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Abstract: The study of transient heat conduction in multilayered slabs is widely used in various engineering fields. In 
this paper, the transient heat conduction in multilayered slabs with general boundary conditions and arbitrary heat 
generations is analysed. The boundary conditions are general and include various combinations of Dirichlet, Neumann 
or Robin boundary conditions at either surface. Moreover, arbitrary heat generations in the slabs are taken into account. 
The solutions are derived by basic methods, including the superposition method, separation variable method and 
orthogonal expansion method. The simplified double-layered analytical solution is validated by a numerical method and 
applied to predicting the temporal and spatial distribution of the temperature inside a landfill. It indicates the ability of 
the proposed analytical solutions for solving the wide range of applied transient heat conduction problems. 
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1 Introduction 
 

In various engineering fields, the study of one- 
dimensional transient heat conduction with time- 
dependent boundary conditions and arbitrary heat 
generation is widely used. In the thermal analysis of 
building external walls, the exterior walls of a 
building are made up of composite materials. It is 
common for researchers to analyse the heat 
preservation performance of a building’s external 
wall by a multilayered heat conduction equation 
[1–3]. The second application is the analysis of the 
transient response of multilayered materials with 
moving heat sources, such as machining [4], 
welding [5] and laser heating [6]. The consolidation 
of layered soils and multilayered diffusion model 

all have the similar form as the heat conduction 
equation. Therefore, the multilayered heat 
conduction model can be extended to calculate the 
consolidation of layered soil [7, 8] or multilayered 
diffusion [9–11]. The multilayered heat conduction 
model can also be used to predict the temperature 
distribution in a landfill. Heat generation occurs in 
municipal solid waste (MSW) landfills due to the 
biodegradation of the organic content of the waste. 
The waste layer and soil layer can be regarded as a 
multilayered heat transfer structure. It is important 
to predict the temporal and spatial distribution of 
temperature inside a landfill, which is helpful for 
the operation and management of the landfill [12, 
13]. 

There are several different approaches that can 
be used to analyse the transient heat conduction in a 
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multilayered medium such as: orthogonal and 
quasi-orthogonal expansion techniques [14–16], 
Green’s function approach [17, 18], Laplace 
transform method [19–21], finite integral transform 
technique [22], distributed transfer function method 
[23], finite element method [24], and finite 
difference method [25]. These techniques can be 
divided into analytical methods [14–23] and 
numerical methods [24, 25]. Among the above 
listed approaches, the analytical solutions have the 
advantage of accuracy and efficiency. The 
analytical solutions can also provide deep physical 
insight. Furthermore, the analytical solutions can be 
used to analyse the inverse problem. Therefore, it is 
important to identify the analytical solutions [26]. 

Continued effort has been made recently to 
advance the analytical solutions of one-dimensional 
transient heat conduction in multilayered slabs. 
MONTE [27, 28] solved the double-layered and 
multilayered heat conduction problems using the 
orthogonal expansion method. The boundary 
conditions used were homogeneous Robin 
boundary conditions. SUN et al [29] solved the 
three-layered and multilayered heat conduction 
model with constant Dirichlet boundary conditions 
using the separation variables method. LU et al [30] 
used the Laplace transform method to solve the heat 
conduction model of a multilayered composite slab. 
The boundary conditions used were time-dependent 
Robin boundary conditions. ZHOU et al [31] solve 
the heat conduction problem in one-dimensional 
double-layered composite medium with 
homogeneous Robin boundary conditions by the 
natural eigenfunction expansion method. There 
were no heat generations in the governing equations 
of the above researches. BELGHAZI et al [32] 
presented an analytical approach of transient heat 
conduction in double-layered material with 
different heat generations in layers by the 
separation of variables method. Only the 
homogeneous Robin boundary conditions were 
taken into account in BELGHAZI et al’s study. 
TIAN et al [33] obtained the solutions of transient 
heat conduction in multilayered slabs with 
homogeneous Neumann boundary conditions by the 
Green’s function method. However, the heat 
generation in each layer was the same. 
FAKOOR-PAKDAMAN et al [34, 35] presented 
analytical solutions of heat diffusion inside a 
multilayered composite medium with arbitrary heat 
generations by separation of variables method. 

However, only space-dependent heat generation 
inside each layer was taken into consideration in his 
studies. 

Although there are significant researches on 
the analytical solutions of the multilayered heat 
conduction models, few papers predict the thermal 
behaviour of a multilayered slab with arbitrary heat 
generation and general time-dependent boundary 
conditions. The purpose of this paper is to solve the 
multilayered heat conduction equation with general 
boundary conditions and arbitrary heat generation. 
The general boundary conditions include various 
combinations of Dirichlet, Neumann or Robin 
boundary condition at either surface. The solutions 
are solved by the superposition method, the 
orthogonal expansion method and the separation 
variable method. The double-layered analytical 
solution is validated by a numerical method and 
applied to predicting the temporal and spatial 
distribution of the temperature inside a landfill. 
 
2 Mathematical formula 
 

A composite slab consisting of a finite 
multilayer is shown in Figure 1. zi–1 and zi are the 
upper depth and lower depth of the ith layer, where 
i=1, 2, …,  n. z0 and zn are the upper and lower 
boundaries of the entire multilayered slab. 
 

  
Figure 1 Schematic diagram of a multilayered slab 
 

The assumptions made in deriving the 
mathematical formulation of this time-dependent 
heat conduction problem are [27–31, 34]: 

1) The thermal conductivity and the thermal 
diffusivity are temperature independent and 
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uniform inside each layer; 
2) The multilayered slab is large enough in the 

x and y directions in comparison to its thickness in 
the z direction; 

3) The thermal contact resistance between the 
interfaces is negligible. 

The heat conduction problem can be 
considered one-dimensional, due to the assumption 
2). The governing equation of heat conduction in 
the ith layer is:  

     2

2
, , ,

,i i i i
i

i

T z t T z t q z t
t kz




 
 

 
 

1 ,  1,  2,  ,  i iz z z i n                    (1)  
where Ti(z, t) is the temperature of the ith layer, and 
ki and αi are the thermal conductivity and thermal 
diffusivity of the ith layer, respectively. qi(z, t) is 
heat generation in ith layer, which is a function of 
the position z and time t. 

The initial condition of ith layer is:  
   ,0 ,  1,  2,  ,  i iT z I z i n                  (2) 

 
where Ii(z) is a given initial temperature distribution 
through the ith layer. 

The boundary conditions on the upper and 
lower surfaces of the multilayered slab are  
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         (4) 
 
where fD,1(t), fD,n(t), fN,1(t), fN,n(t), fR,1(t), and fR,n(t) 
are the external conditions (prescribed temperature 
and/or heat flux) on the upper and lower surfaces of 
the multilayered slab. The subscripts D, N, and R 
represent the Dirichlet, Neumann and Robin 
boundary conditions, respectively. h1 and hn are the 
heat transfer coefficient of the upper and lower 
surfaces of the multilayered slab, respectively. 

The inner boundary conditions (continuity 
conditions) are:  
   1, , ,  1,  2,  ,  1i i i iT z t T z t i n             (5) 

 
   1

1
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,
i i
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i i

z z z z
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k k

z z



 

 


 
 

1,  2,  ,  1i n                         (6) 

 
3 Analytical solutions 
 

The solution for combinations of Robin 
boundary conditions on the upper and lower 
surfaces of the multilayered slab is derived in this 
section. The solutions for other combinations of 
boundary conditions are also shown, except for the 
combinations of Neumann boundary conditions. 
The solution for the combinations of Neumann 
boundary conditions on the upper and lower 
surfaces of the multilayered slab is derived in 
Appendix B. 
 
3.1 Homogenization of boundary condition 

The nonhomogeneous boundary conditions 
can be homogenised by the superposition principle. 
The solution of Ti (z, t) can be separated as follows:  
     , , ,i i iT z t U z t W z t                    (7) 

 
where Wi(z, t) is the solution of the steady-state 
problem for the same region as Ti(z, t), with no heat 
generation and nonhomogeneous boundary 
conditions at z=z0 and z=zn. Ui(z, t) is the solution of 
the time-dependent heat conduction problem for the 
same region as Ti(z, t), with heat generation, but 
subjected to homogeneous boundary conditions. 
 
3.2. Solution of Wi(z, t) 

Wi(z, t) satisfies the Laplace’s equation as 
shown in Eq. (8):  

 2

12
,

0, , 1,  2,  ,  i
i i

W z t
z z z i n

z 


   


       (8) 
 

The upper, lower and inner boundary 
conditions of Wi(z, t) are set as:  

     1
1 ,0 1 1 1

,
:  , R

z tW
kz z z th W f t

z


  


       (9) 
 

     ,
,

:  ,n
n

n n n R n
W
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z z z t


 


       (10) 
 

   1, , , 1,  2,  ,  1i i i iW z t W z t i n           (11) 
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i i
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k k
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1,  2,  ,  1i n                        (12)  
The solution for the function Wi(z, t) is 

obtained from Eqs. (8)–(12) as follows:  
     ,i i iW z t A t z B t                     (13) 

 
with 
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Similarly, the formulas for homogenizing the 

other combinations of boundary conditions are 
shown in Table 1. 
 
3.3 Solution of Ui (z, t) 

The function Ui(z, t) is the solution of the 
following time-dependent heat conduction problem 
with heat generation, but subjected to homogeneous 
boundary conditions as follows:  

     2 *
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1 ,  1,  2,  ,  i iz z z i n                   (18)  
with  
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Ui(z, t) is subjected to the upper and lower 
boundary conditions:  

   1 1 10
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          (20) 
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and to the inner boundary conditions:  

   1, , , 1,  2,  ,  1i i i iU z t U z t i n          (22) 
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The initial condition of Ui (z,t) is expressed as:  

       *,0 = ,0 ,  1,  2,  ,  i i i iU z I z I z W z i n  -  (24) 

The orthogonal expansion technique is used to 
solve the homogeneous problem of Ui(z, t). Let 
Hi(z,t) be the solution of the following time- 
dependent heat conduction problem with no heat 
generation, which is used to obtain the 
characteristic function.  
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The upper, lower and inner boundary 

conditions of Hi (z, t) are as follows:  
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Hi(z, t) can be separated into two parts as 

follows:  
     , , 1,  2,  ,  i i iH z t Z z t i n            (30) 

 
Substituting Eq. (30) into Eq. (25), we have:  
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where λi is the separation constant. The separation 
given by Eq. (31) results in the following two 
ordinary differential equations:  

       
2

2 2
2

d d
0;  0

dd
i i

i i i i i
Z z t
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1,  2,  ,  i n                          (32)  
Based on Eq. (32), we can obtain:  

 
2

e ,  1,  2,  ,  i i t
i t i n                     (33) 

 
     sin cos , 1,  2,  ,  i i i i iZ z C z D z i n      (34) 

 
Substituting Eq. (34) into Eq. (26), the 

following result is obtained as:  
1 1

1 1
1

kD C
h


                              (35) 
 

The C1 can be taken as 1 when Hi (z, t) is given 
by:  
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Table 1 Formula for homogenizing of boundary conditions 

Boundary 
condition Dirichlet boundary condition Neumann boundary condition Robin boundary condition 
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see Appendix B 
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boundary 
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Substituting Eq. (34) into Eq. (28) and Eq. (29) 
yields:  
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Substituting Eq. (34) to Eq. (27) results in:  
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   , , , ,sin cos 0n j n n j n n j n n n j nD k z z h z        
(40) 
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From Eq. (37) and Eq. (38), the recursive 
relationship between Ci, Di and Ci+1, Di+1 (i=1, 
2, …, n–1) are obtained as follows:  
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with  
 , ,sini j i j iE z ; 
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Based on Eq. (41), the relationship between 
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Substituting Eq. (39) and Eq. (43) into Eq. (40), 

a transcendental equation is obtained. The 
eigenvalues are the solutions of the transcendental 
equation. 

For other combinations of boundary conditions, 
C1,j, D1,j and the relational expression of Cn,j and Dn,j 
are shown in Table 2. 

Based on the orthogonal expansion method 
and the characteristic function obtained in the above, 
the Ui (z, t) is expressed as:  
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As shown in the Appendix A, the characteristic 

function Eq. (34) satisfies the following orthogonal 
relationship:  
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The orthogonal expansion of qi

*(z, t) is 
expressed as follows:  
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Due to the orthogonal relationship of Eq. (46), 

the j(t) is:  

 
   

 

1

1

*
,

1

2
,

1

, d

d

i

i

i

i

n z
i j iz

i
j n z i

i jz ii

Z z q z t z
t

kZ z z
















             (48) 

 
Substituting Eq. (45) and Eq. (47) into Eq. (18), 

with the orthogonal relationship Eq. (46), we get 
the following ordinary differential equation:  
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t


                     (49) 

 
The solution of the ordinary differential 

equation Eq. (49) is obtained as:  
     

2 2
, ,

0
e d ei i j i i j

t t t
j j jt                    (50) 

 
Substituting Eq. (45) and Eq. (50) into the 

initial condition Eq. (24), μj is obtained as:  

   

 

1

1

*
,

1

2
,

1

d

d

i

i

i

i

n z i
i i jz ii

j n z i
i jz ii

kI z Z z z

kZ z z


















               (51) 

 
Table 2 C1, D1 and relational expression of Cn and Dn under different boundary conditions 

Boundary 
condition 

Dirichlet boundary 
condition Neumann boundary condition Robin boundary condition 

Upper 
boundary 

C1,j=1, D1,j=0 C1,j=0, D1,j=1 C1,j=1, 
1

,11
,1 h

k
D j

j


  

Lower 
boundary 

 , ,sinn j n j nC z   

 , ,cos 0n j n j nD z   

 , ,cosn j n j nC z 

 , ,sin 0n j n j nD z   

   
   

, , , , ,

, , , , ,

cos sin

sin cos 0

n j n n j n j n j n n n j n

n j n n j n j n j n n n j n

C k z z h z

D k z z h z

  

  

  
    

 

 



J. Cent. South Univ. (2019) 26: 3175−3187 

 

3181 

 

 
Finally, the complete solution of Ti (z,t) can be 

expressed as:  

       , , , ,
1

, sin cos +i i j i j i j i j j
j

T z t C z D z t  




     

    , 1,  2,  ,  i iA t z B t i n              (52) 
 
4 Example analysis and numerical 

verification 
 

The temperature rises in landfills because of 
the heat generated during biodegradation of the 
organic compounds. Elevated temperatures affect 
the engineering properties of liners, covers, and 
foundation soil. In this paper, the analytical solution 
of transient heat conduction in multilayered slab is 
used to predict the spatial and temporal distribution 
of temperature in a landfill. The schematic diagram 
of a landfill is shown in Figure 2. 
 

 
Figure 2 Schematic diagram of model landfill 
 

In the surface layer of a landfill, the 
temperature is similar to that of the atmosphere due 
to the heat transfer effects between the surface layer 
and the atmosphere. The upper boundary condition 
is the temperature outside of the landfill which is 
expressed as a sine function.  
 1 m s

2π0, sin
365

tT t T A     
 

                 (53) 
 

The temperature in the lower boundary is 
relatively constant, as expressed by Eq. (54).  

 2 2 m,T z t T                            (54) 
 

The inner boundary conditions (continuity 
conditions) are:  
   1 1 2 1, ,T z t T z t                         (55) 

   

1 1

1 2
1 2

, ,

z z z z

T z t T z t
k k

z z
 

 


 
             (56) 

 
Heat is generated in the waste layer of a 

landfill. As a landfill takes many years to fill to its 
capacity, waste at the bottom of the landfill is 
expected to have a different heat production rate 
from the waste close to the top surface. To account 
for the different heat production rates at different 
depths in a landfill with a linearly depositing rate, 
the heat production rate of the waste layer is 
defined as a modified single peak function [13]:  

 
f

1

1

1 f
1

, e
zt t

B zA zq z t t t
B z

 
  

  
  

 
             (57) 

 
where A and B are the shape factors; tf is the total 
time to fill the landfill to capacity; z is the depth of 
waste measured from the surface. 

The lower layer is foundation soil, and there is 
no heat generation as follows:  

 2 , 0q z t                               (58) 
 
The initial condition is the mean annual 

temperature outside the landfill as follows:  
   1 2 m,0 ,0z zT T T                       (59) 

 
The solution of the temperature distribution of 

the landfill is derived as:  

     , , , ,
1

( , ) sin cos +i i j i j i j i j j
j

T z t C z D z t  




     

    , 1,  2i iA t z B t i                   (60) 
 

where  

   2
1 2

1

kA t A t
k

 ; 

 1 m s
2πsin
365

tB t T A     
 

                   (61) 
 

 
s

2
2

1 2
1

2πsin
365  

1

tA
A t

k z
k

z

 
 
 

 
  

 

; 

   2 m 2 2B t T A zt                        (62) 
 

1, 1jC  ; 1, 0jD                          (63) 
   

 
1, 2, 2,

2,
1 1

2, 1

sin cos

sin
j j j

j
j

z z D

z
C

 




            (64) 

 
   2, 2 2, 1, 1 2 1,sin cosj j j jz zD k      

   1 1, 1, 2,1 1 2 2,cos sin /( )j j j jk z z k   
       (65) 

 
with  

2, 1 2 1,/j j                            (66) 
 

   2, 2,2, 2 2, 2sin cos 0j jj jC z D z            (67) 
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Substituting Eqs. (64)–(66) into Eq. (67), a 
transcendental equation is obtained. The 
eigenvalues λ1,j and λ2,j are obtained on the base of 
the transcendental equation. 

χj(t) is obtained as follows: 
 

     
2 2
, ,

0
e d e , 1,  2i i j i i j

t t t
j j jt i              

(68) 
 
where 
 

       
      

1 2

1

1

*
1, 1 2, 2,0

* 2 1
, 2, 2 1,0

1

sin , d + sin

     cos , d / sin d

z z
j j j jz

z
i j j j

t z q z t z C z

kD z q z t z z z

  

 


 

  

 


 

   2

1

2 2
2, 2, 2, 2,

2
sin cos d

z
j j j jz

kC z D z z 


    
  (69) 

 
with 
 

 
f

1
f

*
1

1

1
e,

zt t
B zA zt t

B z
q z t

 
  

  
 

 
   

   1 1 1

1

d d
d d

A t B t kz
t t 

 
 

 
                  (70) 

 

     2 2* 2

2

d d
,

d di
A t B t kq z t z

t t 
 

   
 

            (71) 

 
     *

1 m 1 10 0 0I z T A z B  -                (72) 
 

     *
2 m 2 20 0 0I z T A z B  -               (73) 

 

     1 2

1

* 1
1, 1 2 2,0 1

sin , d + sin
z z

j j jz

kz I z t z C z  


   
   

   

   1 2

1

* 2
2 2, 2

2

2 1
1, 2 2,0 1

cos , d

sin d sin

j

z z
j jz

kD z I z t z

kz z C z




 


  
   
 

 

  2 2
2 2,

2
cos d 0j

kD z z


  
               (74) 

 
The parameters of the model landfill are 

shown in Table 3. The solution was compared with 
the finite element software Comsol Multiphysics. 
The results calculated by Comsol Multiphysics and 
the analytical method are shown in Table 4. There 
were small differences between the two methods. 

Variations of temperature in the different 
depths are shown in Figure 3. In the shallow depths, 
the temperature was influenced by the ambient 
temperature. When the depth was more than 10 m,  

Table 3 Parameters of landfill 
Parameter Value 

A/(J·(d∙m∙K)–1) 2.48×105 

B/d 540.5 

Tm/°C 14.6 

As/°C 17.3 

z1/m 33 

z2/m 108 

k1/(J·(d∙m∙K)–1) 86400 

k2/(J·(d∙m∙K) –1) 216000 

α1/(m2·d–1) 0.0432 

α2/(m2·d–1) 0.0778 

tf/d 1000 

 
Table 4 Comparison between analytical and numerical 
solutions 

Time/ 
d Method 

Temperature at different depths/°C 

2 m 10 m 20 m 30 m 40 m 50 m 

0 
Analytical 14.60 14.60 14.60 14.60 14.60 14.60 

numerical 14.60 14.60 14.60 14.60 14.60 14.60 

500 
Analytical 30.54 35.38 34.11 25.98 15.98 14.69 

numerical 30.13 35.28 34.07 25.93 15.97 14.69 

1000 
Analytical 22.29 47.50 45.29 30.79 18.37 15.31 

numerical 22.42 47.31 45.23 30.75 18.37 15.31 

2000 
Analytical 30.14 47.76 49.66 33.80 22.07 17.39 

numerical 29.92 47.58 49.57 33.72 22.06 17.39 

3000 
Analytical 24.15 39.77 44.62 33.26 24.07 19.29 

numerical 23.90 39.59 44.55 33.26 24.07 19.29 

4000 
Analytical 12.34 33.13 38.62 31.62 24.91 20.63 

numerical 12.23 32.85 38.52 31.64 24.90 20.63 

5000 
Analytical 15.23 28.33 33.77 29.86 25.04 21.44 

numerical 15.41 28.04 33.60 29.77 25.01 21.43 

6000 
Analytical 23.78 25.01 30.09 28.14 24.77 21.84 

numerical 23.53 24.80 29.93 28.02 24.73 21.83 

 
the temperature of the air temperature had little 
effect on the temperature of the waste Figure 4 
shows the variations of temperatures at different 
time. The highest temperature was 52.9 °C, which 
was similar to the data from HANSON et al’s study 
[13]. The temperature gradient in the interface of 
waste and the foundation soil changed because of 
the difference of the heat transfer coefficient and 
the thermal diffusion coefficient in the two layers. 
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Figure 3 Variation of temperatures at different depths 
 

  
Figure 4 Variation of temperatures at different periods 
 
5 Conclusions 
 

The transient heat conduction in multilayered 
slabs with general boundary conditions and 
arbitrary heat generations was analytically 
investigated. The boundary conditions are general 
and include various combinations of Dirichlet, 
Neumann or Robin boundary conditions at either 
surface, and the governing equations contain 
arbitrary time and space dependent heat generations. 
The solutions are obtained using the superposition 
method, separation variable method and orthogonal 
expansion method. The Sturm-Liouville theory is 
used to prove the orthogonality of the characteristic 
function. The solutions have a wide range of 
applications. As an applied example of the solutions, 
the simplified double-layered slab solution is 
applied to predict the spatial and temporal 
distribution of the temperature in the landfill. The 
results are validated by Comsol Multiphysics, 

which verifies the correctness of the solution. 
Although one-dimensional multilayered slabs are 
investigated in this paper, the proposed method can 
be extended to multidimensional transient heat 
conduction in multilayered slabs or transient heat 
conduction in multilayered cylinders and spheres. 
 
Appendix A: 
 
Proof of orthogonality of characteristic function 

The Sturm-Liouville theory was used to prove 
the orthogonality of the characteristic function. Let 
λi,j and λi,m be the jth and mth eigenvalue of the ith 
layer, respectively. 

The following results can be obtained based on 
Eq. (32) as follows: 
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d d 0,i i
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z z
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i mj i jz z
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z z Z z
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1,  2,  ,  i n                          (A1) 
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1,  2,  ,  i n                          (A2) 
 
Subtracting Eq. (A1) from Eq. (A2) gives: 
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   (A3) 

 
Equation (A3) can be converted into Eq. (A4) 

using integration by parts.  
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i j i i m i
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   (A4) 
 

Using the continuity conditions Eq. (28) and 
Eq. (29) and Eq. (39), Eq. (A4) can be expressed as:  

   
1

, , 1d , ,  2,  ,  1i

i

zi
i j i mz

i

k
Z Zz izz n

 
    



J. Cent. South Univ. (2019) 26: 3175−3187 

 

3184

 

   1
, 12 2

, ,

,d1
d

ii
i j

i
i

i i j i m

m zk
z

Z z
Z

  





   
 

 

 
 1 1

, 1 2 2
1 1, 1,

,d
d

1i i
i m i

i i j i m

i j z k
Z z

Z
z   

 


  






   

     
 

1, 1
1,1

,
, dd
d d

ii
i j i i m

i ji m
i

zz
Z z Z

ZZ
z z

z 





 
 

  
 

(A5)  
Using the recurring relationship in Eq. (A5), 

we obtain:  
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Based on Eq. (A5), we get:  
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When we add Eq. (A6) and Eq. (A7) together, 
Eq. (A8) is obtained as:  
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As Zi,j(z) and Zi,m(z) are subjected to the 

general homogeneous boundary conditions at z=z0 
and z=zn, Eq. (A8) finally becomes:  
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                      (A9) 
 

When j≠m, we get λ1,j≠λ1,m and λn,j≠λn,m. Thus 
the orthogonality of the characteristic function can 
be proven as follows: 
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Appendix B:  
 
Solution for combinations of Neumann 
boundary conditions 

The solution of Ti(z, t) for the combinations of 
Neumann boundary conditions can be separated as 
follows: 
 
     , , ,i i iT z t V z t M z t                   (B1) 

 
The function Wi(z, t) is used for homogenising 

of the boundary conditions and set as follows: 
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The governing equation of Vi (z, t) is:  
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Vi(z, t) is subjected to the upper and lower 

boundary conditions:  
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and to the inner boundary conditions:  

   1, , , 1,  2,  ,  1i i i iV z t V z t i n           (B8) 
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The initial condition of Vi(z, t) gives:  
       ,0 = ,0 , 1,  2,  ,  i i i iV z I z I z M z i n  -  

(B10)  
Vi(z, t) is obtained by using separation variable 

method and orthogonal expansion method as 
follows:  
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 , ,sini j i j iE z ;  

 , ,= cosi j i j iF z ; 

 , +1,sini j i j iG z ; 

 , 1,= cosi j i j iH z                         (B15) 
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The relationship between C1,j, D2,j and Cn,j, Dn,j 
is obtained as follows:  

, 1,
1,

, 1,
 n j j

n j
n j j

S
C C

D D
   
   
      

                    (B18) 
 
with  

, , , ,

, , , ,
, , , ,

1, 1, 1, 1,
1,

, , , ,

, , , ,
, , , ,

1, 1, 1, 1,

      +       

             

l j l j l j l j

l j l j l j l j
l j l j l j l j

l j l j l j l j
n j

l j l j l j l j

l j l j l j l j
l j l j l j l j

l j l j l j l j

E G F G

k k
F H E H

k k
S

E H F H

k k
F G E G

k k

 
 

 
 

   


   

 
 
 
 
 
  
 
 

 

1

1

n

l








  

(B19)  
Substituting Eq. (B17) and Eq. (B18) into   

Eq. (B16), a transcendental equation is obtained. 
The eigenvalues λi,j (j=1, 2, …) are the solutions of 
the transcendental equation. 

φj(t) is obtained as follows:  
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The complete solution of Ti(z, t) for the 

combinations of Neumann boundary conditions is 
obtained as follows:  
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中文导读 
 

层状结构中热传导的解析解及其在填埋场热分析中的应用 
 
摘要：层状结构中瞬态热传导模型广泛应用于不同工程领域。本文建立层状结构中瞬态热传导模型，

模型的边界条件为 Dirichlet、Neumann 或 Robin 边界的不同组合，模型考虑不同层中不同的产热函数。

通过叠加法、分离变量法和正交展开法得到模型的解析解。运用两层模型的解析解分析填埋场中的温

度分布并通过数值解验证解答的正确性。表明本文模型及其解析解在瞬态热传导问题中的适用性。 
 
关键词：热传导；层状结构；产热；解析解；填埋场 


