabs with
homogeneous Neumann boundary conditions by the
Green’s function method. However, the heat
generation in each layer was the same.
FAKOOR-PAKDAMAN et al [34, 35] presented
analytical solutions of heat diffusion inside a
multilayered composite medium with arbitrary heat
generations by separation of variables method.

However, only space-dependent heat generation
inside each layer was taken into consideration in his
studies.

Although there are significant researches on
the analytical solutions of the multilayered heat
conduction models, few papers predict the thermal
behaviour of a multilayered slab with arbitrary heat
generation and general time-dependent boundary
conditions. The purpose of this paper is to solve the
multilayered heat conduction equation with general
boundary conditions and arbitrary heat generation.
The general boundary conditions include various
combinations of Dirichlet, Neumann or Robin
boundary condition at either surface. The solutions
are solved by the superposition method, the
orthogonal expansion method and the separation
variable method. The double-layered analytical
solution is validated by a numerical method and
applied to predicting the temporal and spatial
distribution of the temperature inside a landfill.

2 Mathematical formula

A composite slab consisting of a finite
multilayer is shown in Figure 1. z,; and z; are the
upper depth and lower depth of the ith layer, where
i=1, 2, ***, n.zo and z, are the upper and lower
boundaries of the entire multilayered slab.

zy=0
/ ki oy gz 0 L) /
Z
\ kz 0y gz(Z, l) ]2(2) \
Z
/. /
\Z’_ ki o glz0) I(2) \
/an : /
\ Z; ky o, g2, 0 1(2) \
zY

Figure 1 Schematic diagram of a multilayered slab

The assumptions made in deriving the
mathematical formulation of this time-dependent
heat conduction problem are [27-31, 34]:

1) The thermal conductivity and the thermal
diffusivity are temperature independent and
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uniform inside each layer;

2) The multilayered slab is large enough in the
x and y directions in comparison to its thickness in
the z direction,;

3) The thermal contact resistance between the
interfaces is negligible.

The heat conduction problem can be
considered one-dimensional, due to the assumption
2). The governing equation of heat conduction in
the ith layer is:

o7, (z,t) 827} (z,t) . a,q; (z,t)
= .

ot ! 622 k.
z_<z<z,i=1 2, -, n (D)

i-1 = i

where Ti(z, ?) is the temperature of the ith layer, and
ki and o; are the thermal conductivity and thermal
diffusivity of the ith layer, respectively. gz, t) is
heat generation in ith layer, which is a function of
the position z and time z.

The initial condition of ith layer is:

T;(2,0)=1,(z), i=1,2, -, n (2)

where /i(z) is a given initial temperature distribution
through the ith layer.

The boundary conditions on the upper and
lower surfaces of the multilayered slab are

o7 ( z,
c=at (=)= oy () ok BED
orT, (z,
or —kIM-i-thl(z,t):fR,l (1) (3)
oT (z,t
e=zyt Ty(20)= o (0) ork, ) g )
ork, aT"a(Z’t) T, (20) = o (1) @

where fp.1(2), fon(0), fna(D), fun(®), fra(D), and fra(?)
are the external conditions (prescribed temperature
and/or heat flux) on the upper and lower surfaces of
the multilayered slab. The subscripts D, N, and R
represent the Dirichlet, Neumann and Robin
boundary conditions, respectively. /#; and #, are the
heat transfer coefficient of the upper and lower
surfaces of the multilayered slab, respectively.

The inner boundary conditions (continuity
conditions) are:

Ti(zi,l‘):Ti+1 (zi,t), i=1,2, -, n-1 ®))
o7, (z,t) oT,, (z,t)
ki ——— TS E— >
oz 0z .

z=z

i=1,2, -, n-1 (6)

3 Analytical solutions

The solution for combinations of Robin
boundary conditions on the upper and lower
surfaces of the multilayered slab is derived in this
section. The solutions for other combinations of
boundary conditions are also shown, except for the
combinations of Neumann boundary conditions.
The solution for the combinations of Neumann
boundary conditions on the upper and lower
surfaces of the multilayered slab is derived in
Appendix B.

3.1 Homogenization of boundary condition

The nonhomogeneous boundary conditions
can be homogenised by the superposition principle.
The solution of 7;(z, ) can be separated as follows:

T, (z,t) =U;(z,t)+W;(z,1) (7

where Wiz, f) is the solution of the steady-state
problem for the same region as Ti(z, ), with no heat
generation and nonhomogeneous  boundary
conditions at z=z¢ and z=z,. Ui(z, f) is the solution of
the time-dependent heat conduction problem for the
same region as 7i(z, f), with heat generation, but
subjected to homogeneous boundary conditions.

3.2. Solution of W(z, ?)
Wiz, t) satisfies the Laplace’s equation as
shown in Eq. (8):

2
aWi—(ZZ’t)zo, z;,<z<z, i=12, -, n (®)
oz
The upper, lower and inner boundary
conditions of Wj(z, f) are set as:
oW, (z,t
z=1z): —kl%+thl (z,2)= fri(2) 9)
oW, (z,t)
z=z,: k"6—+han (2.1) = fra (2) (10)
Z
VV,-(Zi,t)zVVHl(zi,t), i=12, -, n-1 (11)
K, ow, (z,t) ko, oW, (Z,t) ,
oz . 0z .
i=1,2, -, n-1 (12)

The solution for the function Wq(z, f) is
obtained from Egs. (8)—(12) as follows:

W, (z,t)=4;(t)z+ B, (1) (13)

with



3178 J. Cent. South Univ. (2019) 26: 3175-3187
h, The orthogonal expansion technique is used to
(¢) |:fRn() I Tri (’)} / {k +h ) + solve the homogeneous problem of Uiz, ). Let
- Hi(z,t) be the solution of the following time-
h, {ﬁ_ k ] z, —(zoh _kl)h_"} (14) dependent heat conduction problem with no heat
Ky Kpa hy generation, which is used to obtain the
fra®  hzo—k characteristic function.
By (1) ==~ 22—t 4 (1) 2
hl h1 6H,-(z,t) 0 H[(Z,t) .
Jea(t) (kK o G T A SESE il e
R.n 1, K12, z
R U ALl 2s)
ek The upper, lower and inner boundary
1 1 ..
Z(k__ a JhpAl (1) (15) conditions of H;(z, t) are as follows:
p=I\"p p+l
OH,(z,t
k, z=2z;: —k1£+h1Hl(z,t)=O (26)
A (t):k_Al (¢) (16) 0z
i+1
O0H, (z,t
N z=z,: kn£+han (z,1)=0 27
Bi+1(t):Bl(t)+Z[k_l_kl JZqA1(f) (17) -
q=1\"q Mg+l Hi(zi,t):HM(zi,t), i=12, -, n-1 (28)
Similarly, the formulas for homogenizing the OH, (.1) OH,,, (2.t)
other combinations of boundary conditions are ki———— =ka——F7r—
oz B oz B
shown in Table 1. o o
i=12, -, n-1 (29)

3.3 Solution of U; (z, )

The function Uiz, f) is the solution of the
following time-dependent heat conduction problem
with heat generation, but subjected to homogeneous
boundary conditions as follows:

6Ul~(z,t) 82Ui(z,t) oziq;k (z,t)
=qa. + ,
ot ! 622 k,-
z;,<z<z,i=1,2, -, n (18)
with
* d4;(r)  dB(¢t) |k
()= g, (z,0) | S B K 19
q; (z.1)=q;(z.1) { P z+ @ |a (19)

Uiz, t) is subjected to the upper and lower
boundary conditions:

U
z=1zy: —kl#+hlU1 (z,1)=0 (20)
2=z, knaU”—(Z’t)+hnUn(z,t):0 1)
Z

and to the inner boundary conditions:

Ui(zi,t)zUHl(zi,t), i=1,2, -, n—1 (22)
oU, (z,t) OU,,(z,t)
kia— = i+1— >
z z=z 0z z=z;
i=1,2, -, n-1 (23)

The initial condition of U; (z,?) is expressed as:
U;(2,0)=1; (2)=I,(z)~W;(2,0), i=1,2, -, n (24)

Hi(z, f) can be separated into two parts as
follows:

H(z,0)=Z;(2)7; (1), i=1,2, -, n (30)
Substituting Eq. (30) into Eq. (25), we have:
2
L)L _CAE) e iy e
ay; (1) dt Z(z) dz?
(31

where 4; is the separation constant. The separation
given by Eq. (31) results in the following two
ordinary differential equations:

%+ AZ;(z)=0; dyé—t(t)+ a; A%y (1) =0
i=1,2, -, n (32)
Based on Eq. (32), we can obtain:

()= %% i=1,2, - n (33)

Z;(z)=C;sin(Az)+ D;cos(4z), i=1,2, -, n (34)

Substituting Eq. (34) into Eq. (26), the
following result is obtained as:

p =Yg (35)
hl
The C; can be taken as 1 when H; (z, ) is given
by:

H.(z,t) = ZG ~adif g Z(z), i=1,2, - n (36)
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Table 1 Formula for homogenizing of boundary conditions

Boun'd'a Y Dirichlet boundary condition Neumann boundary condition Robin boundary condition
condition
Al(t):[fD,n (1)~ fou (t)]/ S (2) [hlfDn — fra(t )}/
4 () ==
kz, ky k kihyz,
k kyz T
" Bi(t)=fo.(t)- ;{” 4(1)- "
-1 _
n kl kl n n-1 kl kl
- zZ, =z = h —— z, —hz
Dirichlet ;[kp kp+l] ’ 0] Z‘i[kl_ ky ]ZpAl(t) lg(kp Kpa roe
boundary By(t)= f1 (1) = 4 (1) 2 Ky Ky ()_fR,](t) hzo—k (1)
diti kK W) =——"—"—"—"4
condiion ko A== 40 e
i _ A ()=—4 (¢
By, (t)=B(1)+ Biu(1)= 5 (1) + alt) Kin 1)
; Lk K i
(n_k ) G RO RSS LR R )
; \ qu]Zqu(t) o kq kq+1 q z+1( ) 1( ) g] kq kq+1 q 1( )
an(t) an(t)
A (t)=— A — I,
(1) A 1 (1) P
By (1) = fpa (1) =4 ()= ONEN
Neumann 1 D;Cl L B (1) = Rhll - lohl L4, (1)
boundary A (1)= ko 4(1) see Appendix B k
condition y A (I): : Al(t)
By (t)= B, (1)+ ki
kK Cl kR
— z A (¢t Bz+1 (t) Bl (t)+z y4 Al (I)
qZ:l(kq qu] A0 Ak kg )
h
Al(t):[fR,n(t)_lle(t)]/
I
.fNI(Z) -1
4 (t)=— = k k
A () =Ur (1) =h S (1)1 () ky {kﬁhn Zn+hﬂz[l | jzf’_
f (t) n p=l kp kp+1
|:k1 +h,—z,+ B, (t) =R h
- h, (ZOhl -k )h":|
= k kz '
kK [_1 1 n]A _
A — = z, —zyh, + 1() Sr1(®)  hzy—k,
Robin pz_l[kp kaJ P ‘| by k, Bl(t): I - (}11 1Al (t) or
n-1
boundary 5, (1) = £, (1) = 4 (1) z(f—l- . ]hpAl (1 fea) [ e JA (1)-
condition k p=I\"p Kpu | 1
AH] (t): kl Al (t) k] ( ) hn hn kn
i+l A (t)=—"—4(t n-l
B\ (t)= B, (1)+ Tk Z o A
zi:(kl | ] B B (1)=Bi(1)+ - " b
—_— Z Al t i A — 1 A
q=1 kq g+1 ! z ﬁ— ky z Al(t) H—l(t) i+ l(t)
q=1 kq kq+l ! ik k
B’M(t):li’l(t)+2(k1—k1 ]qul (1)
g=1\""q q+1
Substituting Eq. (34) into Eq. (28) and Eq. (29) kiAot i Diy sm( Aisn, Zl,)’
yields: i=1,2, -, n-1 (38)
C, s1n</1”z,/)+D cos(ﬂ, ,Z,,) Aj=eyloghy, i=12, - n (39)
Ciang s1n</”t,~+1,j Zij )+D’+11 COS(/?'”L/ Zij )’ Substituting Eq. (34) to Eq. (27) results in:
=12, -, n—-1 37
’ " O, Tz cos(Ba 2 )+ By sin(A,2, )]+
ki, ;G cos (4, ,z,) ki, D, ;sin(4; ;z;)=
nj|: knlnjzn 51n(ﬂnjzn)+h cos(ﬂnjzn ):| 0
kz+lﬂ“1+l ]CH—]/ Cos(li-#l,jzi)_ (40)
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From Eq. (37) and Eq. (38), the recursive

relationship between C;, D; and Cii, D1 (=1,
2, -+, n—1) are obtained as follows:
El le j+ F; _[Gl _[
k. A k. A
l_[ lj l’jHl’.] 1,] ) El’jHl’]
Ci+1,j B ki+1,j/1i+1,j ki+1,jﬂ'i+l,j )
Dy ; E ;H; ;- FH; ;+
k. A k. A .
M F G G
L ki+1,jﬂ'i+1,j kH»l,jﬂ’H»l,j ]
C. .
ij
41
o] an
with
E; ; —sm(/il sz) ;
F ;= cos(/lljzl),
G, = sin(ﬂiﬂ’jzl-) ;
H, ; :cos(lmjjzi) (42)

Based on Eq. (41), the relationship between
Cij, Drjand C,j, D, can be derived as follows:

C . C .
n,j Lj
D :Sn—l,j D (43)
n,j Lj
with
E,;G i+ 5,6,
ki i ; vt oy
wtl ko A Lt ) Lj* 4L
S 1+1,77M+1,j 141,771+, j
n—l,j =
o B - £ H
ki 4,5 ki,
— = F .G, ——2>—F .G
k 2 Lj~1j 2 Lj~1j
| ML, 1+1,77M+1, j

(44)
Substituting Eq. (39) and Eq. (43) into Eq. (40),
equation is obtained. The
eigenvalues are the solutions of the transcendental
equation.

a transcendental

For other combinations of boundary conditions,
Cij, Dyjand the relational expression of C,; and D,
are shown in Table 2.

Based on the orthogonal expansion method
and the characteristic function obtained in the above,
the Ui (z, 1) is expressed as:

Ui(z,0)=2 2;(0Z; ;(2) (45)
=

As shown in the Appendix A, the characteristic

function Eq. (34) satisfies the following orthogonal
relationship:

n z kl
Z;I 21 (2) Zim (Z);dz -
0,j=m
I dz j=m (46)

The orthogonal expansion of ¢;(z, #) is
expressed as follows:

20) =34, (1)Z

Due to the orthogonal relationship of Eq. (46),
the @(?) is:

S 7,000
¢j (t) - = 1! Z; 2 k
;‘LH Zi,j (Z);ldz

Substituting Eq. (45) and Eq. (47) into Eq. (18),
with the orthogonal relationship Eq. (46), we get
the following ordinary differential equation:

dr.
L(t)+aﬂfjlj(t): (1)

The solution of the ordinary differential
equation Eq. (49) is obtained as:

L 47)

i

:(z,t)dz

(48)

(49)

2 (t)= j;e iy (- )¢A (r)dr+uje_a’i”"t (50)

Substituting Eq. (45) and Eq. (50) into the
initial condition Eq. (24), x; is obtained as:
[ 2z
=1

k;
> (=),
M=

(51

Table 2 Cy, D, and relational expression of C, and D, under different boundary conditions

Boun.d.a Y Dirichlet pgundary Neumann boundary condition Robin boundary condition
condition condition
Upper - ki
PP Ci1=1, D1,=0 C1,=0, D1,~1 Gi=l, D, ;= s
boundary hy
Lower C,. sm(lﬂ /Zn)+ C, COS(/L”ZH [k,,/i,, iZnj COS(ﬂn ,zn)+h sm(/lnjzn )J
boundary D, ; cos(in jz,,) 0 D, sm(/ln ]z,,) 0 [ LI sm(/ln % )+h cos(/ln % )J 0
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Finally, the complete solution of 7;(z,f) can be
expressed as:

M8

T,(z,t)= I:Ci,j sin(/ll-jjz)JrDi,j cos(/li’jz)];(j (1)+

1
z+B,(1), i=1,2, .,n (52)

S— .

A (¢

1

4 Example analysis and numerical

verification

The temperature rises in landfills because of
the heat generated during biodegradation of the
organic compounds. Elevated temperatures affect
the engineering properties of liners, covers, and
foundation soil. In this paper, the analytical solution
of transient heat conduction in multilayered slab is
used to predict the spatial and temporal distribution
of temperature in a landfill. The schematic diagram
of a landfill is shown in Figure 2.

o Atmosphere
/ a ki q Waste \
Z
a k  g,=0 Foundation
Z

z

Figure 2 Schematic diagram of model landfill

In the surface layer of a landfill, the
temperature is similar to that of the atmosphere due
to the heat transfer effects between the surface layer
and the atmosphere. The upper boundary condition
is the temperature outside of the landfill which is
expressed as a sine function.

T,(0.0) =T, + 4, sin(%) (53)

The temperature in the lower boundary is
relatively constant, as expressed by Eq. (54).

Ty(zy,t)=T, (54)

m

The inner boundary conditions (continuity
conditions) are:

Tl(zl,t):T2 (zl,t) (55)
7 T
kllz’t) :kzw (56)
0z 0z

z=z) z=z)

Heat is generated in the waste layer of a

landfill. As a landfill takes many years to fill to its
capacity, waste at the bottom of the landfill is
expected to have a different heat production rate
from the waste close to the top surface. To account
for the different heat production rates at different
depths in a landfill with a linearly depositing rate,
the heat production rate of the waste layer is
defined as a modified single peak function [13]:

1 z
L
ql(z,t)zg[witf}e B[ A j (57)

where 4 and B are the shape factors; #r is the total
time to fill the landfill to capacity; z is the depth of
waste measured from the surface.

The lower layer is foundation soil, and there is
no heat generation as follows:

4y (z,1)=0 (58)

The initial condition is the mean annual
temperature outside the landfill as follows:

T,(z,0)=T,(z,0)=T, (59)

The solution of the temperature distribution of
the landfill is derived as:

Ti(z,t) = i[Ci’j sin(/li’jz) +D; ; cos(ii’jz)])(j (1)+
J=

A (t)z+B (1), i=1,2 (60)
where
k

4(0)="24,(0);

1
Bl(t):Tm+Assin(%j (61)

A sin(iggj
(1)

k2

1-—= 1z, —2,

)
By(1)=T, —4,(t)z, (62)
G;=1; D ;=0 (63)

sin(ﬂq’jzl)—cos(ﬂq’jzl)Dz’j
C2,j = . (64)
sm(/iz’jzl)
Dy = kyasin(4y 2 )oos (A ;7 ) -
ki ; cos(4y ;2 )sin( 2,z )}/(kzﬂq’j) (65)

with
ﬂz’j:«/al/az J (66)
G sin(ﬂq,jzz)+D2J cos(ﬂq’jzz)z() (67)
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Substituting Eqs. (64)—(66) into Eq. (67), a
transcendental  equation is  obtained. The
eigenvalues A1; and A,; are obtained on the base of
the transcendental equation.

x(?) 1s obtained as follows:

a bt

X (1)= J.Ote_a"l’*f(t_r)% (T)dr+,uje_ i=1, 2
(68)

¢j(t):{

Di,j cos(’k,ﬂ)} ‘]; (Z,l‘)dz}/{joz1 sin? (ﬂ«l,jz)ﬁdz i

o

.[Ozl sin(ﬂl,jz)q; (z,t)dz+jzzl2 |:C2’j sin(ﬂz’j2)+

2

Izz [Cz,j sin(ﬂz’jz) +D, ; cos(ﬂz’jz)] zi—zzdz} (69)

with
1 z
‘()= 2 ’E[”Z’f]_
{dAl_O)H a5, (t)} I3 0
dt dt |
q: (z,t) =—{dA§—t(t)z+—dB§t(t)}i—22 (71)
I (2)=T,,-4(0)z—5,(0)=0 (72)
I (z)=T,,~4,(0)z-B,(0)=0 (73)

4y = {jozl sin(/h,jz)]l* (z,t)gdz +LZZ [Cz sin(ﬂg,_,-z)+
1 1

D, cos(/lz’jz)}lz(z,t)fdz}/

2
{jo sin’ (ﬂl’jz)gdz+jzzz [ Cysin(,,,2)+
1 1

D, cos(4y ;2) | i—zzdz} -0 (74)
The parameters of the model landfill are
shown in Table 3. The solution was compared with
the finite element software Comsol Multiphysics.
The results calculated by Comsol Multiphysics and
the analytical method are shown in Table 4. There
were small differences between the two methods.
Variations of temperature in the different
depths are shown in Figure 3. In the shallow depths,
the temperature was influenced by the ambient
temperature. When the depth was more than 10 m,

Table 3 Parameters of landfill

Parameter Value
A/J-(dmK)™ 2.48x10°
B/d 540.5
Tw/°C 14.6
Ay/°C 17.3
zi/m 33
z2/m 108
k/(J-(dmXK)™) 86400
ko/(J-(dmK) ™ 216000
ai/(m2-d") 0.0432
a2/(m?-d ) 0.0778
te/d 1000

Table 4 Comparison between analytical and numerical

solutions
Time/ Temperature at different depths/°C
Method
d 2m 10m 20m 30m 40m 50m

Analytical 14.60 14.60 14.60 14.60 14.60 14.60
numerical 14.60 14.60 14.60 14.60 14.60 14.60
Analytical 30.54 35.38 34.11 25.98 15.98 14.69
>0 numerical 30.13 35.28 34.07 2593 1597 14.69

Analytical 22.29 47.50 45.29 30.79 1837 1531
1000
numerical 22.42 47.31 4523 30.75 18.37 15.31

Analytical 30.14 47.76 49.66 33.80 22.07 17.39
2000
numerical 29.92 47.58 49.57 33.72 22.06 17.39

Analytical 24.15 39.77 44.62 33.26 24.07 19.29
3000
numerical 23.90 39.59 44.55 33.26 24.07 19.29

Analytical 12.34 33.13 38.62 31.62 2491 20.63
4000
numerical 12.23 32.85 38.52 31.64 24.90 20.63

Analytical 1523 28.33 33.77 29.86 25.04 21.44
5000
numerical 15.41 28.04 33.60 29.77 25.01 21.43

Analytical 23.78 25.01 30.09 28.14 24.77 21.84
6000
numerical 23.53 24.80 29.93 28.02 24.73 21.83

the temperature of the air temperature had little
effect on the temperature of the waste Figure 4
shows the variations of temperatures at different
time. The highest temperature was 52.9 °C, which
was similar to the data from HANSON et al’s study
[13]. The temperature gradient in the interface of
waste and the foundation soil changed because of
the difference of the heat transfer coefficient and
the thermal diffusion coefficient in the two layers.
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Figure 4 Variation of temperatures at different periods
5 Conclusions

The transient heat conduction in multilayered

with general boundary conditions and
generations was  analytically
investigated. The boundary conditions are general
and include various combinations of Dirichlet,
Neumann or Robin boundary conditions at either
surface,

slabs
arbitrary  heat

and the governing equations contain
arbitrary time and space dependent heat generations.
The solutions are obtained using the superposition
method, separation variable method and orthogonal
expansion method. The Sturm-Liouville theory is
used to prove the orthogonality of the characteristic
function. The solutions have a wide range of
applications. As an applied example of the solutions,
the simplified double-layered slab solution is
applied to predict the spatial and temporal
distribution of the temperature in the landfill. The
results are validated by Comsol Multiphysics,

which verifies the correctness of the solution.
Although one-dimensional multilayered slabs are
investigated in this paper, the proposed method can
be extended to multidimensional transient heat
conduction in multilayered slabs or transient heat
conduction in multilayered cylinders and spheres.

Appendix A:

Proof of orthogonality of characteristic function
The Sturm-Liouville theory was used to prove
the orthogonality of the characteristic function. Let
Adijand A;, be the jth and mth eigenvalue of the ith
layer, respectively.
The following results can be obtained based on
Eq. (32) as follows:

dZ

fZ/( | s Azj Z,, (z)dz=0,
i=1, 2,- n (A1)

: &’z

[ 2, (2)—5= dz+,12 j Zin(2)Z,(2)dz=0,
i=1,2, (A2)

Subtracting Eq. (A1) from Eq. (A2) gives:

d’z; (2) 4’z (z)
I[Z L | (AY)

Equation (A3) can be converted into Eq. (A4)
using integration by parts.

k
Z dz, i=1, 2,
e 240t (e
kt 1 dem (Zi— )
__;lz 12 |:_ i ( i 1) dz 1 +
i Mm
w(za) | K 1
7 >J _ M
o (Zl_l) dz a; ﬂ'zzj li?m
dZLm (Zz) dZi,'(Zi)
|:Zi,j (Zz) dz ~Zim (Zi)—(;z (A4)

Using the continuity conditions Eq. (28) and
Eq. (29) and Eq. (39), Eq. (A4) can be expressed as:

ki s
;j] Z,,(2)Z
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k1 dz, (2141
:_;AZ _AZ |:_ l](Zl—l) ;12 1 +
Zim (2 1)dZ’¥-/ (Zil)}_ kisy 1
, dz A ﬂ’+1j ﬂ“l%—l m
dz. z; dz; ( )
I:Zi+l,j (Zi)%(l)_ i+l,m (Zz )HTJ}

(AS5)
Using the recurring relationship in Eq. (AS5),
we obtain:

o1 & “F
k 1 le,m (ZO)
_;11 2/ _’112m {_Zl’j (ZO) dz '
dZ,;(z) & 1
7 >J n
1,m (ZO) dz an ﬂan _/12
n,m an dZn, / Zn—
|:Zn,j(zn l) di 1)_an(zn l) ]d(Z 1)
(A6)
Based on Eq. (AS), we get:
i_': LZ", Z,,(2)Z,, (z)dz=
~nm \“n-1) (Zn—l)
n (Zn 1 1
7 J __n—.
o (anl) dZ a" ﬂ’nzl )’Vim
dZn,m (Zn) dZn, ‘(Zn)
|:an(Zn) dz an(zn) (;Z (A7)

When we add Eq. (A6) and Eq. (A7) together,
Eq. (A8) is obtained as:

ST 2,(2) 20 (2) e

i=1 i

R ]

5 (¢)

R, (1) 2 1 0 0 0 o 0 o0
S, (¢) z 1 -z -1 0 0 0

: 2hkzy ky —kyz —ky - 0 0 0 0
S (2) oo : oo : : : :
R (1) 0 0 0 0 z 1 -z, -l
Ri(1) o 0o o o0 2kigziy ki —kziy —k
S:(t) o 0 0o 0 0 0z 1
Ry (1) 0 0 0 0 0 0 2kz k.,
S (1) P :

: 0 0 0 0 0 0 0 0
R, (1) 0 0 0 0 0 0 0 0
S, (1) L0 o0 0 0 0 0 0 0
R, (¢)

500 L

As Zijfz) and Z;.(z) are subjected to the
general homogeneous boundary conditions at z=z
and z=z,, Eq. (A8) finally becomes:

k 1
T P . —
i=1 & o j’l,j _/ll,m
k 1
e (| A9
@ 2 (A9)

n,j n,m

When j#m, we get A1 #41» and A, #Anm. Thus
the orthogonality of the characteristic function can
be proven as follows:

n z, kl,
z.[z. Z[’./ (Z)Zi,m (Z);dZZO (AIO)
i=1 ;

Appendix B:
Solution for combinations of Neumann

boundary conditions

The solution of Ti(z, f) for the combinations of
Neumann boundary conditions can be separated as
follows:

Ti(z,0)=V;(z,t)+ M, (z,t) (B1)

The function Wiz, t) is used for homogenising
of the boundary conditions and set as follows:

Mi(z,t)zRi(t)z2 +8,(t)z (B2)
with
_fN,l (t)_
0
0 0 0 o1 0
0 0 0 0 0
0 0 0 0 :
: 0
0 0 0 0 0 0
0 0 0 0 0 0 (B3)
-z -l 0 0 0 0 0
g ki 0 0 0 0 0
: : 0
0 0 z, 1 -z, -1 :
0 2kyazay kyy —kyz, —k, 0
0 0 0 2z, 1| .1 0
0
a0,
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The governing equation of V;(z, ¢) is: E, = Sm( p ]Zl) :
ov; (Z, I) —a GZV,‘(ZJ)_'_%E[ (Z,l‘)’ 2, <z<z, F ;= cos(/iljzl),
ot Lot k; : : ' .
i=1 2. . n (B4) Gi,jzsm(ﬂ‘iﬂ,jzi)a
with Hi,_jzcos(ﬂ’iﬂ,_jzi ) (B15)
dR.(1) , ds;(1) 1k C,,00s(4,,2,)-D, ;sin(4, ;2,) =0 (B16)
g (z.t)=q;(z.t)-| — : ZL12kR,
g (2:1)=q(z.1) { dt o de ZLQJF (1) 0, j=0 B17
(B3) T Wen ey =12, (B17)

Vi(z, t) is subjected to the upper and lower
boundary conditions:

z=12zy: IMZO (B6)
oz
A (B7)
oz
and to the inner boundary conditions:
Vi(zl-,t)=VH1(zi,t), i=1,2, -, n—-1 (B8)
k oV, (z.1) k. Vi (2.1) ’
oz | __ oz .
i=1,2, -, n-1 (B9)

The initial condition of Vi(z, t) gives:
Vi(2,0)=T,(2)=1;(2) "M, (2,0), i=1,2, = n
(B10)

Vi(z, t) is obtained by using separation variable
method and orthogonal expansion method as
follows:

Vi(z.0) =2 0,(0Z; (2) (B11)
j=0
where
Z; (z):Cl-,j sin(ii,jz)+Di’j cos(li,jz),
i=12, -, n (B12)
with
G,;=0; Dl,jzl (B13)
E ;G it £ Gy =
k. A k. A
i,j77,] l'j]'Hl"j i,j7",) El'j/'Hl‘,j
Ci+1,j B ki+1,jﬁi+1,_/ ! ki+1,j/1i+l,j ‘
Dy - E, H, - FH, +
k. A ki A
#EJGI',]' LJ7T EIJG”
_ki+1,jﬂ’i+1,_j ki+l,jli+l,] |
C;
’ (B14)
D, ;

The relationship between Cij, D>jand C,j, D
is obtained as follows:

Cn,j Cl,«/'
D =Sn—l,j D
nj 1.j
with
£ ;G
ki i
| 5 2 Ft
S 1+1,j 71+, j
n-1,j =
I=1 E,,jH,,j—
ki i,
5 10,
L kl+1,jﬂ'l+l,j

with

n;(t)=-

£ ;G-

ki i ;
kl+1,_/‘ﬂ‘l+1,_/‘
F H,

gt

(B18)

Ey Hy

(B19)

Substituting Eq. (B17) and Eq. (B18) into
Eq. (B16), a transcendental equation is obtained.
The eigenvalues 1;; (=1, 2,
the transcendental equation.
@;(?) is obtained as follows:

9 (t)zj‘te @A (1= r)q‘(r)dr+vje_a"l"2*"t

0

ZJZ Z;; z)g;(z,t)dz
ZJ 5
n k.

obtai

n 2 ki
EL"‘ ij (Z);ldz

The complete solution of Ti(z,
combinations of Neumann boundary conditions is

ned as follows:

0=3[c.

Jj=0

sm(/i

D, cos(/il-,_/z)} 0 ()R, (1) 2" +5;(t)z

)

-++) are the solutions of

(B20)

(B21)

(B22)

) for the

(B23)
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