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Abstract: Micro-scale functionally graded material (FGM) pipes conveying fluid have many significant applications in
engineering fields. In this work, the thermoelastic vibration of FGM fluid-conveying tubes in elastic medium is studied.
Based on modified couple stress theory and Hamilton’s principle, the governing equation and boundary conditions are
obtained. The differential quadrature method (DQM) is applied to investigating the thermoelastic vibration of the FGM
pipes. The effect of temperature variation, scale effect of the microtubule, micro-fluid effect, material properties, elastic
coefficient of elastic medium and outer radius on thermoelastic vibration of the FGM pipes conveying fluid are studied.
The results show that in the condition of considering the scale effect and micro-fluid of the microtubule, the critical
dimensionless velocity of the system is higher than that of the system which calculated using classical macroscopic
model. The results also show that the variations of temperature, material properties, elastic coefficient and outer radius
have significant influences on the first-order dimensionless natural frequency.
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1 Introduction

The problem of pipes conveying fluid has been
a hot issue among scholars all over the world for
nearly half-century. In 1993, PAIDOUSSIS et al [1]
quoted more than 200 references to systematically
illustrated the vibration characteristics, stability and
nonlinear dynamics of pipes conveying fluid. They
pointed out that the model of pipe conveying fluid
had become a new paradigm to investigate
dynamical behavior [1]. In the past ten years, the
rapid development of micro and nano mechanics
has led to the microscale and nanoscale pipes
conveying fluid playing a very significant role in
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many fields, which aroused the scholars’
enthusiasm for studying the micro and nano scale
pipes conveying fluid.

With the development of microelectronics,
micromechanics and  biological engineering
technology, microfluidic technology has played an
indispensable role in the fields of biomedicine,
aerospace, chemistry and so on [2—4]. In order to
fulfill the special application in engineering, the
performance of microfluid carrier is becoming more
and more diverse and complicated. FGMs, a new
type of composite materials, exhibit a gradient
change in their spatial composition, and their
corresponding  thermodynamic and  physical
properties also vary in gradient. Compared with
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traditional materials, FGMs have many unique
advantages (thermal stress relaxation, graded
properties, strong designability), no obvious
interface, etc), which can meet the special needs of
the engineering materials, so that FGMs are widely
used in aerospace, bioengineering, mechanical
engineering and other fields [5]. Therefore,
researching the dynamic performances of
micro-scale FGMs fluid-conveying pipes is very
important to practical applications in engineering.

Micro-scale  functionally  graded  fluid-
conveying pipes are pipes with diameter from a few
microns to hundreds of microns and the properties
of the materials gradually vary with the radial or
axial. Micron scale materials have micro-scale
effect [6—9], so that their properties are different
from those of macroscopic materials. DENG et al
[10] used a hybrid method to analyze the vibration
of multi-span FGM fluid-conveying micropipes.
The micro-scale pipe’s non-classical Timoshenko
beam model was presented by XIA et al [11] and
they found that the Poisson effect has a great
influence on the vibration characteristics of micro-
scale tubes. LIANG et al [12] investigated the
thermal elastic vibration of micro-scale conveying
fluid pipes in elastic medium. NOROUZZADEH et
al [13, 14] analyzed the isogeometric vibration and
buckling behavior of functionally graded nanoplates
with the consideration of nonlocal and surface
effects. CHEN et al [15] studied the dynamic
behavior of axially functionally graded pipes
conveying fluid.

Although it is not uncommon to research the
thermoelastic vibration of pipes, the results
obtained by scholars were mostly concentrated on
the linear or nonlinear macro-pipes [16—19] and
nano-tubes [20—25] yet, micro-pipes received scant
attention [26]. The research of the micro-scale pipes
conveying fluid is not perfect, especially under the
condition that the micro-scale functionally graded
material fluid-conveying pipes embedded in elastic
medium and considering thermal working
environment. In this work, differential quadrature
method (DQM) is used to research: the scale effect
of microtubule and micro-fluid on dimensionless
natural frequency and critical velocity of the
micro-scale FGM pipes; the effect of material
property index n on dimensionless natural
frequency and critical velocity; the effect of elastic
coefficient of the elastic matrix on natural

frequency of the FGM pipes; the effect of the pipes’
external radius on natural frequency of the FGM
pipes. These particular features of micro-scale FGM

pipes investigated in this paper have some
significance for the special applications in
engineering.

2 Vibration analysis model and vibration
governing equation

The model of micro-scale fluid-conveying pipe
embedded in elastic medium is shown in Figure 1.
In Figure 1, the length of the pipe is L, the velocity
is U, the inner radius is R;, the outer radius is R,
and r is the radius of the reference point.

o

Figure 1 Thermoelastic vibration analysis model of
micro-scale FGM fluid-conveying pipe in elastic

medium

The properties of the FGM pipe vary
continuously along the radials direction, which can
be represented as follows [27]:
the elasticity modulus:

E(r) =V.E +V,E, (1)

the shear modulus:

G(r) = VG +V,G, )
pipe density:
p(r)=Vipi +V,op, 3)
thermal expansion rate:
a(r)=V,a; +V,a, 4)
volume fractions:

R, -7
Vo=1-V, (6)

where Poisson ratio v is assumed to be a constant.
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Vs, 1s the volume fraction of the outer wall material
of the FGM pipe; Vi is the volume fraction of the
inner wall material of the pipe; and n is the
exponent of the volume fraction. The material
properties of different n varying with radius are
shown in Figure 2. In Figure 2, P, is the external
material properties and P; represents internal
material properties. The conclusion shows that the
larger the pipe has volume fraction, the faster the
velocity of the material properties varys from inner
to outer.
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Figure 2 Material properties of different n varying with
radius

Classical mechanical theory is no longer
applicable at the micron scale. In order to study the
size effect of structure, the strain gradient theory
and the couple stress theory, as special forms of
nonlocal theory, are introduced into the study of
micrometer-scale mechanics. Couple stress theory
can be regarded as a special form of second order
strain gradient theory. In 2002, YANG et al [28]
modified the couple stress theory. Since then, many
scholars adopted the modified couple stress theory
in the studies of microbeam, microplate and
microtubule.

According to the modified couple stress theory
presented by YANG et al [28], the strain energy of
the structures is a function of both strain tensor
(conjugated with stress tensor) and curvature tensor
(conjugated with couple stress tensor). According to
YANG’s [28] and Reddy’s model [29], the strain
energy U can be written as:

1 ..
Um :E.[.Q(O-ygy +mszzj)dv (17] = xayaz) (7)

where Q is the volume,

o; = Atr(g;)0; +2Geg; (8)

2787
& =%[Vu[ +(Vu)'] )
m; =2I°Gy, (10)
7y =51V0,+(V6)'] (11)

Egs. (8)—(11) represent the stress, the strain tensor,
the deviatoric part of the couple stress tensor and
the symmetric curvature tensor of the system,
respectively. Among them, A and G are the Lame’s
constants, u; is the displacement, J;; is Kronecker’s
delta function, / is the parameter of tube micro-scale
effect and 6; is the rotation vector that can be
written as

6, :%cul(ui) (12)

According to the Euler-Bernoulli beam theory,
the displacement of the x-, y- and z-axes can be
shown as

u=-ziy(x, 1), v=0, w=w(x, t) (13)

where w(x) is the rotation of pipe cross section and
by small deformation assumption, it can be shown
as

_ow(x,1)
T ox
Substituting Eqs. (13) and (14) into Eq. (9)
yields

2
B Z@ w(x,t) ’

xx

w(x) (14)

g, =&, =¢&
» zz Xy
ox 2

Substituting Eqs. (13) and (14) into Eq. (12)
yields

=&, =¢&,=0 (15)

ow(x,t)
0,:_ sngHZZO 16
b= (16)
Substituting Eq. (16) into Eq. (11) yields
1 d*w(x)
v :_E dxz > Xxx :ZW =Xz :Zyz = Xz =0 (17)
Substituting Eq. (15) into Eq. (8) gives
2
X = —Ez o Zi‘;’t) ’ O-yy =0, = O-xy = O-yz =0x = 0
(18)

where E is the elasticity modulus of the FGM
micro-scale tube, and the Poisson effect is
neglected[30, 31].

Substituting Eq. (18) into Eq. (10) obtains

2 de(x)

2 =m,=m_=m,=m, =0

xx »y zz vz zx

m,, =—Gl
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Substituting Egs. (15), (17), (18) and (19) into
Eq. (7) can obtain the strain energy of the FGM
micro-scale tube.

_1 L 2 8w
Um_EjO (El +GAl )[a J dx (20)

x2
where
2m R, .
El,, = jA E(r)z%dA = jo jR[ E(r)r?sin®(@)rdrdd  (21)
and
2m R,
O T O oY

The kinetic energy of the tube can be
expressed as

-2 J:(%jzdx (23)

where m is the linear density of the FGM
micro-scale fluid-conveying tube that can be shown
as

m={ p(rydd= j;“ j: p(r)rdrdd (24)

The kinetic energy of the fluid in the tube can

be shown as
=_I Kaw ) +U2}x (25)

where M is the linear density of the fluid in the tube
and U is the velocity of the fluid.

Based on the thermoelastic theory, the strain
energy caused by temperature variation can be

written as

Ur =Lty (2 e 26
r=5l | Nl 5, (26)

where

N. Edag AT (27)
= ooy

and

Edag, = [ E(ra(r)dd = joz Lf E(ra(ryrdrdd  (28)

And the potential energy can be kept in elastic
medium when the elastic is deforming, which can
be written as

U, = L)L(—sz)dx (29)

where £ is the elastic coefficient of the elastic
medium.

According to PAIDOUSSIS [32], the
Hamilton’s principle can be shown as

5]
5L| 1,dr=0 (30)

where the Lagrangian of the system can be
expressed as

lo=-U, +T,+T; +Ur +U, (€29

Substituting Egs. (20), (23), (25), (26), (27)
and (31) into Eq. (30), the thermoelastic vibration
control equation of the micro-scale fluid-conveying
tube in elastic medium can be obtained.

2
(El, +GA, 12)—+(MU2 NT)a—+
ot o’

2 2

om0 Y o+ my Y k=0 (32)
oxot or?

Considering the influence of the elastic
medium, the thermoelastic vibration equation of

micro-scale fluid-conveying tubes in elastic
medium can be obtained as
o*w o*w
2 2
(Eleq + GAeql )ax—4+(0,’MU _NT)ax_2+
2 2
om0 Y o+ my Y kw0 (33)
oxot or

where o is the parameter of micro-fluid effect
[33-35].

The boundary conditions with both ends
simply supported can be shown as

*w(0,1)
2 =

O*w(L,t)
2

w(0, £)=w(L, {)=0, =0 (34

ox

Dimensionless parameters are introduced as
follows:

1
El, )2 — N.I?
y=2 x=X po| S P L N2t
L L M+m| 2 El,
1
I M )2 M GA. 2
K:k_,u: LU, B= ,g=—3
El, El, M+m El,

(35)

Substituting dimensionless parameters in
Eq. (35) into the governing Eq. (33) and the
boundary conditions (34), the dimensionless
equations and dimensionless boundary conditions
can be obtained as follows:
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4
(1+g)a—Y+(au —NT)
ox*

+2\/7

'aX
oY
1KY =0 36
prs (36)
2Y ’ 2Y1 '
v(o.)=r(,r)—0, ZHGT) YT o 5g)

ox’* ox’
3 Differential quadrature method

In this study, the differential quadrature
method is used to solve the governing equation. In
the interval of [a, b], the derivative of the
one-dimensional continuous differentiable function
flx) can be expressed as [36, 37]

AL} = ZC&")ﬂx,-) (38)

where L, is a linear differential operator; n is the
differential order; Cl;") is the weighting coefficient;
x; is the j coordinate values in N mutually different
nodes; a=x; and b=xy are the first and last point,
respectively.

The first derivative weighting coefficient is

N
H (x _xk)/ H (x; —x;)

o =Lk# k=Lk#j
=10y =1"
(=)
Z (X xk)
i, j=1, 2, "',N (39)

where /,(x) is Lagrange interpolation function.
The recurrence of  weighted
coefficients is

formula

N
(2 _ (OFelt);
Cé’i _ZCZI' ij >
k=1

N N
3 _ N (D) _ N () (1)
G =2 GG =2 GGy
k=1 k=1

N N
i -y -y ey (0
k=1 k=1

In this study, the Fung node[38] can be
expressed as

. 1 in .
x(z):E(l—cosN_J, i=1,2, -, Ny (Ny=N-4)
x(Ny +1)=0, x(Ny +2) :%x(l),
x(Ny+3)=

%[x(N0)+l],x(N)=1 41

Substituting Eq. (38) into Egs. (36) and (37)

obtains

[ sl e cail,
i

where subscript b and d represent the inner and
points of the interval; “.” means

differentiation of time. Matrix K}, K}, K4,
Kby, Gig» Gys MYy, M}, canbe expressed as

K(lid - (1 * g) |:Cl§4) :|No><No
I<[[]NO><NO ?
Ky =(+2)[ "]

(a’ =ND)[ ]

outer

2_N (2)
+ (o NT)[CU ]NoxN0+

NyxNo+1:N

NyxNy+1:N
T
1 (2) c?
Kbd _[{O} CN +2,j N0+3j {0}:| ’
Jj=L2, -+, Ny,
1 0 00
(2)
Kl . CN0+2,N0+1:N
bb — (2) ]
No+3,Ny+1:N
00 01

Gy = 2”\/7[ (1)}
Gy =2u\Jp [ng'lq NoxNo+:N

Mclid = [I]NOXNO 4 M<lib = [O]NoxNOH:N

NoxNp -

(43)
The solution of Eq. (42) can be written as

{v}= {?} exp(wr’) (44)

where {Y} = {{E}T ({E}T 1T is the amplitude of the
micro-scale FGM pipes), Im(w) is the natural
frequency.

Substituting Eq. (44)
homogeneous equation about
eigenvalue problem can be obtained as

into Eq. (42) a

the generalized

(@*[M"]+o[G'1+[K' DY, } = {0} (45)

where M'=M}, - M} KK, is the mass matrix
=Gy — Gy, Kl KLy is the damping
=K}y, — Ky Kiy Kby is the
stiffness matrix of the system.

If Eq. (45) has nonzero solutions, Eq. (46)
should be satisfied

of the system; G'

matrix of the system; K'
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det(@*[M "1+ 0[G']+[K']) =0 (46)

where w is the eigenvalue of the system, which is
usually a complex number. The real and imaginary
parts represent system damping and vibration
frequency, respectively.

Set

MG AM'T'K']
[7] [0]

then, the two-dimensional eigenvalue problem can
be simplified as

det(B-wl)=0 (48)

B=|" (47)

4 Results and discussion

The FGM micro-scale pipe researched in this
study is composed of metal Ti—6Al-4V and
ceramic ZrO; [39]. The material properties are
changed from outer ceramic material to the inner
metal material. The material properties of the FGM
pipe are chosen to be £=116.7 GPa, E,=151.0 GPa,
pi=4420 kg/m®, p,=5331 kg/m®, v=1/3, G=E/2(1+v),
Go=Eo/2(1+v), a=9.5x10° K™, a,=10.0x107° K,
R=7.5 ym, R=15 pum, L/(2R,)=100 (the ratio of
length to diameter). The micro-scale FGM pipe
characteristics of size can be expressed as
I=by/[3(1—v)] where by=24 um, and /=17 um can be
obtained [8, 40]. The micro scale parameter of the
fluid takes a=4/3.

In order to verify the solving method used in
this paper, the result is compared with the results of
WANG [40]. Figure 3 shows that in the same
situation (E=1.44 GPa, pr=p,=1000 kg/m’, 1=0.38,
I=17.6, d/D=0.8, L/D=20, D=50 pm) the relationship

— Present
12 ---WANG [40]

Natural frequency/10* Hz

1 1 1 1 1
L =000 50 &0

Ul(m-s™")
Figure 3 Relationship between natural frequency and
flow velocity

between natural frequency and flow velocity
calculated by the program in this study is consistent
with the reference.

The effect of the microscale effect and micro-
fluid effect on the natural frequency and critical
velocity of the micro-scale FGM pipe is shown in
Figure 4. In Figure 4, let K=10° kPa, n=1, AT=0, 10,
20, 30 K. In Figure 4(a), let /=0, a=1. In Figure 4(b),
take /=17 um, a=1. In Figure 4(c), choose /=17 um,
a=4/3.
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Figure 4 Effect of microscale effect and micro-fluid
effect on natural frequency and critical velocity of
micro-scale FGM pipe: (a) /=0, a=1; (b) I=17 um, a=1;
(¢) =17 um, a=4/3
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Figure 4 shows that with the increase of
temperature, both of the first-order dimensionless
natural frequency and the critical dimensionless
velocity decrease. On the other hand, it can be
found from Figure 4 that with the increase of
dimensionless velocity, the first-order
dimensionless  natural  frequency  gradually
decreased to 0. The eigenvalue of the system in this
paper is a function of the liquid velocity. With the
increase of velocity, the stiffness of the system
decreases and the system stiffness disappears when
the velocity reaches a certain value (the vibrational
frequency of the system is 0). When the first-order
dimensionless vibration frequency arrives 0, the
system enters an unstable state (static buckling
instability), and the corresponding dimensionless
velocity is the critical dimensionless velocity of the
FGM pipe.

In order to research the effect of the microscale
effect and micro-fluid effect on the natural
frequency and critical velocity of the micro-scale
FGM pipe, Figures 4(a) and (b) are compared first.
Figure 4 exhibits that the dimensionless critical
velocity of the pipe considering the effect of the
microscale effect (/=17 pm, a=1) is significantly
larger than the dimensionless critical velocity of the
classical FGM pipe (/=0, a=1). In other words, the
microscale effect will significantly increase the
stability of the system. Figures (b) and (c) show that
the dimensionless critical flow velocity of the FGM
pipe considering the effect of the microscale effect
(I=17 um, a=1) is larger than the critical velocity of
the FGM pipe considering the effect of the
microscale effect and micro-fluid effect (/=17 pm,
a=4/3). In other words, the micro-fluid effect will
reduce the stability of the system. Figures 4(a) and
(c) show that the dimensionless critical velocity of
the microscale FGM pipe (=17 um, a=4/3) is
greater than the dimensionless critical velocity of
the classical FGM pipe (/=0, a=1). The calculation
according to the classical model will seriously
underestimate the stability of the system, which
causes a great influence on practical application in
engineering.

The effect of the microscale effect and
micro-fluid effect on first two natural frequencies of
the micro-scale FGM pipe is shown in Figure 5. In
Figure 5, let K=0 Pa, n=1, AT=0 K. In Figures 5(a)
and (b), let /=17 pm, a=4/3. In Figures 5(c) and (d)
take (/=0, a=1). The stability of the FGM pipe can

be divided into three situations: stable state
(Im(w)>0 and Re (w)=0); static instability
(Im(w)=0 and Re (w) have negative value);
dynamic instability (Im(w)>0 and Re (w) have
negative value).

Figures 5(a) and (b) shows that the Ist-mode
static instability occurs at u=4.466 (lst-mode
critical velocity), the 2nd-mode static instability
occurs at u=8.932 (2nd-mode critical velocity).
When the fluid velocity increases to 9.23, the first
order natural frequency and the second order
natural frequency overlap, which leads to the
coupling dynamic instability in the first and second
order modes. Figures 5(c) and (d) shows that the
Ist-mode static instability occurs at u#=3.205, the
2nd-mode static instability occurs at u=6.392. When
the fluid velocity increases to 6.55, the first order
natural frequency and the second order natural
frequency overlap, which leads to the coupling
dynamic instability in the first and second order
modes. According to the result, we can conclude
that the FGM pipe considering the effect of the
microscale effect and micro-fluid effect has higher
Ist-mode critical velocity and 2nd-mode critical
velocity (the stability of the system is higher), but
the instability pattern has not changed.

The effect of the exponent n of material
property on the natural frequency and critical
velocity of the micro-scale FGM pipe is shown in
Figure 6. In the figure, take K=10° Pa, AT=10 K,
n=0,0.1,0.5, 1, 2, 10.

Figure 6 shows that when the dimensionless
velocity is 0, the smaller the n is, the higher the

dimensionless natural frequency is. With the
increase  of  dimensionless  velocity, the
dimensionless natural frequency of system

decreases. The smaller the # is, the bigger the rate
of descent is. When the velocity reaches the critical
dimensionless velocity. The bigger the n is, the
greater the dimensionless critical velocity is. In
other words, with the increase of n, the volume
fraction of the external material increases gradually,
and the decrease rate of the dimensionless natural
frequency  decreases  gradually, but the
dimensionless critical velocity increases with it.
The effect of the elastic coefficient of the
elastic medium on the natural frequency of the
micro-scale FGM pipe is shown in Figure 7. In
Figure 7(a), let U=1 m/s, n=1, AT=0 K, 10 K, 20 K,
30 K. In Figure 7(b), let U=1 m/s, AT=10 K, n=0,
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Figure 6 Effect of exponent n of material property on
natural frequency and critical velocity of micro-scale
FGM pipe

0.1,0.5, 1, 2, 10.

It can be seen from Figure 7 that the
dimensionless vibration frequency of the system
increases with the increase of the elastic coefficient
K, and its increase trend has no significant change.
In other words, the influence of K on dimensionless
vibration frequency is almost linear in a certain

range.

The effect of the material property exponent
change on the natural frequency of the micro-scale
FGM pipe is shown in Figure 7. In the figure, let
U=1 m/s, K=10° Pa, AT=0, 10, 20, 30 K.

It can be seen from Figure 8 that the
dimensionless vibration frequency of the system
decreases with the increase of the exponent 7, and
the dimensionless vibration frequency decreases
more slowly with the increasing of n. In other
words, with the increase of n, the volume fraction
of outer material increases. The increases of the
volume fraction of outer material lead to the
decrease of the dimensionless frequency of the
system. When n increases to a certain extent, the
rate of the volume fraction change becomes slow
that makes the dimensionless natural frequencies
drop more slowly.

The effect of the outer radius change on the
natural frequency of the micro-scale FGM pipe is
shown in Figure 9. In Figure 9(a), let U=1 m/s,
K=10° Pa, AT=0, 10, 20, 30 K, n=1. In Figure 9(b),
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let U=1 m/s, K=10° Pa, AT=10 K, n=0, 0.1, 0.5, 1, 2,
10.

It can be seen from Figure 9 that the
dimensionless vibration frequency decreases with
the increase of the external radius, and the rate of
decline becomes slower with the increase of the
external radius. In other words, with the increase of
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Figure 9 Effect of outer radius change on natural
frequency of micro-scale FGM pipe: (a) Different
temperature; (b) Different exponent n

the external radius, the effect of the outer radius
change on the natural frequency of the micro-scale
FGM pipe is gradually reduced.

The effect of the different boundary conditions
on the natural frequency and critical velocity of the
micro-scale FGM pipe is shown in Figure 10. In
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Figure 10 Effect of different boundary conditions on

natural frequency and critical velocity of micro-scale

FGM pipe
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Figure 10, let K=10° Pa, n=1, AT=0 K. Figure 9
shows that the micro-scale FGM pipe with the
boundary conditions of clamped-clamped has the
highest critical velocity and it also has the highest
natural frequency at the same fluid velocity. The
stability of the micro-scale FGM pipe with the
boundary conditions of simply-clamped is higher
than the micro-scale FGM pipe with the boundary
conditions of simply-simply.

5 Conclusions

In this work, the differential equation of
micro-scale functionally graded fluid-conveying
pipes in elastic medium 1is established by
considering various factors comprehensively. Some
main conclusions are shown as follows:

1) With the increase of the temperature, the
dimensionless  natural frequency and the
dimensionless critical velocity of the system will
decrease, and the stability of the system will
decrease.

2) The scale effect of the micropipe can
improve the dimensionless critical velocity of the
system (improve the stability of the system). The
micro-fluid effect can reduce the dimensionless
critical velocity of the FGM pipe (decrease the
stability of the system). Under the condition of
considering, the scale effect and micro-fluid effect,
the dimensionless critical velocity of the FGM pipe
is higher than the dimensionless critical velocity of
the classical macroscopic model. In other words,
the effect of the scale effect and the micro-fluid
effect improve the stability of the system greatly.
With the fluid velocity increases, when the fluid
velocity reaches a certain value, the pipe enters the
first order static instability state, the fluid velocity
continues to increase and the pipe enters the second
order static instability state, and finally the FGM
pipe enters the coupled dynamic instability state
under the first mode and the second mode.

3) The dimensionless vibration frequency of
the system rises with the increase of elastic
coefficient K.

4) With the increase of the exponent n, the
volume fraction of the external material increases
gradually and the dimensionless natural frequency
of the system decreases. When n increases to a
certain value, the volume fraction will change
slowly, which leads to the dimensionless natural

frequency decrease more slowly.

5) The dimensionless vibration frequency
decreases with the increase of the external radius.
With the increase of the external radius the effect of
the outer radius change on the natural frequency of
the micro-scale FGM pipe is gradually reduced (the
rate of descent of the radius changes from 1x10°m
to 1.2x107° m; about 15 times the rate of descent of
the radius changes from 2x10°m to 2.2x10°m ).

6) The stability relation of micro-scale FGM
pipe with different boundary conditions is clamped-
clamped>simply-clamped>simply-simply.
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