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Abstract: In industrial applications involving metal and polymer sheets, the flow situation is strongly unsteady and the 
sheet temperature is a mixture of prescribed surface temperature and heat flux. Further, a proper choice of cooling liquid 
is also an important component of the analysis to achieve better outputs. In this paper, we numerically investigate 
Darcy-Forchheimer nanoliquid flows past an unsteady stretching surface by incorporating various effects, such as the 
Brownian and thermophoresis effects, Navier’s slip condition and convective thermal boundary conditions. To solve the 
governing equations, using suitable similarity transformations, the nonlinear ordinary differential equations are derived 
and the resulting coupled momentum and energy equations are numerically solved using the spectral relaxation method. 
Through the systematically numerical investigation, the important physical parameters of the present model are 
analyzed. We find that the presence of unsteadiness parameter has significant effects on velocity, temperature, 
concentration fields, the associated heat and mass transport rates. Also, an increase in inertia coefficient and porosity 
parameter causes an increase in the velocity at the boundary. 
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1 Introduction 
 

The rapid growth in electronic industry needs 
exceptional cooling technique for the modern 
devices to avoid overheating or hot spot 
occurrences. Since the conventional working fluids 
have inadequate cooling capability, the highly 
demanding cooling requirement by the industry 
could not be achieved. Therefore, nanoliquids with 

high thermal conductivities become suitable 
alternates to the conventional fluids in cooling 
technology and also play an important role in the 
enhancement of heat transfer. As a result, many 
experimental and theoretical investigations on 
various aspects of heat transfer mechanisms 
involving nanoliquids have been found in the 
literature. CHOI et al [1] performed the pioneering 
experiments and revealed that the thermal 
conductivity of the liquid can be increased by 
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adding nano-sized particles in the base liquid called 
as nanoliquid. Later, BUONGIORNO [2] developed 
a model for convective transport of nanoliquid by 
taking Brownian diffusion and thermophoresis 
effects. Using the Buongiorno’s model, KHAN et al 
[3] developed a new mathematical model for 
boundary layer flow of a nanoliquid due to 
stretching sheet. Using the model suggested by 
KHAN et al [3], several investigations have been 
carried out on the fluid flow and heat transfer from 
stretching sheet by considering various effects. 
Among them, the notable studies include NIELD  
et al [4], MUSTAFA et al [5], BACHOK et al [6], 
RAMESH et al [7]. 
    Convective flow and associated heat transport 
through porous medium have important 
applications in geophysics, heat exchanger design 
and geothermal energy systems. Also, the 
applications extend to ground water system, 
petroleum resources and energy storage unit. When 
modeling the flow in porous media, Darcy’s law is 
one of the most popular models. However, it is 
generally recognized that Darcy’s model may over- 
predict the convective flows when inertial drag and 
vorticity diffusion coefficient are taken into account. 
The extension of classical Darcy model includes 
inertial drag and vorticity diffusion. To study the 
inertial drag and vorticity diffusion, 
FORCHHEIMER [8] incorporated the square 
velocity factor. MUSKAT [9] named Forchheimer 
term and concluded that the inclusion of 
Forchheimer term is valid for high Reynolds 
number. PAL et al [10] studied the hydromagnetic 
Darcy-Forchheimer flow for variable fluid property. 
Using HAM method, HAYAT et al [11] obtained the 
analytical solution for Darcy-Forchheimer flow of 
Maxwell fluid by considering the Cattaneo-Christov 
theory. VISHNU GANESH et al [12] examined the 
viscous and ohmic dissipations, and second order 
slip effects on Darcy–Forchheimer flow of 
nanoliquid past a stretching/shrinking surface. 
Mathematical model for Darcy-Forchheimer flow 
of Maxwell liquid with magnetic field and 
convective boundary condition are given by 
ADILSADIQ [13]. Using Keller-box method, 
ISHAK et al [14] numerically analyzed the 
magnetohydrodynamic flow and heat transfer 
performances over a stretching cylinder. Mixed 
convective flow and the associated heat and mass 

transfer characteristics over a vertical sheet 
saturated in a porous medium have been 
investigated by PAL et al [15] by considering 
various effects such as Soret, Dufour, thermal 
radiation and first order chemical reaction. Recently 
HAYAT et al [16−21] performed detailed analysis in 
this direction by considering different effects. 
    The above mentioned investigations are 
focused only on the flow and thermal analysis for 
steady state. However, few essential engineering 
application requires the knowledge of time 
dependent factor (see MAITY [22], ZHANG et al 
[23], NAVEED et al [24], OYELAKIN et al [25], 
MANSUR et al [26, 27]). In the study of 
micro/nano mechanical systems, the flow behavior 
does not obey the no-slip boundary condition for 
cases such as polymer solutions, foams and 
emulsions. Realizing this important aspect, 
NAVIER [28] derived a new condition known as 
velocity slip condition at the solid-liquid interface 
and it is an important condition in dealing with such 
fluids. In addition, many heat transfer problems 
require the implementation of the convective 
boundary condition due to time dependent flow. 
AZIZ [29] described the importance of Biot number 
in the heat transport characteristic. Further, 
MAKINDE et al [30] examined the convective 
condition on boundary layer flow of a nanofluid 
past a stretching sheet. Recently, RAMESH et al 
[31, 32] reported the applicability of convective 
boundary condition for flow over a flat plate as well 
as a stretching sheet. 
    Based on the careful and thorough literature 
survey stated above [1−32], it has been found that 
the effects of unsteadiness and convective thermal 
boundary conditions on the nanoliquid flow over a 
stretching sheet have not been attempted in the 
literature. In spite of the important applications, the 
combined influences of unsteadiness and 
convective thermal boundary conditions on Darcy- 
Forchheimer flow of a nanoliquid over a stretching 
sheet remains poorly understood in the literature, 
which motivates the present investigation. In 
addition, we have also included the uniform heat 
source/sink, Brownian and thermophoresis effects 
where the flow is generated due to linear stretched 
surface. The model equations are numerically 
solved using spectral relaxation method and the key 
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parameters are analyzed through graphs and tables. 
Further, the present results are validated with the 
existing similar investigations and found good 
agreement. 
    The remaining part of the manuscript is 
structured as follows. The mathematical 
formulation and model equations for nanoliquid 
flow is presented in Section 2. In Section 3, 
numerical methodology and validation are 
discussed. In Section 4, the detailed analysis of the 
results is given. Summary and conclusion are 
presented in Section 5.  
 
2 Mathematical model  
 
    The unsteady two-dimensional flow of an 
electrically conducting nanoliquid is shown in 
Figure 1. The incompressible Newtonian liquid 
saturates the porous medium characterizing Darcy- 
Forchheimer relation. Further, the flow analysis 
consists of Brownian motion, thermophoresis and 
uniform heat source/sink. The time dependent 
uniform magnetic field B(t) is applied along the y− 
direction. If t is positive, it is assumed that the sheet 

velocity is ,w
HxU
t

  where H is the positive 

constant. Further, it is assumed that the sheet 
surface is heated by a hot liquid having temperature 
Tf and the coefficient of heat transfer is hf. 
 

 
Figure 1 Physical configuration and coordinate system 
 
    Employing the above mentioned assumptions, 
the non-linear partial differential equations 
governing the unsteady flow of mass, momentum, 
heat and nanoparticles concentration are (BACHOK 
et al [6] and VISHNU GANESH et al [12])  

0u v
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where u and v represent the velocity component in 
the x- and y- direction, respectively. The relevant 
parameters are the kinematic viscosity , the 
electrical conductivity σ, the density of the base 
fluid ρ, the time-dependent permeability of the 
porous medium K(t), the non-uniform inertia 

coefficient 0.5 ,
cbF

xK
  the drag coefficient cb, the 

thermal diffusivity α, the heat capacity of 
nanoparticles ρpcp, the heat capacity of base fluid 
ρfcf, the Brownian diffusivity DB, the 
thermophoresis diffusivity DT, and the heat 
generation or absorption coefficient Q0. The 
appropriate boundary conditions are  

w slip f f

w

0,  ,  ( ),  

  at  0;

Tt u U U k h T T
y

C C y


      


 

 

0,  0,  ,  asu v T T C C y            (5) 
 
where slip 1 ,uU N

y
 




 and N1 ,  μ  and k=k0 t0 . 5 

indicate the velocity slip factor, the dynamic 
viscosity and the thermal conductivity, respectively. 
    For computational analysis, the partial 
differential Eqs. (1) to (4) can be converted into 
ordinary differential equations by using the 
following similarity variables as suggested by 
MANSUR and ISHAK [26]:  

0.5
0.5( ),  ( ) ,  Ax f t y

t
       
 

 

f f
( ) ,  ( )T T C C

T T C T
    

 

 
 

 
                (6) 

 
    In the above relation, η and ψ are the similarity 
variable and the similarity function, respectively, 

which can be defined by ,u
y





.v
x


 


 Further, 

the variables T, C, Tf, Cf, T∞, and C∞ indicate the 
temperature of the liquid, the nanoparticles 
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concentration, the uniform temperature, uniform 
nanoparticles concentration, the temperature and 
nanoparticles concentration far from the surface, 
respectively. 
    To obtain the dynamical solutions of fluid 
motion, we chose the velocity slip, time dependent 
transverse magnetic field and permeability of 
porous medium as  

0.5 2
2 0

1 2 ,  ( ) ,  ( )
Bt KN N B t K t
t t

    
 

         (7) 
 
    Using Eqs. (6) and (7), we get the following 
non-dimension velocity, temperature and 
concentration equations: 
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    Also, the boundary conditions, given in Eq. (5), 
reduce to the following form:  

2
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    The dimensionless parameters appearing in 
this analysis are the unsteady term A, the magnetic 
parameter M, the porosity parameter λ, the inertia 
coefficient Fr, the Prandtl number Pr, the Brownian 
motion parameter Nb, the thermoporosis parameter 
Nt, the heat source (Q>0) or heat sink (Q<0), the 
Lewis number Le, the velocity slip parameter δ, and 
the Biot number Bi, which are defined as  
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    The physical expression for the skin friction 
coefficient Cf, the local Nusselt number Nu and the 
local Sherwood number Sh can be defined as  

w w m
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where the surface shear stress τw, surface heat flux 
qw and surface mass flux qw can be defined in the 
following expressions:  
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    After applying the similarity transformations 
given in Eq. (6), the following dimensionless 
expressions for skin friction, local Nusselt and 
Sherwood numbers are obtained:  

1/2 1/2
f (0),  (0),  x xC Re Af NuRe A      

1/2 (0)xShRe A    
 
where w

x
U x

Re


  is the Reynolds number. 

    In the absence of the parameters M, λ, Fr, δ, Q, 
Bi and A, the present system of governing      
Eqs. (8) to (11) reduces to those of KHAN and POP 
[3]. Also in the absence of magnetic field, heat 
source/sink, slip parameter, porosity parameter and 
inertial coefficient, the present model equations 
reduce to those of MANSUR and ISHAK [26]. 
Hence, in the absence of Darcy-Forchheimer 
relation and Navier’s slip condition, the boundary 
layer flow and energy transform regular nanoliquid 
problem degenerate. For this analysis, numerical 
simulation for velocity, temperature and 
concentration curves is obtained. 
 
3 Numerical method and validation 
 
    The governing Eqs. (8) to (10) are highly 
non-linear and coupled ordinary differential 
equations and hence it is not amenable to analytical 
solution. Therefore, the governing ordinary 
differential equations are solved using spectral 
relaxation method. To apply this method, first we 

set d '
d

f f g

  and the governing Eqs. (8) to (10) 

reduce to 
 

' ,f g  
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    Also, the corresponding initial and boundary 
conditions become 
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    The spectral relaxation iteration procedure for 
the present problem can be written as 
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    Since η varies from η0 to η∞, let 2 1
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be the domain mapped into the interval [1, −1] and 

grid points are defined as cos ,j
j
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 where N 

represents the number of grid points and j=1, 2, 
3, … , N. Now applying the Chebyshev 
pseudo-spectral method to the above equations, the 
following iterative equations are obtained: 
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    In the above expressions, I and D represent the 
identity and the differentiation matrix. The above 
matrix system of equations are solved iteratively 
with proper initial guesses of f0(η), g0(η), θ0(η) and 
0(η). To solve these equations, an in-house code 
has been developed in MATLAB program, and is 
successfully validated with the standard benchmark 
solutions before obtaining the simulations. 
    For the validation of present numerical results, 
the local Nusselt numbers are obtained for different 
values of Nb and Le in the absence of Fr, δ, λ and Q 
and are compared with the results of MANSUR   
et al [27]. An examination of the local Nusselt 
number, −θ′(0), between the present simulation and 
that of MANSUR et al [27], exhibited in Table 1, 
demonstrates an excellent comparison and 
accordingly gives confidence that the present 
numerical outcomes are precise and accurate. 
 
Table 1 Comparison of present local Nusselt number 
−θ′(0) with that of MANSUR et al [27] in the absence of 
Fr, δ, λ, Q with A=1, Pr=6.8 

Nb Le 
−θ′(0) 

MANSUR et al [27] Present 

0.1 2 0.094966 0.0949663 

0.3 2 0.091650 0.0916500 

0.5 2 0.084814 0.0848135 

0.5 3 0.079753 0.0797533 

0.5 5 0.071002 0.0710020 

0.5 10 0.056647 0.0566468 

 
4 Results and discussion 
 
    In this section, the salient features of the flow, 
heat and mass transfer rates are discussed 
elaborately for various parameters of the study. The 
present analysis consists of eleven parameters, 
namely unsteady parameter (A), magnetic parameter 
(M), porosity parameter (λ), inertia coefficient (Fr), 
Prandtl number (Pr), Brownian motion parameter 
(Nb), thermoporosis parameter (Nt), heat source/ 
sink parameter (Q), Lewis number (Le), velocity 
slip parameter (δ) and Biot number (Bi). The 
qualitative as well as quantitative effects of each of 
these parameters are obtained through the 
systematic numerical simulations. In particular, the 
influences of the above parameters on velocity, 
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temperature and concentration profiles are analyzed. 
However, the quantitative variations, such as skin 
friction (f″(0)), heat transfer (θ′(0)) and mass 
transfer (′(0)) with respect to the above parameter 
combinations are discussed through Table 2. 
    Figure 2 exhibits the effects of velocity slip 
parameter on the velocity field by fixing other 
parameters. It reveals that larger value of slip 
parameter (δ) corresponds to reduction in the 
 
Table 2 Values of −f″(0), −θ′(0) and −′(0) for different 
governing physical parameters 

Parameter −f″(0) −θ′(0) −′(0) 
 0.0 0.580563935 0.295802097 0.213306347 

A 0.2 0.587391995 0.303092279 0.215707487 

 0.4 0.593629371 0.309459234 0.218648867 

 0.2 0.587391995 0.159591136 0.306859697 

Bi 0.5 0.587391995 0.303092279 0.215707487 

 0.8 0.587391995 0.388995578 0.162281069 

 0.3 0.586754092 0.303108189 0.215717591 

Fr 0.5 0.587391995 0.303092279 0.215707487 

 0.7 0.588024463 0.303076509 0.215697488 

 0.0 0.561338061 0.303830280 0.216410663 

λ 0.2 0.575083816 0.303439545 0.216028570 

 0.4 0.587391995 0.303092279 0.215707487 

 0.0 1.477882010 0.312231341 0.220200233 

δ 0.5 0.837016964 0.305857396 0.216882451 

 1.0 0.587391995 0.303092279 0.215707487 

 0.1 0.587391995 0.313630077 0.008817670 

Nb 0.2 0.587391995 0.303092279 0.215707487 

 0.3 0.587391995 0.291837709 0.291135452 

 0.1 0.587391995 0.306317715 0.310997570 

Nt 0.2 0.587391995 0.303092279 0.215707487 

 0.3 0.587391995 0.299711455 0.125168928 

 0.5 0.587391995 0.303092279 0.215707487 

Le 1.0 0.587391995 0.293570624 0.430871666 

 2.0 0.587391995 0.282363450 0.725232271 

 1.0 0.587391995 0.246272925 0.279301733 

Pr 2.0 0.587391995 0.283218656 0.239188326 

 3.0 0.587391995 0.303092279 0.215707487 

 −0.05 0.587391995 0.303092279 0.215707487 

Q 0.0 0.587391995 0.313589975 0.200774963 

 0.05 0.587391995 0.322556164 0.187977845 

 1.0 0.476537547 0.306284022 0.219295496 

M 1.5 0.587391995 0.303092279 0.215707487 

 2.0 0.659449775 0.301127133 0.214226219 

 

 
Figure 2 Effects of δ on velocity profiles f′ 
 
velocity field. Physically, it can be interpreted that, 
for higher values of δ, the resistance between the 
nanoliquid and sheet gets diminished and 
nanoliquid acts like inviscid liquid which leads to a 
complete slip. It is important to mention that the 
consideration of slip condition is more appropriate 
for the kind of fluids considered in the analysis and 
no-slip condition may lead to physically incorrect 
results. 
    The influence of time-dependent parameter on 
velocity, temperature and concentration fields is 
displayed in Figure 3. A careful observation of the 
result reveals that higher values of unsteadiness 
parameter reduce the fluid velocity. Physically, it 
can be interpreted that the velocity of liquid along 
the sheet diminishes with an expansion in the 
unsteadiness parameter due to decrease in the 
thickness of the momentum boundary layer. 
    Also, the thermal and solutal profiles 
demonstrate that the temperature and concentration 
profiles diminish significantly as the unsteadiness  
 

 
Figure 3 Effects of A on velocity, temperature and 
concentration profiles f′, θ,  
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parameter increases. The rate of heat transfer (from 
the sheet to the liquid) diminishes with expanding 
estimations of A. It is observed that less heat is 
exchanged from the sheet to the liquid when the 
unsteadiness parameter increases and consequently, 
the temperature profiles θ(η) diminishes. Since the 
liquid flow is caused exclusively by the extending 
sheet and the sheet surface temperature is higher 
than the free stream temperature, the liquid velocity 
and temperature diminish as A increases. Note that 
the rate of cooling with higher values of 
unsteadiness parameter is significantly faster than 
that with lower unsteadiness parameter values. 
    Figure 4 represents the variation of porosity 
parameter on velocity profiles. A general 
observation of Figure 4 reveals that as λ increases, 
the velocity and related boundary layer thickness 
decrease. This is due to the resistive force employed 
by the porous medium. For large porousness, i.e. for 
diminishing λ, the liquid gets more space to flow 
and as a result the velocity augments. However, the 
change in velocity is the maximum for close to the 
surface and far from the surface, and this change is 
little or zero. The nearness of the permeable 
medium makes higher confinement for the liquid, 
which decreases the liquid velocity. The momentum 
layer thickness diminishes when λ increases. 
 

 
Figure 4 Effects of λ on velocity profiles f′ 
 
    Figures 5 and 6 are presented to analyze the 
behavior of temperature profiles with respect to 
Biot number and heat source/sink parameter.  
Figure 5 demonstrates that the surface temperature 
increases with an increase in Biot number. It is 
noted that for higher values of Biot number, 
convective heating increases and isothermal surface 
(i.e. θ(0)=1) is reproduced as Bi→∞. Physically, 

this indicates that larger values of Biot number raise 
the resistance of the internal thermal surface than 
the resistance of boundary layer surface. The 
variation of temperature profiles for distinct values 
of heat source/sink parameter is displayed in  
Figure 6. From the figure, it is observed that the 
thermal boundary layer generates the energy and 
this causes the temperature increases with an 
increase of heat source parameter, whereas an 
opposite result can be found for heat sink parameter. 
For Q is positive value (heat source), it can be noted 
that the thermal layer produces energy and this 
causes the temperature in the thermal layer 
increases with an increment in Q. However, the 
negative value of Q (heat sink) prompts a diminish 
in the thermal layer. Also, Q is zero, indicating that 
there is non-appearance of heat source/sink 
parameter. 
    Figure 7 displays the effect of Brownian 
motion and thermoporosis parameter on 
temperature and concentration fields. It reveals that 
increasing Nb and Nt simultaneously, the thickness 
of the thermal and solutal boundary layer is 
     

  
Figure 5 Effects of Bi on temperature profiles θ 
 

  
Figure 6 Effects of Q on temperature profiles θ 
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Figure 7 Effects of Nb, Nt on temperature and 
concentration profiles θ,  
 
enhanced. The part of thermophoretic force is with 
the end goal that the nanoparticles close to the hot 
boundary are being pushed towards the cold liquid 
at the ambient. Accordingly, it can be anticipated 
that the thermal layer will end up noticeably thicker 
in the nearness of thermophoretic impact. 
    Figures 8 and 9 demonstrate the effects of 
Lewis number, Brownian motion parameter and 
thermoporosis parameter on concentration fields. 
The effect of Lewis number on concentration 
distribution is presented in Figure 8. From the 
definition, Lewis number is dependent on Brownian 
diffusion coefficient. As regards to the influence of 
Lewis number, it has been noted that larger values 
of Lewis number waken the Brownian diffusion 
coefficient, which in turn reduces the concentration 
level. Further, from Figure 7, it is witnessed that 
concentration distribution is accelerating function 
of both Brownian motion parameter and 
thermoporosis parameter. 
    The variation of −f″(0) with respect to M, for 
 

 
Figure 8 Effects of Le on concentration profiles 

 

 
Figure 9 Variation of M and −f″(0) with A 
 
distinct values of A is depicted in Figure 9. An 
increase in the unsteadiness parameter, A, leads to 
enhancing the −f″(0). It is observed that for 
different values of M, we get negative values of 
f″(0). Negative value indicates that surface exerts a 
drag force on the liquid and this happens when the 
sheet is stretching. Similar phenomenon can be 
observed for the variation of −f″(0) with respect to 
A, for distinct values of Fr, λ displayed in Figure 10. 
The variations of friction factor, Nusselt and 
Sherwood numbers with different physical 
parameters are displayed in Table 2. 
 

 
Figure 10 Variation of A and −f″(0) with Fr, λ 
 
    It is noted that skin friction increases with A, 
Fr, λ and decreases with δ, M. Further, we observed 
the increase of Bi, Nb, Nt, Le, Pr and Q have no 
variation in −f″(0), which is in good agreement with 
Eq. (8). From this table, we also noted that the local 
Nusselt number reduces for Fr, λ, δ, Nb, Nt, Le, M 
and enhances for A, Bi, Pr, Q. The same 
observation can be noted for local Sherwood 
number except for Bi, Nb, Pr, Q. 
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5 Conclusions 
 
    The present study analyzes the unsteady 
Darcy-Forchheimer flow of nanoliquid past an 
unsteady stretching surface in the presence of 
porous medium, magnetic field and heat source/sink 
parameter. Based on the detailed numerical 
simulations, the following conclusions are obtained. 
    The unsteadiness parameter has a strong role 
in controlling the flow pattern, thermal and 
concentration distributions. An increase in 
unsteadiness parameter decays the velocity, 
temperature and concentration distribution of the 
flow. Friction factor can be enhanced for larger 
values of the inertia coefficient and porosity 
parameter. The thickness of momentum boundary 
layer decreases due to the increase of velocity slip 
parameter. The fluid temperature profile increases 
rapidly as the Biot number increases. Simultaneous 
increase in the Brownian motion and thermoporosis 
parameters enhanced both temperature and 
concentration profiles. At larger values of Lewis 
number, the concentration distribution reduces. For 
negative value of Q, the temperature profile 
decreases and this reveals that heat sink parameter 
is superior for cooling of the stretching sheet. 
    The present study made a pioneering attempt 
to analyze the important effects of unsteadiness, 
Navier slip and convective thermal boundary 
conditions on the nanoliquid flow over a stretching 
sheet. The results of present study can be utilized in 
establishing a basic understanding of these effects 
in the industrial applications that include both metal 
and polymer sheets. 
 
Nomenclature 
A Unsteadiness  parameter 
B(t) Time-dependent uniform magnetic field, 

kg/(s2∙A) 
Bi Biot number 
Cf Skin friction 
cp Specific heat, m2/s2 
C Nanoparticle volume fraction, kg/m3  
DB Brownian diffusion coefficient, m2/s 
DT Thermophoresis diffusion coefficient, m2/s 
F Non-uniform inertia coefficient 
Fr Inertia coefficient 
K(t)  Time-dependent permeability of porous

medium 
M Magnetic parameter 
N1 Velocity slip factor, m 
Nb Brownian motion parameter 
Nt Thermophoresis parameter 
Nu Local Nusselt number 
Le Lewis number 
Pr Prandtl number 
Q0 Heat generation/absorption coefficient 
Q Heat source/sink parameter 
Sh Local Sherwood number 
t Time, s 
T Temperature of fluid, K 
Tw Temperature at wall, K 
T∞ Ambient fluid temperature, K 
u, v Velocity components  along x- and y-

directions, m/s 
  
Greek symbols 
Uw Sheet velocity 
  Kinematic viscosity, m2/s 
 Dimensionless concentration 
ρf Density of the base fluid, kg/s3 
λ Porosity parameter 
δ Velocity slip parameter 
θ Dimensionless temperature 
η Similarity variable 
α Thermal diffusivity, m2/s 
τw Wall shearing stress, kg/(m∙s2) 
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中文导读 
 

谱松弛法研究时变 Darcy-Forchheimer 流体的 Navier 滑动条件 
 
摘要：在金属和聚合物薄片的工业应用中，流动情况非常不稳定，并且薄片温度由设定的表面温度和

热通量共同决定。此外，合理选择冷却液对实验结果也十分重要。本研究中，结合了各种效应(如布

朗效应、热泳效应、Navier 滑动条件和对流边界条件)，对流过不稳定拉伸片表面的 Darcy-Forchheimer
流体进行了数值分析。为了求解控制方程，使用了适当的相似变换，导出了非线性常微分方程，并使

用谱松弛法对得到的耦合动量和能量方程进行了数值求解。通过系统的数值求解，分析了现有模型中

的重要物理参数。发现不稳定参数的存在对速度、温度和浓度场以及相关的热量和质量传输速率具有

显着影响。同时，增大惯性系数和孔隙率可加快边界处的速度。 
 
关键词：Darcy-Forchheimer 流体；纳米流体；Navier 滑动；对流边界条件；数值解 


