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Abstract: Micro-scale functionally graded material (FGM) pipes conveying fluid have many significant applications in 
engineering fields. In this work, the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is studied. 
Based on modified couple stress theory and Hamilton’s principle, the governing equation and boundary conditions are 
obtained. The differential quadrature method (DQM) is applied to investigating the thermoelastic vibration of the FGM 
pipes. The effect of temperature variation, scale effect of the microtubule, micro-fluid effect, material properties, elastic 
coefficient of elastic medium and outer radius on thermoelastic vibration of the FGM pipes conveying fluid are studied. 
The results show that in the condition of considering the scale effect and micro-fluid of the microtubule, the critical 
dimensionless velocity of the system is higher than that of the system which calculated using classical macroscopic 
model. The results also show that the variations of temperature, material properties, elastic coefficient and outer radius 
have significant influences on the first-order dimensionless natural frequency. 
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1 Introduction 
 

The problem of pipes conveying fluid has been 
a hot issue among scholars all over the world for 
nearly half-century. In 1993, PAIDOUSSIS et al [1] 
quoted more than 200 references to systematically 
illustrated the vibration characteristics, stability and 
nonlinear dynamics of pipes conveying fluid. They 
pointed out that the model of pipe conveying fluid 
had become a new paradigm to investigate 
dynamical behavior [1]. In the past ten years, the 
rapid development of micro and nano mechanics 
has led to the microscale and nanoscale pipes 
conveying fluid playing a very significant role in 

many fields, which aroused the scholars’ 
enthusiasm for studying the micro and nano scale 
pipes conveying fluid. 

With the development of microelectronics, 
micromechanics and biological engineering 
technology, microfluidic technology has played an 
indispensable role in the fields of biomedicine, 
aerospace, chemistry and so on [2−4]. In order to 
fulfill the special application in engineering, the 
performance of microfluid carrier is becoming more 
and more diverse and complicated. FGMs, a new 
type of composite materials, exhibit a gradient 
change in their spatial composition, and their 
corresponding thermodynamic and physical 
properties also vary in gradient. Compared with 
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traditional materials, FGMs have many unique 
advantages (thermal stress relaxation, graded 
properties, strong designability), no obvious 
interface, etc), which can meet the special needs of 
the engineering materials, so that FGMs are widely 
used in aerospace, bioengineering, mechanical 
engineering and other fields [5]. Therefore, 
researching the dynamic performances of 
micro-scale FGMs fluid-conveying pipes is very 
important to practical applications in engineering. 
    Micro-scale functionally graded fluid- 
conveying pipes are pipes with diameter from a few 
microns to hundreds of microns and the properties 
of the materials gradually vary with the radial or 
axial. Micron scale materials have micro-scale 
effect [6−9], so that their properties are different 
from those of macroscopic materials. DENG et al 
[10] used a hybrid method to analyze the vibration 
of multi-span FGM fluid-conveying micropipes. 
The micro-scale pipe’s non-classical Timoshenko 
beam model was presented by XIA et al [11] and 
they found that the Poisson effect has a great 
influence on the vibration characteristics of micro- 
scale tubes. LIANG et al [12] investigated the 
thermal elastic vibration of micro-scale conveying 
fluid pipes in elastic medium. NOROUZZADEH et 
al [13, 14] analyzed the isogeometric vibration and 
buckling behavior of functionally graded nanoplates 
with the consideration of nonlocal and surface 
effects. CHEN et al [15] studied the dynamic 
behavior of axially functionally graded pipes 
conveying fluid. 
    Although it is not uncommon to research the 
thermoelastic vibration of pipes, the results 
obtained by scholars were mostly concentrated on 
the linear or nonlinear macro-pipes [16−19] and 
nano-tubes [20−25] yet, micro-pipes received scant 
attention [26]. The research of the micro-scale pipes 
conveying fluid is not perfect, especially under the 
condition that the micro-scale functionally graded 
material fluid-conveying pipes embedded in elastic 
medium and considering thermal working 
environment. In this work, differential quadrature 
method (DQM) is used to research: the scale effect 
of microtubule and micro-fluid on dimensionless 
natural frequency and critical velocity of the 
micro-scale FGM pipes; the effect of material 
property index n on dimensionless natural 
frequency and critical velocity; the effect of elastic 
coefficient of the elastic matrix on natural 

frequency of the FGM pipes; the effect of the pipes’ 
external radius on natural frequency of the FGM 
pipes. These particular features of micro-scale FGM 
pipes investigated in this paper have some 
significance for the special applications in 
engineering. 
 
2 Vibration analysis model and vibration 

governing equation 
 
    The model of micro-scale fluid-conveying pipe 
embedded in elastic medium is shown in Figure 1. 
In Figure 1, the length of the pipe is L, the velocity 
is U, the inner radius is Ri, the outer radius is Ro, 
and r is the radius of the reference point. 
 

 
Figure 1 Thermoelastic vibration analysis model of 

micro-scale FGM fluid-conveying pipe in elastic 

medium 

 
    The properties of the FGM pipe vary 
continuously along the radials direction, which can 
be represented as follows [27]: 
the elasticity modulus: 
 

i i o o( )E r V E V E                           (1) 
 
the shear modulus: 
 

i i o o( )G r V G V G                           (2) 
 
pipe density: 
 

i i o o( )r V V                             (3) 
 
thermal expansion rate: 
 

i i o o( )a r V a V a                            (4) 
 
volume fractions:  

o
i

o i

n
R r

V
R R

 
   

                           (5) 

 
o i1V V                                 (6) 

 
where Poisson ratio v is assumed to be a constant. 
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Vo is the volume fraction of the outer wall material 
of the FGM pipe; Vi is the volume fraction of the 
inner wall material of the pipe; and n is the 
exponent of the volume fraction. The material 
properties of different n varying with radius are 
shown in Figure 2. In Figure 2, Po is the external 
material properties and Pi represents internal 
material properties. The conclusion shows that the 
larger the pipe has volume fraction, the faster the 
velocity of the material properties varys from inner 
to outer. 
 

 
Figure 2 Material properties of different n varying with 

radius 

 
    Classical mechanical theory is no longer 
applicable at the micron scale. In order to study the 
size effect of structure, the strain gradient theory 
and the couple stress theory, as special forms of 
nonlocal theory, are introduced into the study of 
micrometer-scale mechanics. Couple stress theory 
can be regarded as a special form of second order 
strain gradient theory. In 2002, YANG et al [28] 
modified the couple stress theory. Since then, many 
scholars adopted the modified couple stress theory 
in the studies of microbeam, microplate and 
microtubule. 
    According to the modified couple stress theory 
presented by YANG et al [28], the strain energy of 
the structures is a function of both strain tensor 
(conjugated with stress tensor) and curvature tensor 
(conjugated with couple stress tensor). According to 
YANG’s [28] and Reddy’s model [29], the strain 
energy U can be written as: 
 

1
( )d  ( , , , )

2m ij ij ij ijU m v i j x y z             (7) 
 
where Ω is the volume, 
 

( ) 2ij ij ij ijtr G                           (8) 

T1
[ ( ) ]

2ij i iu u                            (9) 
 

22ij ijm l G                             (10) 
 

T1
[ ( ) ]

2ij i i                           (11) 
 
Eqs. (8)−(11) represent the stress, the strain tensor, 
the deviatoric part of the couple stress tensor and 
the symmetric curvature tensor of the system, 
respectively. Among them, λ and G are the Lame’s 
constants, ui is the displacement, δij is Kronecker’s 
delta function, l is the parameter of tube micro-scale 
effect and θi is the rotation vector that can be 
written as  

1
( )

2i icul u                             (12) 
 
    According to the Euler-Bernoulli beam theory, 
the displacement of the x-, y- and z-axes can be 
shown as  

( ,  ),  0,  ( ,  )u z x t v w w x t                 (13) 
 
where ψ(x) is the rotation of pipe cross section and 
by small deformation assumption, it can be shown 
as  

( , )
( )

w x t
x

x
 




                          (14) 
 
    Substituting Eqs. (13) and (14) into Eq. (9) 
yields  

2

2

( , )
,  0xx yy zz xy yx zx

w x t
z

x
     

      


    (15) 
 
    Substituting Eqs. (13) and (14) into Eq. (12) 
yields 
 

( , )
,  0y x z

w x t

x
  

   


                 (16) 
 
    Substituting Eq. (16) into Eq. (11) yields  

2

2

1 d ( )
,  0

2 d
xy xx yy zz yz zx

w x

x
             (17) 
 
    Substituting Eq. (15) into Eq. (8) gives  

2

2

( , )
,  0xx yy zz xy yz zx

w x t
Ez

x
     

      


 

(18)  
where E is the elasticity modulus of the FGM 
micro-scale tube, and the Poisson effect is 
neglected[30, 31]. 
    Substituting Eq. (18) into Eq. (10) obtains  

2
2

2

d ( )
,  0

d
xy xx yy zz yz zx

w x
m Gl m m m m m

x
        

(19) 
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    Substituting Eqs. (15), (17), (18) and (19) into 
Eq. (7) can obtain the strain energy of the FGM 
micro-scale tube. 
 

22
2

eq eq 20

1
( ) d

2

L

m
w

U EI GA l x
x

 
     
           (20) 

 
where 
 

2π2 2 2
eq 0

EI ( ) d ( ) sin ( ) d do

i

R

A R
E r z A E r r r r      (21) 

 
and 
 

2π

eq 0
GA ( )d ( ) d do

i

R

A R
G r A G r r r              (22) 

 
    The kinetic energy of the tube can be 
expressed as 
 

2

0
d

2

L

p
m w

T x
t

                            (23) 

 
where m is the linear density of the FGM 
micro-scale fluid-conveying tube that can be shown 
as 
 

2π

0
( )d ( ) d do

i

R

A R
m r A r r r                  (24) 
 
    The kinetic energy of the fluid in the tube can 
be shown as 
 

2
2

f 0
d

2

LM w w
T U U x

t x

           
             (25) 

 
where M is the linear density of the fluid in the tube 
and U is the velocity of the fluid. 
    Based on the thermoelastic theory, the strain 
energy caused by temperature variation can be 
written as 
 

2

0

1
d

2

L

T
w

U N xT t

        
                  (26) 

 
where 
 

eq

1 2T

EAa
N T


  


                        (27) 

 
and 
 

2π

eq 0
( ) ( )d ( ) ( ) d do

i

R

A R
EAa E r a r A E r a r r r        (28) 
 
    And the potential energy can be kept in elastic 
medium when the elastic is deforming, which can 
be written as 
 

2

0
( )d

L

kU kw x                          (29) 

where k is the elastic coefficient of the elastic 
medium. 
    According to PAIDOUSSIS [32], the 
Hamilton’s principle can be shown as 
 

2

1
cd 0

t

t
l t                               (30) 

 
where the Lagrangian of the system can be 
expressed as 
 

c p fm T kl U T T U U                       (31) 
 
    Substituting Eqs. (20), (23), (25), (26), (27) 
and (31) into Eq. (30), the thermoelastic vibration 
control equation of the micro-scale fluid-conveying 
tube in elastic medium can be obtained. 
 

4 2
2 2

eq eq 4 2
( ) ( )T

w w
EI GA l MU N

x x

 
   

 
 

    
2 2

2
2 ( ) 0

w w
MU M m kw

x t t

 
   

  
         (32) 

 
    Considering the influence of the elastic 
medium, the thermoelastic vibration equation of 
micro-scale fluid-conveying tubes in elastic 
medium can be obtained as 
 

4 2
2 2

eq eq 4 2
( ) ( )T

w w
EI GA l MU N

x x
 

   
 

 

    
2 2

2
2 ( ) 0

w w
MU M m kw

x t t

 
   

  
         (33) 

 
where α is the parameter of micro-fluid effect 
[33−35]. 
    The boundary conditions with both ends 
simply supported can be shown as 
 

2 2

2 2

(0, ) ( , )
(0,  ) ( ,  ) 0,  0

w t w L t
w t w L t

x x

 
   

 
   (34) 

 
    Dimensionless parameters are introduced as 
follows: 
 

1
22eq

2
eq

, ,  ,  ,T
T

EI N Lw x t
Y X N

L L M m EIL


 
    

 
 

1
24 2

eq

eq eq eq

,  ,  ,  
GA lkL M M

K u LU g
EI EI M m EI


 

       
 

(35) 
 
    Substituting dimensionless parameters in   
Eq. (35) into the governing Eq. (33) and the 
boundary conditions (34), the dimensionless 
equations and dimensionless boundary conditions 
can be obtained as follows: 
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4 2 2
2

4 2
(1 ) ( ) 2T

Y Y Y
g u N u

XX X
 


  

    
  

 

    
2

2
0

Y
KY




 


                        (36) 
 

       2 2

2 2

0, 1,
0, 1, 0,  0

Y Y
Y Y

X X

 
 

  
    

 
 (37) 

 
3 Differential quadrature method 
 
    In this study, the differential quadrature 
method is used to solve the governing equation. In 
the interval of [a, b], the derivative of the 
one-dimensional continuous differentiable function 
f(x) can be expressed as [36, 37] 
 

  ( )

1

( ) ( )
N

n
n i ij j

j

L f x C f x


                    (38) 

 
where Ln is a linear differential operator; n is the 
differential order; ( )n

ijC  is the weighting coefficient; 
xj is the j coordinate values in N mutually different 
nodes; a=x1 and b=xN are the first and last point, 
respectively. 
    The first derivative weighting coefficient is 
 

1, , 1,(1)

1,

( ) ( )

( )
1

  ( = )
( )

N N

i k j k
k k i j k k j

ij j i N

i kk k i

x x x x

C l x

i j
x x

   

 


 

  

 

 


 

    i, j=1, 2, …, N                      (39) 
 
where lj(x) is Lagrange interpolation function. 
    The recurrence formula of weighted 
coefficients is 
 

(1)(2) (1)

1

(1) (2) (2) (1)(3)

1 1

,

,

N

ij ij kj
k

N N

ij ik kj ik kj
k k

C C C

C C C C C



 



 



 
 

(1) (3) (3) (1)(4)

1 1

N N

ij ik kj ik kj
k k

C C C C C
 

                  (40) 

 
    In this study, the Fung node[38] can be 
expressed as 
 

 

     

0 0

0 0

1 π
1 cos ,  1,  2,  ,   ( 4)

2 3

1
1 0,  2 1 ,

2

i
x i i N N N

N

x N x N x

       

   



 

   0 0
1

3 [ ( ) 1],  1
2

x N x N x N                (41) 
 
    Substituting Eq. (38) into Eqs. (36) and (37) 

obtains 
 

 
 

 
 

1 1 1 1 ddd db d dd db
1 1

bbd bb b[0] [0]

YK K Y G G
YK K Y

               
           




 

    
 
 

1 1 ddd db

b

0
[0] [0]

YM M

Y

       
    




                (42) 

 
where subscript b and d represent the inner and 
outer points of the interval; “.” means 
differentiation of time. Matrix 1

dd ,K  1
db ,K  1

bd ,K  
1
bb ,K 1

dd ,G 1
db ,G 1

dd ,M  1
dbM  can be expressed as 

 

 

   

0 0 0 0

0 0

0 0

0 0

0 0

1 (4) 2 (2)
dd

1 (4)
db 1:

2 (2)

1:

T(2) (2)1
bd 2, 3,

0

1
bb

(1 ) ( )

         ,

(1 )

         ( ) ,

0 0 ,

          1,  2,  ,  ,

1 0 0 0

Tij ijN N N N

N N

ij N N N

T ij N N N

N j N j

K g C u N C

K I

K g C

u N C

K C C

j N

K





 



 

 

 

          

    

   

   






   

0 0

0 0

0 0

0 0

0 0 0 0

(2)
2, 1:

(2)
3, 1:

1 (1)
dd

1 (1)
db 1:

1 1
dd db 1:

,

0 0 0 1

2 ,

2 ,

,  0

N N N

N N N

ij N N

ij N N N

N N N N N

C

C

G u C

G u C

M I M





 

 



 

  

 
 
 
 
 
 
 

   

   

   

(43) 
 
    The solution of Eq. (42) can be written as 
 
     expY Y                          (44) 
 
where T T T{ } {{ }  ({ } }d dY Y Y  is the amplitude of the 

micro-scale FGM pipes), Im(ω) is the natural 
frequency. 
    Substituting Eq. (44) into Eq. (42) a 
homogeneous equation about the generalized 
eigenvalue problem can be obtained as 
 

2 1 1 1( [ ] [ ] [ ]){ } {0}dM G K Y                (45) 
 
where 1 1 1 1 1 1

dd db bb bdM M M K K   is the mass matrix 

of the system; 1 1 1 1 1 1
dd db bb bdG G G K K  is the damping 

matrix of the system; 1 1 1 1 1 1
dd db bb bdK K K K K   is the 

stiffness matrix of the system. 
    If Eq. (45) has nonzero solutions, Eq. (46) 
should be satisfied 
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2 1 1 1det( [ ] [ ] [ ]) 0M G K                   (46) 
 
where ω is the eigenvalue of the system, which is 
usually a complex number. The real and imaginary 
parts represent system damping and vibration 
frequency, respectively. 
    Set 
 

1 1 1 1 1 1[ ] [ ] [ ] [ ]

[ ] [0]

M G M K
B

I

   
  
 

            (47) 

 
then, the two-dimensional eigenvalue problem can 
be simplified as 
 

 det 0B I                            (48) 

 
4 Results and discussion 
 
    The FGM micro-scale pipe researched in this 
study is composed of metal Ti−6Al−4V and 
ceramic ZrO2 [39]. The material properties are 
changed from outer ceramic material to the inner 
metal material. The material properties of the FGM 
pipe are chosen to be Ei=116.7 GPa, Eo=151.0 GPa, 
ρi=4420 kg/m3, ρo=5331 kg/m3, v=1/3, Gi=Ei/2(1+v), 
Go=Eo/2(1+v), ai=9.5×10−6 K−1, ao=10.0×10−6 K−1, 
Ri=7.5 μm, Ro=15 μm, L/(2Ro)=100 (the ratio of 
length to diameter). The micro-scale FGM pipe 
characteristics of size can be expressed as 
l=bh/[3(1−v)] where bh=24 μm, and l=17 μm can be 
obtained [8, 40]. The micro scale parameter of the 
fluid takes α=4/3. 
    In order to verify the solving method used in 
this paper, the result is compared with the results of 
WANG [40]. Figure 3 shows that in the same 
situation (E=1.44 GPa, ρf=ρp=1000 kg/m3, μ=0.38, 
l=17.6, d/D=0.8, L/D=20, D=50 μm) the relationship 
 

 
Figure 3 Relationship between natural frequency and 

flow velocity 

between natural frequency and flow velocity 
calculated by the program in this study is consistent 
with the reference. 
    The effect of the microscale effect and micro- 
fluid effect on the natural frequency and critical 
velocity of the micro-scale FGM pipe is shown in 
Figure 4. In Figure 4, let K=106 kPa, n=1, ∆T=0, 10, 
20, 30 K. In Figure 4(a), let l=0, a=1. In Figure 4(b), 
take l=17 μm, a=1. In Figure 4(c), choose l=17 μm, 
a=4/3. 
 

 
Figure 4 Effect of microscale effect and micro-fluid 

effect on natural frequency and critical velocity of 

micro-scale FGM pipe: (a) l=0, a=1; (b) l=17 μm, a=1; 

(c) l=17 μm, a=4/3 
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    Figure 4 shows that with the increase of 
temperature, both of the first-order dimensionless 
natural frequency and the critical dimensionless 
velocity decrease. On the other hand, it can be 
found from Figure 4 that with the increase of 
dimensionless velocity, the first-order 
dimensionless natural frequency gradually 
decreased to 0. The eigenvalue of the system in this 
paper is a function of the liquid velocity. With the 
increase of velocity, the stiffness of the system 
decreases and the system stiffness disappears when 
the velocity reaches a certain value (the vibrational 
frequency of the system is 0). When the first-order 
dimensionless vibration frequency arrives 0, the 
system enters an unstable state (static buckling 
instability), and the corresponding dimensionless 
velocity is the critical dimensionless velocity of the 
FGM pipe. 
    In order to research the effect of the microscale 
effect and micro-fluid effect on the natural 
frequency and critical velocity of the micro-scale 
FGM pipe, Figures 4(a) and (b) are compared first. 
Figure 4 exhibits that the dimensionless critical 
velocity of the pipe considering the effect of the 
microscale effect (l=17 μm, a=1) is significantly 
larger than the dimensionless critical velocity of the 
classical FGM pipe (l=0, a=1). In other words, the 
microscale effect will significantly increase the 
stability of the system. Figures (b) and (c) show that 
the dimensionless critical flow velocity of the FGM 
pipe considering the effect of the microscale effect 
(l=17 μm, a=1) is larger than the critical velocity of 
the FGM pipe considering the effect of the 
microscale effect and micro-fluid effect (l=17 μm, 
a=4/3). In other words, the micro-fluid effect will 
reduce the stability of the system. Figures 4(a) and 
(c) show that the dimensionless critical velocity of 
the microscale FGM pipe (l=17 μm, a=4/3) is 
greater than the dimensionless critical velocity of 
the classical FGM pipe (l=0, a=1). The calculation 
according to the classical model will seriously 
underestimate the stability of the system, which 
causes a great influence on practical application in 
engineering. 
    The effect of the microscale effect and 
micro-fluid effect on first two natural frequencies of 
the micro-scale FGM pipe is shown in Figure 5. In 
Figure 5, let K=0 Pa, n=1, ΔT=0 K. In Figures 5(a) 
and (b), let l=17 μm, a=4/3. In Figures 5(c) and (d) 
take (l=0, a=1). The stability of the FGM pipe can 

be divided into three situations: stable state 
(Im(ω)>0 and Re (ω)=0); static instability 
(Im(ω)=0 and Re (ω) have negative value); 
dynamic instability (Im(ω)>0 and Re (ω) have 
negative value). 
    Figures 5(a) and (b) shows that the 1st-mode 
static instability occurs at u=4.466 (1st-mode 
critical velocity), the 2nd-mode static instability 
occurs at u=8.932 (2nd-mode critical velocity). 
When the fluid velocity increases to 9.23, the first 
order natural frequency and the second order 
natural frequency overlap, which leads to the 
coupling dynamic instability in the first and second 
order modes. Figures 5(c) and (d) shows that the 
1st-mode static instability occurs at u=3.205, the 
2nd-mode static instability occurs at u=6.392. When 
the fluid velocity increases to 6.55, the first order 
natural frequency and the second order natural 
frequency overlap, which leads to the coupling 
dynamic instability in the first and second order 
modes. According to the result, we can conclude 
that the FGM pipe considering the effect of the 
microscale effect and micro-fluid effect has higher 
1st-mode critical velocity and 2nd-mode critical 
velocity (the stability of the system is higher), but 
the instability pattern has not changed. 
    The effect of the exponent n of material 
property on the natural frequency and critical 
velocity of the micro-scale FGM pipe is shown in 
Figure 6. In the figure, take K=106 Pa, ∆T=10 K, 
n=0, 0.1, 0.5, 1, 2, 10. 
    Figure 6 shows that when the dimensionless 
velocity is 0, the smaller the n is, the higher the 
dimensionless natural frequency is. With the 
increase of dimensionless velocity, the 
dimensionless natural frequency of system 
decreases. The smaller the n is, the bigger the rate 
of descent is. When the velocity reaches the critical 
dimensionless velocity. The bigger the n is, the 
greater the dimensionless critical velocity is. In 
other words, with the increase of n, the volume 
fraction of the external material increases gradually, 
and the decrease rate of the dimensionless natural 
frequency decreases gradually, but the 
dimensionless critical velocity increases with it. 
    The effect of the elastic coefficient of the 
elastic medium on the natural frequency of the 
micro-scale FGM pipe is shown in Figure 7. In 
Figure 7(a), let U=1 m/s, n=1, ∆T=0 K, 10 K, 20 K, 
30 K. In Figure 7(b), let U=1 m/s, ∆T=10 K, n=0, 
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Figure 5 Effect of microscale effect and micro-fluid effect on first two natural frequencies of micro-scale FGM pipe:  

(a, b) l=17 μm, a=4/3; (c, d) l=0, a=1 

 

 
Figure 6 Effect of exponent n of material property on 

natural frequency and critical velocity of micro-scale 

FGM pipe 

 
0.1, 0.5, 1, 2, 10. 
    It can be seen from Figure 7 that the 
dimensionless vibration frequency of the system 
increases with the increase of the elastic coefficient 
K, and its increase trend has no significant change. 
In other words, the influence of K on dimensionless 
vibration frequency is almost linear in a certain 

range. 
    The effect of the material property exponent 
change on the natural frequency of the micro-scale 
FGM pipe is shown in Figure 7. In the figure, let  
U=1 m/s, K=106 Pa, ∆T=0, 10, 20, 30 K. 
    It can be seen from Figure 8 that the 
dimensionless vibration frequency of the system 
decreases with the increase of the exponent n, and 
the dimensionless vibration frequency decreases 
more slowly with the increasing of n. In other 
words, with the increase of n, the volume fraction 
of outer material increases. The increases of the 
volume fraction of outer material lead to the 
decrease of the dimensionless frequency of the 
system. When n increases to a certain extent, the 
rate of the volume fraction change becomes slow 
that makes the dimensionless natural frequencies 
drop more slowly. 
    The effect of the outer radius change on the 
natural frequency of the micro-scale FGM pipe is 
shown in Figure 9. In Figure 9(a), let U=1 m/s, 
K=106 Pa, ∆T=0, 10, 20, 30 K, n=1. In Figure 9(b), 
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Figure 7 Elastic coefficient of elastic medium on natural 

frequency of micro-scale FGM pipe 

 

  
Figure 8 Effect of material property exponent change on 

natural frequency of micro-scale FGM pipe (different 

exponent n) 

 
let U=1 m/s, K=106 Pa, ∆T=10 K, n=0, 0.1, 0.5, 1, 2, 
10. 
    It can be seen from Figure 9 that the 
dimensionless vibration frequency decreases with 
the increase of the external radius, and the rate of 
decline becomes slower with the increase of the 
external radius. In other words, with the increase of 

 

 
Figure 9 Effect of outer radius change on natural 

frequency of micro-scale FGM pipe: (a) Different 

temperature; (b) Different exponent n 
 
the external radius, the effect of the outer radius 
change on the natural frequency of the micro-scale 
FGM pipe is gradually reduced. 
    The effect of the different boundary conditions 
on the natural frequency and critical velocity of the 
micro-scale FGM pipe is shown in Figure 10. In 
 

 
Figure 10 Effect of different boundary conditions on 

natural frequency and critical velocity of micro-scale 

FGM pipe 
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Figure 10, let K=106 Pa, n=1, ΔT=0 K. Figure 9 
shows that the micro-scale FGM pipe with the 
boundary conditions of clamped-clamped has the 
highest critical velocity and it also has the highest 
natural frequency at the same fluid velocity. The 
stability of the micro-scale FGM pipe with the 
boundary conditions of simply-clamped is higher 
than the micro-scale FGM pipe with the boundary 
conditions of simply-simply. 
 
5 Conclusions 
 
    In this work, the differential equation of 
micro-scale functionally graded fluid-conveying 
pipes in elastic medium is established by 
considering various factors comprehensively. Some 
main conclusions are shown as follows: 
    1) With the increase of the temperature, the 
dimensionless natural frequency and the 
dimensionless critical velocity of the system will 
decrease, and the stability of the system will 
decrease. 
    2) The scale effect of the micropipe can 
improve the dimensionless critical velocity of the 
system (improve the stability of the system). The 
micro-fluid effect can reduce the dimensionless 
critical velocity of the FGM pipe (decrease the 
stability of the system). Under the condition of 
considering, the scale effect and micro-fluid effect, 
the dimensionless critical velocity of the FGM pipe 
is higher than the dimensionless critical velocity of 
the classical macroscopic model. In other words, 
the effect of the scale effect and the micro-fluid 
effect improve the stability of the system greatly. 
With the fluid velocity increases, when the fluid 
velocity reaches a certain value, the pipe enters the 
first order static instability state, the fluid velocity 
continues to increase and the pipe enters the second 
order static instability state, and finally the FGM 
pipe enters the coupled dynamic instability state 
under the first mode and the second mode. 
    3) The dimensionless vibration frequency of 
the system rises with the increase of elastic 
coefficient K. 
    4) With the increase of the exponent n, the 
volume fraction of the external material increases 
gradually and the dimensionless natural frequency 
of the system decreases. When n increases to a 
certain value, the volume fraction will change 
slowly, which leads to the dimensionless natural 

frequency decrease more slowly. 
    5) The dimensionless vibration frequency 
decreases with the increase of the external radius. 
With the increase of the external radius the effect of 
the outer radius change on the natural frequency of 
the micro-scale FGM pipe is gradually reduced (the 
rate of descent of the radius changes from 1×10−5 m 
to 1.2×10−5 m; about 15 times the rate of descent of 
the radius changes from 2×10−5 m to 2.2×10−5 m ). 
    6) The stability relation of micro-scale FGM 
pipe with different boundary conditions is clamped- 
clamped>simply-clamped>simply-simply. 
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中文导读 
 

弹性介质中的微尺度功能梯度材料管热弹性振动分析 
 
摘要：微尺度功能梯度材料输流微管在许多工程领域有着十分重要的应用价值。本文采用修正的偶应

力理论和哈密顿原理建立了振动方程，并通过微分求积法求解研究嵌入弹性介质的微尺度功能梯度材

料输流管的热弹性振动问题。综合考虑温度变化、微尺寸效应、微流体效应、材料属性变化、弹性基

体的弹性系数变化和管道外径变化对微尺度功能梯度材料输流管的热弹性振动影响。研究结果表明：

在考虑微尺度和微流体效应的情况下，系统的无量纲临界流速高于经典模型下的系统无量纲临界流

速；温度、材料属性、弹性基体的弹性系数、管道外径等因素的变化对系统的一阶固有频率都有显著

的影响。 
 
关键词：功能梯度材料；热弹性振动；微尺度；微流体 


