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Abstract: Probabilistic analysis is a rational approach for engineering design because it provides more insight than
traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is
studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a
three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters,
including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of
Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure
probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the
pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates
compared with the pseudo-static approach.
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the soils meet the yield condition, e.g., the
Mohr-Coulomb strength criterion for frictional soils.
However, some prior assumptions with regard to

1 Introduction

Three-dimensional (3D) slope stability is a
classical problem in geotechnical engineering,
which has attracted many attentions among
researchers and engineers. Generally, approaches
adopted for evaluating slope stability can be sorted
into limit equilibrium analyses [1—3], numerical
simulations by means of finite element or finite
difference methods [4, 5], and limit analysis
methods [6—10]. Limit equilibrium methods
consider global force and moment equilibriums
inside a sliding body bounded by a presumed slip
surface (linear, circular or logspiral) along which
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inter-slice forces and sliding surface shapes are
often required. The critical safety factor is obtained
by optimization with respect to the slip surface
pattern (or location). In limit equilibrium methods,
none of solid mechanics equations is met inside or
outside of the slip surface and no conceptions of
plastic flow rule and kinematical admissibility are
involved, thus the limit equilibrium solutions are
neither upper-bound nor lower-upper estimations.
Numerical simulation methods, without
complementary assumptions required, can offer
detailed information (stresses and deformations) on
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the slope behavior under external loadings. A main
defect of numerical simulations is that they are
usually time-consuming, and their solutions are
often for a particular problem, practically
intractable for parametric analysis. The kinematic
approach of limit analysis, based on the theory of
plasticity, is able to find an upper-bound estimate of
collapse conditions by means of a work balance
equation, for which the external work rate and the
internal energy dissipations are both computed with
respect to a pre-assumed kinematically admissible
failure mechanism. An effective failure mechanism
should obey kinematical boundary conditions and
the flow rule associated with soil yield conditions.

In the past several decades, the kinematic
approach of limit analysis has been widely
employed to analyze slope stability in terms of
critical heights or safety factors, and several
kinematically admissible three-dimensional (3D)
failure mechanisms were proposed, for instance the
multi-blocks translational mechanism [6], the horn
failure mechanism [7]. The classical horn failure
mechanism  inspired subsequent
investigations, based on the extensions of the horn
failure mechanism to account for the destabilizing
effects of seepage forces or pore-water pressures [8,
11-13], seismic loadings [14—18].

However, in previous studies [14—18], the
pseudo-static approach is employed to consider the
seismic effects which are treated as uniform inertial
forces under constant accelerations. Although the
procedures of pseudo-static  approach are
straightforward and relatively easy to be
implemented, it fails to represent the dynamic
nature of earthquakes, for example shaking
durations and frequency, the amplification of
accelerations and phase shifts because of finite
shear wave propagations, and cannot offer a reliable
assessment of seismic performance. In order to
rectify this drawback, the pseudo-dynamic
approach was proposed by STEEDMAN et al [19]
to model the seismic response of earthquakes in
terms of its duration, periodicity, phase change and
amplification. The pseudo-dynamic approach has
been adopted to evaluate seismic stability of
retaining walls [20] and slopes with or without
geosynthetics [9, 21, 22]. A contribution of this
paper is to apply the pseudo-dynamic approach to
slope stability wusing the 3D horn failure
mechanism.

numerous

There are two sources of uncertainties in
seismic slope stability; the first one is the variability
of soil properties, e.g., soil friction angles and
cohesions, and the second comes from seismic
shakings, such as shear wave velocities and seismic
coefficients. In order to account for uncertainties,
these input parameters are often treated as random
variables following specific distributions. In
practice, probabilistic analysis is adopted to
examine the safety degree (e.g., reliability index or
failure probability) of structures subjected to
random variability of input parameters. The topic of
probabilistic slope stability has gained great
attention in recent decades [23—26]. The second
contribution incorporate
probabilistic concepts into the pseudo-dynamic
kinematic slope stability using the method of Monte
Carlo Simulation (MCS).

This work aims to implement probabilistic
assessment of seismic stability of a slope by
combining the kinematic approach of limit analysis
with the pseudo-dynamic approach. The remaining
of this paper is organized as follows. The second
deterministic safety factor
calculations of a 3D slope based on the upper-
bound limit analysis and the pseudo-dynamic
approach. Then the method of MCS is briefly
presented with respect to computing failure
probabilities. It is followed by probabilistic analysis
in order to discuss the influences of pseudo-
dynamic input parameters on the computed failure
probabilities. This paper ends up with a conclusion.

in this work 1is to

section introduces

2 3D slope stability by pseudo-dynamic
approach

2.1 Horn failure mechanism

The 3D horn failure mechanism was firstly
proposed by MICHALOWSKI et al [17] for slope
stability in the context of the kinematical approach
of limit analysis. Figure 1 shows a 3D slope with a
height of H, width of B and inclination of §. The 3D
horn failure mechanism is composed of two
components, a curvilinear cone and a plane-strain
insert. A cylindrical rotational velocity field is
assumed in this mechanism, rotating around a
horizontal axis passing point O with an angular
velocity . The wvelocity of a point in the
mechanism is equal to the product of the angular
velocity and its distance to the rotating center.
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Figure 1 3D Horn failure mechanism of a slope: (a) 2D view; (b) 3D view

In the longitudinal symmetry plane, the
curvilinear cone section (see Figure 1(a)) is
bounded by two logarithmic spirals, which respects
the normality rule that requires velocities to incline
an angle ¢ with the failure surface (¢ represents
friction angle of Mohr-Coulomb medium). The
cross-section of each radial plane, 77, is described
by a circle whose radius can be determined by the
two logarithmic spirals. The kinematic admissibility
of this curvilinear cone section is validated and
discretized by PAN et al [18]. The discretization
involves to two angular parameters, 06 and da, by
which the curvilinear cone surfaces are represented
by a series of points, e.g., P j, P j+1, Pi j+1. The
discretization makes it possible to consider
non-homogeneity of soil properties and seismic
wave phase changes, avoiding complex integration
computations.

In order to permit a transition to plane-strain
situation when no limitation is applied to the slope
width, the curvilinear cone body is artificially split
into two halves between which a plane-strain insert
is added. The geometry of the plane-strain insert is
logarithmic spiral and it connects two curvilinear
cone surfaces, which consist of the end parts of the
failure mechanism (see Figure 1(b)).

2.2 Pseudo-dynamic approach

The pseudo-static approach is widely used to
compute seismic loadings by simply assuming
uniform accelerations within soil masses in which
constant inertial forces are employed to model
seismic excitations. However, it fails to characterize

the dynamic nature of earthquake motions, for
instance, the phase shift because of the finite shear
wave propagation [20]. In order to rectify this
drawback, the pseudo-dynamic approach is adopted
to model the seismic response of earthquake in
terms of its duration, periodicity and amplification.

Compared with the pseudo-static approach, the
pseudo-dynamic approach has the advantages to
consider the amplitude and phase changes of
seismic vibrations, the impacts of primary wave
velocity and shear wave velocity propagating in
soils, and the period of ground shakings.

The propagation of seismic waves in soils is
related to the shear wave velocity Vs and the
primary wave velocity V,. When a seismic wave
propagates towards the ground surface, its vibrating
effect is amplified. It is assumed that the horizontal
and vertical seismic accelerations linearly increase
from input seismic accelerations (namely kwg and
kvg) at the slope base to amplified values (fakng and
fakyg) at the ground surface, where ki, and k.,
represent  horizontal and  vertical  seismic
coefficients, g is the gravity acceleration, f; is a soil
amplification factor, as sketched in Figure 2(b).

Besides, sinusoidal vibrations are employed to
simulate earthquake waves, and there is a phase
shift between the slope base and the ground surface
(see Figure 2(a)) [19—22]. Thus, in the pseudo-
dynamic approach, the horizontal seismic
acceleration ap and the vertical seismic acceleration
ay can be obtained by the following sinusoidal
functions in terms of depth z and time ¢,
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Figure 2 Slopes under pseudo-dynamic loadings in

longitudinal symmetry plane: (a) Phase shift; (b) Seismic
accelerations change between base and ground surface
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where T is the seismic shaking period.

2.3 Work rate calculations

In the kinematical approach of limit analysis,
an upper-bound solution can be derived using a
work balance equation regarding the external work
rates and the internal energy dissipations. In this
study, the external forces applied to the slope
sliding body are the gravity and inertial forces
induced by seismic excitations, and the energy
dissipations occur within the volume and along the
failure surface. Since the mechanism has been
discretized, the total external work rate and the
energy dissipations can be obtained by simple
summation of those on each discrete element.

As seen in Figure 1, the triangular facet F; j,
formed by three points P; j, P; j+1 and Pj+1,j+1, 1s an
element at the boundary of the failure mechanism;
P'ij, P, Pl are the projections at the
symmetry plane. The entity, corresponding to Fj;
and defined by points Pij, Pjj+1, Pi+i1+1 and their
projections at the symmetry plane, is used for
computing the work rate of gravity. Work rate of the
weight of the block:

Wy =y ZZ(R,-,_,V,-,_, cosd, ;) @)
i

where 6;; and R;; are the polar coordinates of the
barycenter in the triangular facets F;; V;; represents

the volume of the element of facets Fj;; y is the soil
unit weight.
The work rate of horizontal seismic forces:

Wi = wyZZ{[HH;(f—l)]-
[

t H-z
ky sin| 2m| —— V. .R. .sin@, . 3
h ( (T TVS ]J i,j N, z,]} ( )

The work rate of vertical seismic forces:

Wiy =wyZZ{[1+H;(f—1>]-
i

k, sin[%{i— H_ZB Vi iR; ; cos 49[’_/- 4)
T TVp

The total energy dissipation within volume and
over the failure surfaces can be formulated by [7]:

Wy = ccot(p.”\“/-ﬁdS

=-ac cot¢{z R;S; cos O, + ZRJ-S]- cos(6; +ﬂ)}

J

(%)
where c is the soil cohesion and ¢ the soil friction
angle; S;and S, respectively correspond to the area
of element at the top surface and the slope surface;
6; and R; (respectively 6, and R;) are the polar
coordinates of the center of the element at the top
surface (respectively the slope surface).

By equating the total external work rate to the
total energy dissipation, W, +W,, +W,, =W, an
upper-bound estimate of slope heights or yield
seismic coefficients or safety factors can be derived,
which are depended on four parameters that
determine the geometry of the failure mechanism,
6o, bh, r'o/ro, b/H, and the time ¢. The critical slope
heights or critical yield seismic coefficients can be
obtained by optimization with respect to these five
variables under the constraints: 0<6y<180°,
60<6,<180°, 0<r'o/ro<1.0, 0<B'/H<B/H and 0<¢<T.

In order to find the global minimum, a hybrid
scheme that combines the genetic algorithm and a
fast local optimization solver (fminsearch function)
is adopted. The genetic algorithm is firstly used to
locate the region near an optimum point, followed
by a fast local optimization solver (fminsearch
function) using the solution from the genetic
algorithm as an initial point. The genetic algorithm
can reach the region near an optimal point relatively
fast, but it converges slowly. On the contrary, the
local optimization algorithm, such as “fminsearch
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function”, is more efficient. Such a hybrid scheme
makes a good compromise between accuracy and
efficiency.

In this study, the safety factors are computed to
evaluate slope stability. In geotechnical engineering,
there are two ways of safety factor assessments; one
is based on strength reduction (SRM) method by
which safety factor is defined as the ratio of the real
material strength to the critical strength at the limit
equilibrium state and the other is the ratio of
material  resistance capacity to  externally
destructive effect. PAN et al [27] show that the
SRM is more conservative compared with the
resistance-over-loading method and should be used
in practical engineering. For Mohr-Coulomb
material whose shear strength parameters refer to
cohesions and friction angles, the SRM-defined
safety factor reads,

c _ tang

FS = =
Cps  tan@pg

(6)

It is of practical interest to note that the
proposed deterministic model is very efficient in
assessing safety factors of a 3D slope. For example,
it costs no more than one minute for one safety
factor calculation on an Intel i5-7500 CPU @ 3.4
GHz PC. Such a benefit is helpful for probabilistic
analysis since it involves a large number of
computing safety factors. Due to this efficient
feature, the method of Monte Carlo Simulation can
be directly used in this work for probabilistic
analysis.

3 MCS-based probabilistic analysis

The reliable assessment of safety factors of a
slope using the above presented deterministic
model is highly dependent on if the input
parameters required are exactly given. However,
limited access to geological and geotechnical datum
makes it impossible to collect complete information
of input parameters in site. This means that
uncertainties in input parameters, regarding to soil
material properties, structure dimensions and
external loadings, always exist, which definitely
affect geotechnical structure safety. Probabilistic
analysis is commonly adopted to quantify the
uncertainties of input parameters by computing
failure probabilities of structure responses.
Specifically, input parameters are treated as random

variables following prescribed distributions, thus
the corresponding model response (slope safety
factor in this case) is also a random variable.

Monte Carlo Simulation (MCS), the most
straightforward and robust approach of assessing
failure probabilities, is adopted in this work to
assess the failure probability. It proceeds in three
steps: 1) randomly sampling a large number of
input parameters with underlying PDFs, 2)
repeatedly running the limit state function for all
sets and 3) computing failure probability using the
following equation,

Nine
B=— Y 1(G() ™)
A%m i=1
where Npc is the number of MCS samples; G(x) is
the limit state function, /(G)=1 when G<O0;
otherwise I(G)=0. The coefficient of variation
(COV) of estimated failure probability is expressed
as,

1-P
Ccov, = f 8
Pf NlTlCPf ( )

In this work, the number of MCS Ny, is set to
be large enough so that COV;,f is not bigger than
10%. In this study, the limit state function in terms
of safety factor F'S of a 3D slope is expressed as,

G(x)=FS—1 ©)

where FS is determined by Eq. (6).

Six pseudo-dynamic input parameters and two
soil shear strength parameters are considered as
random variables. Their statistical properties are
provided in Table 1, making reference to previously
published articles [19-22, 28, 29]. The random
input variables are assumed to follow lognormal
distributions. Other input parameters, the slope
angle f, the slope height H, the ratio of slope width
to slope height B/H, and soil unit weight y, are
considered as deterministic since they can be easily
measured. In the subsequent calculations, the
discretization parameters 06 and da are respectively
taken to be 0.5° and 1.0° for generating the 3D
failure mechanism.

4 Results and discussion
4.1 Influence of horizontal seismic coefficient on

computed failure probabilities
Figure 3 presents the impact of the horizontal
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Table 1 Configurations of input variables

Parameter  Input variable Mean COVI%
T/m 0.3 10
fa 1.2 15
Pseudo- Jon 0.2 25
dynamic
parameter ky 0.1 25
Vo/(m-s™!) 150 10
Vpl(m-s7h) 280.5 10
c/kPa 20 20
Soil material 0/(°) 25 10
p/(KN-m3) 20 0
BA°) 60 0
Slope BIH 5 0
geometry
H/m 10 0
-1
Oy 150ms 703
V=210m/s  f=1.2
—V=270m/s Kk /0.5
- Pseudo-static ¥,=280.5 m/s ==~
1072 F
A
1073
10*4 z 1 Z 1 1
0.10 0.15 0.20 0.25 0.30

Ky

Figure 3 Influence of &, on failure probabilities under
different V

seismic coefficients on the obtained failure
probabilities. In the calculations, three cases of the
mean values of shear velocities are taken into
account, changing from 150 to 270 m/s; the mean
values of horizontal seismic coefficients range
between 0.1 and 0.3. It is observed that the mean
values of horizontal seismic  coefficients
significantly affect the slope failure probabilities.
For V=270 m/s, the failure probability rises from
1.9x107 at k,=0.1 to 5.3x102 at k,=0.3, increasing

by approximately 2639.5%. The results of the

pseudo-static analysis are also provided for analysis.

It is seen that the pseudo-static approach gives the
smallest failure probabilities compared with the
pseudo-dynamic approach. This means that the
pseudo-static approach is less conservative than the
pseudo-dynamic approach.

4.2 Influence of vertical seismic coefficient on

computed failure probabilities

Figure 4 shows the failure probability as a
function of the vertical seismic coefficient #k,
normalized by its horizontal counterpart k.. Three
mean values of shear velocities are taken into
account, and the ratio of kJ/kn is in the range
between 0.2 and 1.0. For example, when the ratio of
kv/ky changes from 0.2 to 1.0, the failure probability
increases from 2.2x107° to 5.7x107 for the case of
shear wave velocity Vs equal to 150 m/s. The
relative increment is about 164.2%.

107! F
— V=150 m/s T=03s
V=180 m/s f=1.2
- V=240 m/s k,=0.2
V,=280.5 m/s

1

0.2 0.4 0.6 0.8 1.0
kK,

Figure 4 Influence of %, on failure probabilities under

different V

1 0—3 I

4.3 Influence of shear wave velocity on computed
failure probabilities

Figure 5 shows the effects of the shear wave
velocity Vs on the computed failure probabilities. In
the computations, the mean values of shear wave
velocity Vs are changed from 160 to 260 m/s, and
three mean values of horizontal seismic coefficients,
respectively 0.2, 0.3 and 0.4, are adopted. It is seen
that the computed failure probabilities slightly
increase with the shear wave velocity. For the case
of the mean value of A, being 0.2, the failure
probability increases about by 53.3% from 3.0x1073
at V=160 m/s to 4.6x107 at V=260 m/s. For the
case of the mean value of &, equal to 0.4, the failure
probability increases about by 25.0% from 1.9x107"!
at V=160 m/s to 2.5x107" at V=260 m/s. This
indicates that the influence of shear wave velocity
on the computed failure probabilities decreases with
the increase of the seismic coefficients. Such a
phenomenon can also be observed in Figures 3 and
4.
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100
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A 1072F
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"""" kh:04 kv/kh=0 5
V.=280.5 m/s
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160 180 200 220 240 260
V/(m-s™)

Figure S Influence of Vi on failure probabilities under
different Ay

4.4 Influence of primary wave velocity on

computed failure probabilities

Figure 6 provides the computed failure
probabilities as a function of the primary wave
velocity ¥}, ranging from 250 to 400 m/s. In the
computations, three mean values of horizontal
seismic coefficients are considered. Not surprisingly,
what is observed in this plot is similar to that in
Figure5; the computed failure probabilities increase
with the primary wave velocity.

10°
107 F
S 1072F
i — k=02 Tf‘l)g s
— =03 iFl:
kJk=0.5
....... k:04 v/ 'h
h V=150 m/s
10—4 I I
250 300 350 400
V,/(m-s")

Figure 6 Influence of V;, on failure probabilities under
different

4.5 Influence of seismic shaking period on

computed failure probabilities

Figure 7 plots the influences of the seismic
shaking period 7 on the computed failure
probabilities. In the implemented calculations, the
mean values of the seismic shaking period T are set
to changes from 0.2 s to 1.0 s, and three mean
values of horizontal seismic coefficients adopted
are, respectively, 0.2, 0.3 and 0.4. It is observed that

the computed failure probabilities are greatly
affected by the seismic shaking period. For the case
of the mean values of £,=0.2, the failure probability
rises from 2.3x107 at 7=0.2 s to 5.8x10° at 7=
1.0 s, increasing by approximately 152.2%. This is
reasonable since the longer the seismic shaking
lasts, the higher the failure risk the slope takes.

10°
107
Q1072

Al — k=02 Sl2

107 —— k::0.3 k/k,=0.5
r - k,=0.4 Vp=280.5 m/s

. r V=150 m/s
10— Il 1 L

0.2 04 0.6 0.8 1.0

T

Figure 7 Influence of 7 on failure probabilities under
different Ay

4.6 Influence of soil amplification factor on

computed failure probabilities

Figure 8 shows the influence of soil
amplification factor f, on obtained failure
probability. In the plot, the mean values of soil
amplification factor f, are varied from 1.0 to 1.8,
and three mean values of horizontal seismic
coefficients adopted are considered. It is observed
that the change of the mean values of the soil
amplification factor f; largely impacts the computed
failure probabilities. An increase of the mean values
of fo from 1.0 to 1.8 leads to an increase of the
computed failure probabilities from 2.2x107° to

10°F
1071
QS 1072F /
B — k=02  T=03s
-k
107 k=03  kJk=0.5
S k=04  V,=280.5m/s
H V=150 m/s
10*4 1 I 1
1.0 12 1.4 1.6 1.8
Ja

Figure 8 Influence of f; on failure probabilities under
different Ay
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2.2x107 for the case of the horizontal seismic
coefficient being 0.2. This phenomenon can be
explained well by the fact that the seismic

accelerations are proportional to the soil
amplification factor as seen in Eq. (1).
5 Conclusions

Probabilistic assessment of seismic slope

stability is an important issue in geotechnical
engineering, but the complex nature of the problem
makes it difficult to implement finite element
analyses, which are often associated with high
computational demands. Meanwhile, simple
pseudo-static approaches may not characterize the
dynamic nature of the earthquake ground shakings.
In this paper, the pseudo-dynamic approach is
adopted to represent seismic loadings, and the slope
safety factor is assessed using the kinematical
approach of limit analysis. Such a combination
leads to an efficient deterministic model to assess
safety factors of 3D slopes. Then the method of
Monte Carlo Simulation is applied to perform
probabilistic analysis in terms of the failure
probabilities. Eight random input variables are
taken into account, including six pseudo-dynamic
input parameters (kn, kv, Vs, V5, T, fa), two soil shear
strength parameters (c, ¢).

The influences of six pseudo-dynamic input
parameters on computed failure probabilities are
discussed. It is shown that the computed failure
probabilities increase with the magnitude of all
pseudo-dynamic input parameters, especially the
horizontal and vertical seismic coefficients and the
soil amplification factor. A comparison with the
pseudo-static ~ approach  indicates that the
pseudo-dynamic approach is able to provide more
conservative results of failure probabilities. Thus, it
is recommended to wuse the pseudo-dynamic
approach in a practical slope design on the safe
side.
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