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Abstract: Probabilistic analysis is a rational approach for engineering design because it provides more insight than 
traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is 
studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a 
three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, 
including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of 
Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure 
probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the 
pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates 
compared with the pseudo-static approach. 
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1 Introduction 
 

Three-dimensional (3D) slope stability is a 
classical problem in geotechnical engineering, 
which has attracted many attentions among 
researchers and engineers. Generally, approaches 
adopted for evaluating slope stability can be sorted 
into limit equilibrium analyses [1−3], numerical 
simulations by means of finite element or finite 
difference methods [4, 5], and limit analysis 
methods [6−10]. Limit equilibrium methods 
consider global force and moment equilibriums 
inside a sliding body bounded by a presumed slip 
surface (linear, circular or logspiral) along which 

the soils meet the yield condition, e.g., the 
Mohr-Coulomb strength criterion for frictional soils. 
However, some prior assumptions with regard to 
inter-slice forces and sliding surface shapes are 
often required. The critical safety factor is obtained 
by optimization with respect to the slip surface 
pattern (or location). In limit equilibrium methods, 
none of solid mechanics equations is met inside or 
outside of the slip surface and no conceptions of 
plastic flow rule and kinematical admissibility are 
involved, thus the limit equilibrium solutions are 
neither upper-bound nor lower-upper estimations. 
Numerical simulation methods, without 
complementary assumptions required, can offer 
detailed information (stresses and deformations) on 
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the slope behavior under external loadings. A main 
defect of numerical simulations is that they are 
usually time-consuming, and their solutions are 
often for a particular problem, practically 
intractable for parametric analysis. The kinematic 
approach of limit analysis, based on the theory of 
plasticity, is able to find an upper-bound estimate of 
collapse conditions by means of a work balance 
equation, for which the external work rate and the 
internal energy dissipations are both computed with 
respect to a pre-assumed kinematically admissible 
failure mechanism. An effective failure mechanism 
should obey kinematical boundary conditions and 
the flow rule associated with soil yield conditions. 
    In the past several decades, the kinematic 
approach of limit analysis has been widely 
employed to analyze slope stability in terms of 
critical heights or safety factors, and several 
kinematically admissible three-dimensional (3D) 
failure mechanisms were proposed, for instance the 
multi-blocks translational mechanism [6], the horn 
failure mechanism [7]. The classical horn failure 
mechanism inspired numerous subsequent 
investigations, based on the extensions of the horn 
failure mechanism to account for the destabilizing 
effects of seepage forces or pore-water pressures [8, 
11−13], seismic loadings [14−18]. 
    However, in previous studies [14−18], the 
pseudo-static approach is employed to consider the 
seismic effects which are treated as uniform inertial 
forces under constant accelerations. Although the 
procedures of pseudo-static approach are 
straightforward and relatively easy to be 
implemented, it fails to represent the dynamic 
nature of earthquakes, for example shaking 
durations and frequency, the amplification of 
accelerations and phase shifts because of finite 
shear wave propagations, and cannot offer a reliable 
assessment of seismic performance. In order to 
rectify this drawback, the pseudo-dynamic 
approach was proposed by STEEDMAN et al [19] 
to model the seismic response of earthquakes in 
terms of its duration, periodicity, phase change and 
amplification. The pseudo-dynamic approach has 
been adopted to evaluate seismic stability of 
retaining walls [20] and slopes with or without 
geosynthetics [9, 21, 22]. A contribution of this 
paper is to apply the pseudo-dynamic approach to 
slope stability using the 3D horn failure 
mechanism. 

    There are two sources of uncertainties in 
seismic slope stability; the first one is the variability 
of soil properties, e.g., soil friction angles and 
cohesions, and the second comes from seismic 
shakings, such as shear wave velocities and seismic 
coefficients. In order to account for uncertainties, 
these input parameters are often treated as random 
variables following specific distributions. In 
practice, probabilistic analysis is adopted to 
examine the safety degree (e.g., reliability index or 
failure probability) of structures subjected to 
random variability of input parameters. The topic of 
probabilistic slope stability has gained great 
attention in recent decades [23−26]. The second 
contribution in this work is to incorporate 
probabilistic concepts into the pseudo-dynamic 
kinematic slope stability using the method of Monte 
Carlo Simulation (MCS). 
    This work aims to implement probabilistic 
assessment of seismic stability of a slope by 
combining the kinematic approach of limit analysis 
with the pseudo-dynamic approach. The remaining 
of this paper is organized as follows. The second 
section introduces deterministic safety factor 
calculations of a 3D slope based on the upper- 
bound limit analysis and the pseudo-dynamic 
approach. Then the method of MCS is briefly 
presented with respect to computing failure 
probabilities. It is followed by probabilistic analysis 
in order to discuss the influences of pseudo- 
dynamic input parameters on the computed failure 
probabilities. This paper ends up with a conclusion. 
 
2 3D slope stability by pseudo-dynamic 

approach 
 
2.1 Horn failure mechanism 
    The 3D horn failure mechanism was firstly 
proposed by MICHALOWSKI et al [17] for slope 
stability in the context of the kinematical approach 
of limit analysis. Figure 1 shows a 3D slope with a 
height of H, width of B and inclination of β. The 3D 
horn failure mechanism is composed of two 
components, a curvilinear cone and a plane-strain 
insert. A cylindrical rotational velocity field is 
assumed in this mechanism, rotating around a 
horizontal axis passing point O with an angular 
velocity ω. The velocity of a point in the 
mechanism is equal to the product of the angular 
velocity and its distance to the rotating center. 
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Figure 1 3D Horn failure mechanism of a slope: (a) 2D view; (b) 3D view 
 
    In the longitudinal symmetry plane, the 
curvilinear cone section (see Figure 1(a)) is 
bounded by two logarithmic spirals, which respects 
the normality rule that requires velocities to incline 
an angle φ with the failure surface (φ represents 
friction angle of Mohr-Coulomb medium). The 
cross-section of each radial plane, Πj, is described 
by a circle whose radius can be determined by the 
two logarithmic spirals. The kinematic admissibility 
of this curvilinear cone section is validated and 
discretized by PAN et al [18]. The discretization 
involves to two angular parameters, δθ and δα, by 
which the curvilinear cone surfaces are represented 
by a series of points, e.g., Pi, j, Pi, j+1, Pi, j+1. The 
discretization makes it possible to consider 
non-homogeneity of soil properties and seismic 
wave phase changes, avoiding complex integration 
computations. 
    In order to permit a transition to plane-strain 
situation when no limitation is applied to the slope 
width, the curvilinear cone body is artificially split 
into two halves between which a plane-strain insert 
is added. The geometry of the plane-strain insert is 
logarithmic spiral and it connects two curvilinear 
cone surfaces, which consist of the end parts of the 
failure mechanism (see Figure 1(b)). 
 
2.2 Pseudo-dynamic approach 
    The pseudo-static approach is widely used to 
compute seismic loadings by simply assuming 
uniform accelerations within soil masses in which 
constant inertial forces are employed to model 
seismic excitations. However, it fails to characterize 

the dynamic nature of earthquake motions, for 
instance, the phase shift because of the finite shear 
wave propagation [20]. In order to rectify this 
drawback, the pseudo-dynamic approach is adopted 
to model the seismic response of earthquake in 
terms of its duration, periodicity and amplification. 
    Compared with the pseudo-static approach, the 
pseudo-dynamic approach has the advantages to 
consider the amplitude and phase changes of 
seismic vibrations, the impacts of primary wave 
velocity and shear wave velocity propagating in 
soils, and the period of ground shakings. 
    The propagation of seismic waves in soils is 
related to the shear wave velocity Vs and the 
primary wave velocity Vp. When a seismic wave 
propagates towards the ground surface, its vibrating 
effect is amplified. It is assumed that the horizontal 
and vertical seismic accelerations linearly increase 
from input seismic accelerations (namely khg and 
kvg) at the slope base to amplified values (fakhg and 
fakvg) at the ground surface, where kh and kv 
represent horizontal and vertical seismic 
coefficients, g is the gravity acceleration, fa is a soil 
amplification factor, as sketched in Figure 2(b). 
    Besides, sinusoidal vibrations are employed to 
simulate earthquake waves, and there is a phase 
shift between the slope base and the ground surface 
(see Figure 2(a)) [19−22]. Thus, in the pseudo- 
dynamic approach, the horizontal seismic 
acceleration ah and the vertical seismic acceleration 
av can be obtained by the following sinusoidal 
functions in terms of depth z and time t, 
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Figure 2 Slopes under pseudo-dynamic loadings in 
longitudinal symmetry plane: (a) Phase shift; (b) Seismic 
accelerations change between base and ground surface 
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(1)  
where T is the seismic shaking period. 
 
2.3 Work rate calculations 
    In the kinematical approach of limit analysis, 
an upper-bound solution can be derived using a 
work balance equation regarding the external work 
rates and the internal energy dissipations. In this 
study, the external forces applied to the slope 
sliding body are the gravity and inertial forces 
induced by seismic excitations, and the energy 
dissipations occur within the volume and along the 
failure surface. Since the mechanism has been 
discretized, the total external work rate and the 
energy dissipations can be obtained by simple 
summation of those on each discrete element. 
    As seen in Figure 1, the triangular facet Fi, j, 
formed by three points Pi, j, Pi, j+1 and Pi+1, j+1, is an 
element at the boundary of the failure mechanism; 
P′i,j, P′i,j+1, P′i+1,j+1 are the projections at the 
symmetry plane. The entity, corresponding to Fi,j 
and defined by points Pi,j, Pi,j+1, Pi+1,j+1 and their 
projections at the symmetry plane, is used for 
computing the work rate of gravity. Work rate of the 
weight of the block: 
 

, , ,( cos )i j i j i j
i j

W R V                     (2) 

 
where θi,j and Ri,j are the polar coordinates of the 
barycenter in the triangular facets Fi,j; Vi,j represents 

the volume of the element of facets Fi,j; γ is the soil 
unit weight. 
    The work rate of horizontal seismic forces:  

kh [1 ( 1)]
i j

H zW f
H
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    
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     (3) 
 
    The work rate of vertical seismic forces:  

kv [1 ( 1)]
i j

H zW f
H


    


  

     v , , ,
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     (4) 

 
    The total energy dissipation within volume and 
over the failure surfaces can be formulated by [7]:  

D cot d
s

W c v n S  
   

   cot cos cos( )i i i j j j
i j

c R S R S    
 

    
  
   

(5)  
where c is the soil cohesion and φ the soil friction 
angle; Si and S,j respectively correspond to the area 
of element at the top surface and the slope surface; 
θi and Ri, (respectively θj and Rj) are the polar 
coordinates of the center of the element at the top 
surface (respectively the slope surface). 
    By equating the total external work rate to the 
total energy dissipation, kh kv D ,W W W W       an 
upper-bound estimate of slope heights or yield 
seismic coefficients or safety factors can be derived, 
which are depended on four parameters that 
determine the geometry of the failure mechanism, 
θ0, θh, r′0/r0, b/H, and the time t. The critical slope 
heights or critical yield seismic coefficients can be 
obtained by optimization with respect to these five 
variables under the constraints: 0<θ0<180°, 
θ0<θh<180°, 0<r′0/r0<1.0, 0<B′/H≤B/H and 0<t<T. 
    In order to find the global minimum, a hybrid 
scheme that combines the genetic algorithm and a 
fast local optimization solver (fminsearch function) 
is adopted. The genetic algorithm is firstly used to 
locate the region near an optimum point, followed 
by a fast local optimization solver (fminsearch 
function) using the solution from the genetic 
algorithm as an initial point. The genetic algorithm 
can reach the region near an optimal point relatively 
fast, but it converges slowly. On the contrary, the 
local optimization algorithm, such as “fminsearch 
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function”, is more efficient. Such a hybrid scheme 
makes a good compromise between accuracy and 
efficiency. 
    In this study, the safety factors are computed to 
evaluate slope stability. In geotechnical engineering, 
there are two ways of safety factor assessments; one 
is based on strength reduction (SRM) method by 
which safety factor is defined as the ratio of the real 
material strength to the critical strength at the limit 
equilibrium state and the other is the ratio of 
material resistance capacity to externally 
destructive effect. PAN et al [27] show that the 
SRM is more conservative compared with the 
resistance-over-loading method and should be used 
in practical engineering. For Mohr-Coulomb 
material whose shear strength parameters refer to 
cohesions and friction angles, the SRM-defined 
safety factor reads,  

tan
tanFS FS

cFS
c




                           (6) 
 
    It is of practical interest to note that the 
proposed deterministic model is very efficient in 
assessing safety factors of a 3D slope. For example, 
it costs no more than one minute for one safety 
factor calculation on an Intel i5-7500 CPU @ 3.4 
GHz PC. Such a benefit is helpful for probabilistic 
analysis since it involves a large number of 
computing safety factors. Due to this efficient 
feature, the method of Monte Carlo Simulation can 
be directly used in this work for probabilistic 
analysis. 
 
3 MCS-based probabilistic analysis 
 
    The reliable assessment of safety factors of a 
slope using the above presented deterministic 
model is highly dependent on if the input 
parameters required are exactly given. However, 
limited access to geological and geotechnical datum 
makes it impossible to collect complete information 
of input parameters in site. This means that 
uncertainties in input parameters, regarding to soil 
material properties, structure dimensions and 
external loadings, always exist, which definitely 
affect geotechnical structure safety. Probabilistic 
analysis is commonly adopted to quantify the 
uncertainties of input parameters by computing 
failure probabilities of structure responses. 
Specifically, input parameters are treated as random 

variables following prescribed distributions, thus 
the corresponding model response (slope safety 
factor in this case) is also a random variable. 
    Monte Carlo Simulation (MCS), the most 
straightforward and robust approach of assessing 
failure probabilities, is adopted in this work to 
assess the failure probability. It proceeds in three 
steps: 1) randomly sampling a large number of 
input parameters with underlying PDFs, 2) 
repeatedly running the limit state function for all 
sets and 3) computing failure probability using the 
following equation,  

mc

f
mc =1

1ˆ ( ( ))
N

i
P I G x

N
                          (7) 

 
where Nmc is the number of MCS samples; G(x) is 
the limit state function, I(G)=1 when G<0; 
otherwise  I(G)=0. The coefficient of variation 
(COV) of estimated failure probability is expressed 
as,  

f

f
ˆ

mc f

ˆ1
ˆP

PCOV
N P


                           (8) 

 
    In this work, the number of MCS Nmc is set to 
be large enough so that 

f̂PCOV  is not bigger than 
10%. In this study, the limit state function in terms 
of safety factor FS of a 3D slope is expressed as,  
G(x)=FS−1                              (9)  
where FS is determined by Eq. (6). 
    Six pseudo-dynamic input parameters and two 
soil shear strength parameters are considered as 
random variables. Their statistical properties are 
provided in Table 1, making reference to previously 
published articles [19−22, 28, 29]. The random 
input variables are assumed to follow lognormal 
distributions. Other input parameters, the slope 
angle β, the slope height H, the ratio of slope width 
to slope height B/H, and soil unit weight γ, are 
considered as deterministic since they can be easily 
measured. In the subsequent calculations, the 
discretization parameters δθ and δα are respectively 
taken to be 0.5° and 1.0° for generating the 3D 
failure mechanism. 
 
4 Results and discussion 
 
4.1 Influence of horizontal seismic coefficient on 

computed failure probabilities 
    Figure 3 presents the impact of the horizontal 
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Table 1 Configurations of input variables 

Parameter Input variable Mean COV/% 

Pseudo- 
dynamic 

parameter 

T/m 0.3 10 

fa 1.2 15 

kh 0.2 25 

kv 0.1 25 

Vs/(m·s−1) 150 10 

Vp/(m·s−1) 280.5 10 

Soil material 

c/kPa 20 20 

φ/(°) 25 10 

γ/(kN·m−3) 20 0 

Slope 
geometry 

β/(°) 60 0 

B/H 5 0 

H/m 10 0 

 

 
Figure 3 Influence of kh on failure probabilities under 
different Vs 
 
seismic coefficients on the obtained failure 
probabilities. In the calculations, three cases of the 
mean values of shear velocities are taken into 
account, changing from 150 to 270 m/s; the mean 
values of horizontal seismic coefficients range 
between 0.1 and 0.3. It is observed that the mean 
values of horizontal seismic coefficients 
significantly affect the slope failure probabilities. 
For Vs=270 m/s, the failure probability rises from 
1.9×10−3 at kh=0.1 to 5.3×10−2 at kh=0.3, increasing 
by approximately 2639.5%. The results of the 
pseudo-static analysis are also provided for analysis. 
It is seen that the pseudo-static approach gives the 
smallest failure probabilities compared with the 
pseudo-dynamic approach. This means that the 
pseudo-static approach is less conservative than the 
pseudo-dynamic approach. 

4.2 Influence of vertical seismic coefficient on 
computed failure probabilities 

    Figure 4 shows the failure probability as a 
function of the vertical seismic coefficient kv 
normalized by its horizontal counterpart kh. Three 
mean values of shear velocities are taken into 
account, and the ratio of kv/kh is in the range 
between 0.2 and 1.0. For example, when the ratio of 
kv/kh changes from 0.2 to 1.0, the failure probability 
increases from 2.2×10−3 to 5.7×10−3 for the case of 
shear wave velocity Vs equal to 150 m/s. The 
relative increment is about 164.2%. 
 

  
Figure 4 Influence of kv on failure probabilities under 
different Vs 
 
4.3 Influence of shear wave velocity on computed 

failure probabilities 
    Figure 5 shows the effects of the shear wave 
velocity Vs on the computed failure probabilities. In 
the computations, the mean values of shear wave 
velocity Vs are changed from 160 to 260 m/s, and 
three mean values of horizontal seismic coefficients, 
respectively 0.2, 0.3 and 0.4, are adopted. It is seen 
that the computed failure probabilities slightly 
increase with the shear wave velocity. For the case 
of the mean value of kh being 0.2, the failure 
probability increases about by 53.3% from 3.0×10−3 
at Vs=160 m/s to 4.6×10−3 at Vs=260 m/s. For the 
case of the mean value of kh equal to 0.4, the failure 
probability increases about by 25.0% from 1.9×10−1 
at Vs=160 m/s to 2.5×10−1 at Vs=260 m/s. This 
indicates that the influence of shear wave velocity 
on the computed failure probabilities decreases with 
the increase of the seismic coefficients. Such a 
phenomenon can also be observed in Figures 3 and 
4. 
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Figure 5 Influence of Vs on failure probabilities under 
different kh 

 
4.4 Influence of primary wave velocity on 

computed failure probabilities 
    Figure 6 provides the computed failure 
probabilities as a function of the primary wave 
velocity Vp ranging from 250 to 400 m/s. In the 
computations, three mean values of horizontal 
seismic coefficients are considered. Not surprisingly, 
what is observed in this plot is similar to that in 
Figure5; the computed failure probabilities increase 
with the primary wave velocity. 
 

 
Figure 6 Influence of Vp on failure probabilities under 
different kh 

 
4.5 Influence of seismic shaking period on 

computed failure probabilities 
    Figure 7 plots the influences of the seismic 
shaking period T on the computed failure 
probabilities. In the implemented calculations, the 
mean values of the seismic shaking period T are set 
to changes from 0.2 s to 1.0 s, and three mean 
values of horizontal seismic coefficients adopted 
are, respectively, 0.2, 0.3 and 0.4. It is observed that 

the computed failure probabilities are greatly 
affected by the seismic shaking period. For the case 
of the mean values of kh=0.2, the failure probability 
rises from 2.3×10−3 at T=0.2 s to 5.8×10−3 at T=  
1.0 s, increasing by approximately 152.2%. This is 
reasonable since the longer the seismic shaking 
lasts, the higher the failure risk the slope takes. 
 

 
Figure 7 Influence of T on failure probabilities under 
different kh 

 
4.6 Influence of soil amplification factor on 

computed failure probabilities 
    Figure 8 shows the influence of soil 
amplification factor fa on obtained failure 
probability. In the plot, the mean values of soil 
amplification factor fa are varied from 1.0 to 1.8, 
and three mean values of horizontal seismic 
coefficients adopted are considered. It is observed 
that the change of the mean values of the soil 
amplification factor fa largely impacts the computed 
failure probabilities. An increase of the mean values 
of fa from 1.0 to 1.8 leads to an increase of the 
computed failure probabilities from 2.2×10−3 to 
 

 
Figure 8 Influence of fa on failure probabilities under 
different kh 
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2.2×10−2 for the case of the horizontal seismic 
coefficient being 0.2. This phenomenon can be 
explained well by the fact that the seismic 
accelerations are proportional to the soil 
amplification factor as seen in Eq. (1). 
 
5 Conclusions 
 
    Probabilistic assessment of seismic slope 
stability is an important issue in geotechnical 
engineering, but the complex nature of the problem 
makes it difficult to implement finite element 
analyses, which are often associated with high 
computational demands. Meanwhile, simple 
pseudo-static approaches may not characterize the 
dynamic nature of the earthquake ground shakings. 
In this paper, the pseudo-dynamic approach is 
adopted to represent seismic loadings, and the slope 
safety factor is assessed using the kinematical 
approach of limit analysis. Such a combination 
leads to an efficient deterministic model to assess 
safety factors of 3D slopes. Then the method of 
Monte Carlo Simulation is applied to perform 
probabilistic analysis in terms of the failure 
probabilities. Eight random input variables are 
taken into account, including six pseudo-dynamic 
input parameters (kh, kv, Vs, Vp, T, fa), two soil shear 
strength parameters (c, φ). 
    The influences of six pseudo-dynamic input 
parameters on computed failure probabilities are 
discussed. It is shown that the computed failure 
probabilities increase with the magnitude of all 
pseudo-dynamic input parameters, especially the 
horizontal and vertical seismic coefficients and the 
soil amplification factor. A comparison with the 
pseudo-static approach indicates that the 
pseudo-dynamic approach is able to provide more 
conservative results of failure probabilities. Thus, it 
is recommended to use the pseudo-dynamic 
approach in a practical slope design on the safe 
side. 
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中文导读 
 

基于拟动力法的三维边坡稳定性概率分析 
 
摘要：从概率分析的角度进行工程设计是一种合理的方法，它可以提供比传统的确定性分析更全面的

信息。本文从概率分析的角度研究了三维边坡地震稳定性。通过结合基于三维旋转破坏机制的极限分

析上限法与拟动力法来计算边坡的安全系数。采用蒙特卡罗模拟方法来考虑模型参数的变异性，包括

六个拟动力法参数和两个土体抗剪强度参数。本文研究并讨论了拟动力法参数的变异性对计算失效概

率的影响。结果表明：边坡的失效概率随着拟动力法参数的增加而增加，与拟静力法相比，拟动力法

可以给出更为保守的失效概率估计结果。 
 
关键词：边坡地震稳定性；拟动力法；概率分析；蒙特卡洛模拟；破坏概率；三维边坡 


