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Abstract: The nonlinear Baker failure criterion is introduced into the upper-bound limit analysis to examine the face 
stability of a shallow tunnel. The tunnel face under the ultimate limit state is analyzed from the perspective of energy 
balance. The work rates of external forces and internal energy dissipation are calculated. An analytical solution of 
necessary face pressures is derived. The optimal upper-bound solution of the face pressures is obtained by optimization. 
The results show that the three dimensionless parameters A, T, n of nonlinear Baker failure criterion have different 
effects on the necessary face pressures and the pattern failure mechanisms ahead of tunnel face. A is the most important 
one; n takes the second place, and T is the least one. The computed necessary face pressures are nonlinearly increasing 
when A is reduced. Combined with the actual monitoring data of Taxia tunnel, the calculation results in this paper is 
verified. It is suggested that the tunnel face supports should be strengthened timely in soft rocks to prevent the 
occurrence of face collapse. 
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1 Introduction 
 

In tunnel excavations, the initial stress balance 
is disturbed in rocks and soils. Stress adjustment 
leads to stress concentrations around the tunnel face. 
It is very easy to cause great surface settlements and 
even face collapse. Therefore, to determine 
necessary face pressures has become a key problem 
in the analysis of tunnel face stability. The research 
of tunnel face stability has important theoretical 
value and engineering significance. 

At present, the research methods of tunnel face 
stability mainly include limit equilibrium method, 
slip line method, model test, numerical simulation, 

limit analysis method and so on [1−5]. Compared 
with other methods, the calculation process of limit 
analysis is simple, fast, and the calculation results 
are more accurate. Therefore, it is widely used in 
the analysis of tunnel stability problems in recent 
years. Sloving the pressure of surrounding rock 
based on nonlinear criterion and limit analysis 
method has been applied by many scholars. ABID 
et al [6] investigated the influence of spatial 
variability on the undrained stability of an unlined 
circular tunnel using adaptive random finite 
element limit analysis. DANIEL et al [7] studied the 
stability of a square tunnel in undrained clay with a 
rigid block mechanism by means of limit analysis 
finite element method. 
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KENTARO et al [8] solved the stability of dual 
circular tunnels in clay under overload loads. The 
center distance of dual circular tunnel was taken as 
a new parameter, and the ultimate additional load 
was obtained by the limit analysis method. XU et al 
[9] derived the expressions of required 
reinforcement strength and the stability factor under 
different distribution patterns within the framework 
of limit analysis and the generalized tangent 
technique from the energy balance equations. 
SALVADOR et al [10] structured a recent rotational 
face collapse mechanism based on upper-bound 
limit analysis, which can predict the critical face 
pressures and the type of collapse. 
    The upper bound theorem of limit analysis was 
adopted by NIMA et al [11] to calculate the face 
pressures with linear variations of cohesions. The 
factor of safety against the tunnel face instability 
was also calculated using the strength reduction 
technique and the upper bound theorem. GUAN  
et al [12] studied the effect of many factors on the 
collapse pressures of underground chambers with 
the limit analysis upper bound theorem. LI et al  
[13] used limit analysis to study the stability of 
cracks and water pressure on soil-wall system. LI  
et al [14] used kinematics theorem of limit analysis 
and Newmark method to analyze seismic 
displacement of rock slope. The results of 
calculations were given for a series of actual 
seismic waves and compared with the results 
calculated from empirical formula. XU et al [15] 
considered the combined effect of soil strength 
nonlinearity and shear dilatancy, the seismic 
stability of three-dimensional secondary slope was 
analyzed. Based on the limit analysis method, the 
external loading rate, seismic force and internal 
energy dissipation of the slope were calculated, and 
then the critical height of the slope was deduced. 
PAN et al [16] estimated the safety factor of a 
tunnel face with a non-circular section using the 
upper-bound theorem in combination with the 
strength reduction technique, in which the effect of 
the cross-sectional shape on safety factors was 
discussed. PAN et al [17] investigated face stability 
of a circular tunnel in weak rock masses under a 
three-dimensional steady-state seepage flow based 
on the kinematical approach of limit analysis. 
    MEHDI et al [18] studied stress behavior of 
shallow tunnels under simultaneous non-uniform 
surface traction and symmetric gravity loading by 

using a boundary element method. LI et al [19] set 
up active and passive failure mechanisms based on 
limit analysis method, and put forward a 
probabilistic analysis method for the stability of 
metro tunnel face. JAGDISH et al [20] studied the 
stability of a long circular tunnel in a cohesive 
frictional soil medium in the presence of horizontal 
pseudo-static seismic forces. SEUNG et al [21] 
investigated the effects of tunnel diameters, 
cover-to-diameter ratios, lateral earth pressures 
coefficients, and soil strength parameters on the 
tunnel stability by means of three-dimensional 
finite element simulations. ZHANG et al [22] 
analyzed the face stability of a circular tunnel 
considering a series of tunnel diameter-to-depth 
ratios and soil properties by using three- 
dimensional numerical simulations. The limit 
support pressures on the tunnel face and the failure 
zone in front of the tunnel face were both obtained 
from the numerical simulations. YANG et al [23] 
developed a two-layer model and upper bound 
solutions for the shape of collapse block in 
rectangular tunnel subjected to seepage pressure 
with limit analysis theory and Hoek-Brown failure 
criterion, and then the reliability based analysis was 
performed. 
    The above study uses upper bound theorem of 
the limit analysis to study the stability of the tunnel 
incorporating the Mohr-Coulomb failure criterion 
or the Hoek-Brown failure criterion. However, 
Mohr-Coulomb failure criterion and Hoek-Brown 
failure criterion have some limitations. A large 
number of tests show that the material envelope of 
rock and soil is nonlinear [24]. The nonlinear 
failure criterion proposed by Baker is a generalized 
strength criterion for rock and soil mass. The 
conventional Mohr-Coulomb strength criterion, 
Griffith strength criterion and Hoek-Brown strength 
criterion are all its special cases. In order to expand 
the scope of this paper, the nonlinear Baker failure 
criterion is used with the limit analysis method to 
study the tunnel face stability. 
 
2 Nonlinear Baker failure criterion and 

tangent line technique 
 
    Based on the results of the triaxial tests and 
previous experimental researches, a generalized 
rock strength criterion is proposed by BAKER [25]. 
The nonlinear strength criteria proposed by Baker 



J. Cent. South Univ. (2019) 26: 1696−1705 

 

1698

 

are given as follows:  
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where τ represents shear stresses; Pa indicates 
atmospheric pressures; σn indicates normal stresses; 
A, n and T are related parameters which can be 
determined by experiments. 
    JIANG et al [26] reported that A is a scale 
parameter that affects the size of shear strength; n 
represents the order of failure criterion curves and 
affects the curvature of strength envelope, 
determined by the shear strength of rock masses. T 
is a transformation parameter and controls the 
intersection point between strength envelope and 
the σn axis. The ranges of A, n and T are: A>0, 
1/2≤n≤1, T≥0, A, n and T can be determined 
through the triaxial tests of rock masses [27]. When 
n=1, A=tanφ, a/( tan ),T c P    Eq. (1) is reduced 
to the Mohr-Coulomb strength criterion; when 
n=0.5, a2 ,A t P  T=t/Pa, it is reduced to the 
Griffith strength criterion. 
    The tangential line method can be applied to 
the nonlinear Baker strength criterion [28], as 
shown in Figure 1. 
 

 
Figure 1 Strength curve of nonlinear Baker failure 
criterion 
 
    For any point M on the envelope, the 
expression of tangential line is given as follows:  

t t n= tanc                              (2) 
 
where ct and φt are the corresponding cohesion and 
internal friction angle at the M point, which can be 
determined by Eq. (3) and Eq. (4).  
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    Equation (4) shows the relation of several 
nonlinear parameters under the Baker strength 
criterion. 
 
3 Upper limit theorem of limit analysis 
 
    The upper bound theorem requires that the 
internal energy dissipation is not less than the 
external power for a permissible failure mechanism, 
which can be expressed by following formula 
[29−32]:  

d ds dij ij i i i iV V V
V T v F v V                    (5) 

 
    In Eq. (5), S and V are the surface area and the 
volume of the failure mechanism, respectively; Ti is 
the surface forces; Fi is the volume forces; σij is the 
stress field associated with Fi and Ti; vi is the 
allowable velocity field; ij  is a strain rate field 
compatible with vi. For tunnel face stability, by 
equating the work rate of external forces, including 
the gravity and face supporting pressures, to the 
internal energy dissipation, the necessary face 
pressures can be solved. 
 
4 Construction of failure mode 
 
    A double logarithmic spiral failure mode used 
by MOLLON et al [33] and ZHANG et al [34] has 
been proved to be applicable to the shallow tunnel 
face stability. In this paper, the active failure mode 
of tunnel face constructed by the double logarithmic 
spirals is shown in Figure 2. C represents the depth 
of the tunnel, and D is the diameter of the tunnel. 
 

 
Figure 2 Failure mode of shallow tunnel face 
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AB is the face of tunnel. The failure mechanism is 
composed of two logarithmic spiral lines AE and 
BE; ra and rb represent the length of OA and OB, 
respectively. O is the rotational center and ω is the 
constant angular velocity. The two logarithmic 
spiral lines intersect at the point E. The angles of 
OA, OB, OE and vertical direction are θ1, θ2, θ3, 
respectively. The face support is taken as uniformly 
distributed loads, denoted by σ0. 
    The logarithmic spirals AE and BE are defined 
as follows:  

 1 a 1 texp tanr r                          (6) 
 

 2 b 2 texp tanr r                          (7) 
 
    According to the geometric relation, the next 
formulas can be obtained.  
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where ra and rb are functions of θ1 and θ2; θ3 is 
function of θ1 and θ2. 
 
5 Calculation process 
 
5.1 Work rate of gravity 
    In order to compute the work rate of the 
gravity, the failure mode is divided into two parts, 
BAF and BFE, respectively, as shown in Figure 2. 
    In the regional OAF, the external work rate of 
the gravity can be calculated with the following 
form:  

 2

1

3
a 1 1 2d sin ,OFAW Av r f




               (11) 

 
    The expression of f1(θ1, θ2) is:  

1 1 2 1 t( , ) exp(3 tan )f       
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    The work rate of gravity in the region OAB is 
expressed as:  

 2
a b 2 1 2,OABW r r f                      (13) 

 
in which the expression of the function f2(θ1, θ2) is: 

   2 1 2 2 1 2
1, sin sin
3

f                     (14) 
 
    The work rate of the gravity of the region BAF 
is:  

1 OFA OABW W W                          (15) 
 
    The gravity work rate in the region OBE is as 
follows:  

 3
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where the expression of f3(θ2, θ3) is:  
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    The work rate of gravity in the region OFE is 
as follows:  
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where the expression of f4(θ2, θ3) is:  
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      2
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    Thus, the work rate of gravity of the region 
BFE can be expressed as follows:  

2 OFE OBEW W W                          (20) 
 
    The work rate of the gravity of the whole 
failure mode is the sum of two parts of BAF and 
BFE:  

1 2W W W                              (21) 
 
5.2 Work rate of face supporting pressures 
    The face supporting pressures σ0 can be 
simplified into uniformly distributed, and the 
velocities in front of the face at failure in different 
points are not the same. The corresponding work 
rate can be calculated by  

 2
0 a 5 1 2,P r f                          (22) 

 
where the expression of f5(θ1, θ2) is as follows:  
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5.3 Internal energy dissipation 
    Internal energy loss occurs at two failure 
surface AE and BE. The internal energy loss on the 
failure surfaces BE and AE can be calculated by  
Eq. (24) and the Eq. (25), respectively.  

   3
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t 2 t t b 6 2 3

t

d cos ,
cosBE
rD c r c r f
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    The expressions of f6(θ2, θ3) and f7(θ1, θ3) are 
expressed as:  

    6 2 3 3 2 t
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1, exp 2 tan 1
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    The total internal energy loss of the failure 
mode is computed by:  

AE BED D D                            (28) 
 
5.4 Solving face supporting pressures 
    By equating the external work rate to the total 
internal energy dissipation, one obtains:  
D W P                               (29)  
    Substituting Eqs. (21), (22) and Eq. (28) into 
Eq. (29) leads to the expression of the face 
supporting pressures as follows:  

3 2 3
0 a 1 4 a b 2 b 3[ ( )r f f r r f r f         

    2 2 2
t b 6 a 7 a 5( )] /( )c r f r f r f                 (30)  

where f1−f7 are functions of θ1 and θ2, so the face 
pressure is also a function of θ1, θ2 and φt. The 
critical face pressure can be obtained by 
optimization with respect to θ1, θ2 and φt. 
 
5.5 Determination of constraint conditions 
    In order to obtain the maximum value of the 
face pressures, the optimization should be done 
under certain constraints regarding to physical and 
geometric parameters. To sum up, the constraints 
can be determined as follows:  
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    Combined with the upper bound theorem, the 
optimal solution is solved by the sequence two 
programming algorithm using the Matlab 
optimization tool. 
 
6 Numerical simulation and comparisons 
 
    When n=1, A=tanφ, a/( tan ),T c P    Eq. (1) is 
reduced to the Mohr-Coulomb strength criterion. In 
this paper, five groups of c and φ are obtained by 
n=1. According to this relation, the parameters A 
and T in the nonlinear Baker failure criterion are 
calculated. The values of face pressures are 
calculated for these two criteria. The numerical 
simulation of tunnel excavation is carried out by 
using Plaxis 3D. The results of Plaxis 3D were used 
as a reference item to compare the other two sets of 
data. The comparisons between the linear M-C 
criterion, the nonlinear Baker criterion and 
numerical simulations are shown in Table 1. It is 
seen that these two failure criteria give almost the 
same results. And the results of nonlinear Baker 
criterion are closer to the result of the Plaxis 3D. 
The comparison results verify the proposed method. 
It also shows that the linear Mohr-Coulomb failure 
criterion is a special case of the nonlinear Baker 
criterion. 
 
7 Parametric analysis and discussion 
 
    This paper mainly studies the effects of three 
parameters A, T, n of Baker failure criterion, depth 
ratio C/D, and the unit weight γ on tunnel face 
stability. In the calculations, the adopted parameters 
are: the unit weight γ=20−24 kN/m3, C/D=1.0−2.0. 
The dimensionless parameters are A=0.4−0.8. 
T=0.01−0.05. n=0.5−0.9. The results are shown in 
Figures 3−8. 
    Figure 3 studies the effect of C/D and γ on the 
necessary face pressures when C/D is 1.0−2.0, and 
the unit weight γ is 20, 21, 22, 23, 24 kN/m3, 
respectively. It can be seen from the diagram that 
for the same γ, the necessary face pressures σ0 
almost does not change with C/D, and for a fixed 
C/D, the critical face pressures σ0 increases with the 
increase of γ. 
    Figures 4 and 5 shows the effect of A and n on 
the necessary face pressures when A changes from 
0.4 to 0.8, n being 0.5, 0.6, 0.7, 0.8, 0.9 respectively. 
It can be seen that under the same n, the necessary 
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Table 1 Comparison results of linear M-C failure criterion, nonlinear Baker failure and numerical simulation 

Serial 
number 

Linear M-C failure 
criterion 

Nonlinear Baker 
failure criterion 

Numerical 
simulation 

Relative error between M-C 
and Baker criterion/10−6 

1 
c=0, φ=18°, A=0.324919696232, T=0, 

σ0=92.9635 kPa 7 
σ0=92.9576 kPa σ0=92.9583 kPa 

2 
c=10 kPa, φ=18°, 

A=0.324919696232, 

σ0=64.1584 kPa 10 T=0.303743749042709, 

σ0=63.6871 kPa σ0=63.6878 kPa 

3 
c=10 kPa, φ=20°, 

A=0.3639702342662, 

σ0=54.9248 kPa 11 T=0.271154939003665, 

σ0=54.3899 kPa σ0=54.3905 kPa 

4 
c=15 kPa, φ=20°, 

A=0.3639702342662, 

σ0=41.6482 kPa 14 T=0.406732408505498, 

σ0=41.481 kPa σ0=41.4816 kPa 

5 
c=20 kPa, φ=25°, 

A=0.4663076581549, 

σ0=18.8604 kPa 21 T=0.423292755096878, 

σ0=18.4417 kPa σ0=18.4421 kPa 

 

 
Figure 3 Influence of γ and C/D on face pressures σ0 
 

 
Figure 4 Influence of A and n on face pressures σ0 
 
face pressure σ0 decreases with the increase of A, 
and the necessary face pressure σ0 increases with 
the increase of n for the same A. 

 
Figure 5 Influence of A and n on face pressures σ0 (T=0) 
 

 
Figure 6 Influence of T and n on the face pressures σ0 
 
    Figure 6 presents the influence of T and n on 
necessary face pressure σ0 when the dimensionless 
parameter A=0.5, T changes from 0.01 to 0.05 and N 
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Figure 7 Influence of n and A on face pressures σ0 
 

 
Figure 8 Influence of A and T on face pressures σ0 
 
is equal to 0.5, 0.6, 0.7, 0.8, 0.9, respectively. It can 
be seen from the figure that under the same 
condition of n, the necessary face pressure σ0 

decreases with the increase of T, and increases with 
the increase of n. 
    Figure 7 studies the influence of A and n on 
necessary face pressure σ0 when the dimensionless 
parameter T=0.0015, n changes from 0.5 to 0.9 and 
A is 0.4, 0.5, 0.6, 0.7, 0.8, respectively. It can see 
from the diagram that for a fixed T, the face 
pressure σ0 increases with the increase of A and n. 
    Figure 8 presents the influence of A and T on 
face pressure σ0 when the dimensionless parameter 
n=0.5, A changes from 0.4 to 0.8 and T is 0.01, 0.02, 
0.03, 0.04, 0.05, respectively. It can be seen from 
the graph that the face pressure σ0 decreases with 
the increase of A, and decreases with the increase of 
T for the same value of A. 
    The influence of depth ratio on the shape of 
the failure mechanism is shown in Figure 9(a). It 
can be seen from the figure that the change in the 

depth ratio does not affect the shape of the failure 
mechanism, but it is related to whether the failure 
shape reaches the ground surface. If the depth ratio 
is small (e.g. 1.0), the failure mode reaches the 
ground surface, and it does not when the ratio is 
more than 1.5. 
    The effects of the dimensionless parameters A, 
T, and n on the failure mode are shown in   
Figures 9(b)−(d). It can be seen from the diagram 
that when A is reduced, the region of the failure 
mechanism is increased forward gradually. T has no 
effect on the shape of the failure mechanism. When 
n increases, the size of the failure mechanism 
decreases. 
 
8 Project case 
 
    This section takes the Taxia Tunnel as an 
engineering example, which is located in the Lishui 
county, Zhejiang Province, China. The total length 
of the Taxia Tunnel is 172 m, the maximum depth 
is 415 m, and the average depth is 200 m. The 
radius of the tunnel is 4 m. According to site survey, 
the mechanical parameters of rock mass are 
obtained as γ=20 kN/m3, c=0.2 MPa, φ=27°. 
According to the method in this paper, the 
theoretical surrounding rock pressure is calculated 
as σ0=368 kPa. In order to monitor the surrounding 
rock pressure of the tunnel roof, the pressure box is 
installed between the top lining and the surrounding 
rock, and two pressure boxes are installed every  
40 m, and finally a larger value is obtained. 
Through 50 d observation, the change of 
surrounding rock pressure of the Taxia Tunnel is 
shown in Figure 10. 
    Figure 10 shows that the tunnel surrounding 
rock pressure calculated by the paper is close to the 
actual monitoring surrounding rock pressure. The 
upper and lower errors vary within 50 kPa. It can 
meet the engineering design accuracy. 
 
9 Conclusions 
 
    1) To n=1, the nonlinear Baker failure criterion 
is degenerated to a linear Mohr-Coulomb strength 
criterion. Two failure criteria are applied to 
calculating the necessary face pressures 
respectively. The calculated results based on 5 sets 
of parameters are almost the same, and the 
proposed method is verified. 
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Figure 9 Influence of various parameters on failure mechanism: (a) A=0.4, n=0.6, T=0.02, γ=20 kN/m3; (b) n=0.6, 
T=0.02; (c) A=0.5, T=0.02; (d) n=0.6, A=0.5 
  

 
Figure 10 Comparison between this paper and 
engineering examples 

    2) The influence of the parameter A which 
characterizes the material shear strength on the 
critical face pressures is very significant. The 
necessary face pressure nonlinearity decreases with 
the increase of A. The influence of n on the face 
pressures is also important; the critical face pressure 
nonlinearity increases with the increase of n. The 
influence of T on the face pressures is small, and it 
shows a linear decreasing trend. 
    3) With the decrease of A, the range of the 
failure mechanism is expanding. When n is reduced, 
the range is also increasing, but the effect is not 
significant. The impact of T on the range of failure 
mechanism is almost negligible. 
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中文导读 
 

基于 Baker 准则浅埋巷道掌子面稳定性的上限分析 
 
摘要：将非线性 Baker 破坏准则引入到极限分析上限定理中，分析浅埋巷道掌子面的稳定性问题。从

能量角度分析极限状态下掌子面的受力状态，计算破坏过程中所产生的外功率和内能损耗率，推导围

岩压力的解析解，采用 Matlab 软件序列二次规划算法得到围岩压力的最优上限解。研究结果表明，

非线性 Baker 破坏准则中的三个无量纲参数 A，T，n 对掌子面围岩压力以及破坏范围的影响均各不相

同。A 的影响最大，n 次之，T 最小；并且当 A 减小时掌子面的围岩压力和破坏范围均非线性增大。

结合浙江省丽水市隧下隧道的实际监测资料，对计算结果进行了验证。建议针对软岩巷道应及时加强

掌子面的支护措施，防止发生坍塌事故。 
 
关键词：非线性 Baker 破坏准则；掌子面；稳定性；极限分析法；围岩压力 


