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Abstract: Given the extensive utilization of cantilever retaining walls in construction and development projects, their 
optimal design and analysis with proper attention to seismic loads is a typical engineering problem. This research 
presents a new algorithm for pseudo-static analysis of retaining walls employing upper bound method. The algorithm 
can be utilized to design and check the external and internal stability of the wall based on the proposed mechanism. One 
of the main features of this algorithm is its ability to determine the critical condition of failure wedges, the minimum 
safety factor and maximum force acting on the wall, as well as the minimum weight of the wall, simultaneously, by 
effectively using the multi-objective optimization. The results obtained by the proposed failure mechanisms show that, 
while using the upper bound limit analysis approach, the active force should be maximized concurrent with optimizing 
the direction of the plane passing through the back of the heel. The present study also applies the proposed algorithm to 
determine the critical direction of the earthquake acceleration coefficient. The critical direction of earthquake 
acceleration coefficient is defined as the direction that maximizes the active force exerted on the wall and minimizes the 
safety factor for wall stability. The results obtained in this study are in good agreement with those of similar studies 
carried out based on the limit equilibrium method and finite element analysis. The critical failure mechanisms were 
determined via optimization with genetic algorithm. 
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1 Introduction 
 

Better performance of cantilever retaining 
walls, when compared with the gravity retaining 
walls, makes them a more preferable option for 
earthquake-prone areas. The assessment of stability 
and force acting on the retaining walls is a classical 
topic in geotechnical engineering. The existing 
literature in the field provides a number of different 
methods for evaluating the stability of retaining 
walls [1–4]. In problems pertaining to the stability 

of retaining walls, the purpose of determining the 
active and passive forces acting on the walls is to 
investigate the internal and external stability. Most 
works carried out on the stability of retaining walls 
have ignored the passive earth pressure in front of 
the wall [5–11]. Other researchers have investigated 
the effect of buried depth of foundation on the 
stability of the wall. However, in all these studies, 
the weight of the wall has been ignored [12–15]. 

As a result of the significant effect of weight 
and buried depth of the wall on its safety factors, 
such assumptions create an error in wall stability  
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checks, especially during the seismic analysis. In 
2010, LI et al [16] assumed a failure block on a 
gravity wall and utilized the upper bound method to 
examine the wall stability against sliding. In 2011, 
DI SANTOLO et al [17] indicated that a change in 
the direction of this plane along the vertical axis 
changes the magnitude of active force exerted on 
the wall. In 2015, KLOUKINAS et al [18] 
investigated the seismic response and stability of a 
cantilever retaining wall by limit equilibrium 
analysis and shaking table models [18]. In this 
method, originated from Coulomb theory, active 
force on the wall is calculated by a pseudo-static 
analysis. Considering the presence of a heel in this 
wall-direction, the force is determined by assuming 
a vertical plane passing through the end of the heel. 
Therefore, to determine the most critical state of the 
wall stability, maximization of the active force 
exerted on the wall should be performed 
concurrently with optimizing the direction of the 
plane passing through the back of the heel. The 
seismic pressure in retaining walls can be 
determined using various methods [19–24], the 
most famous of which is the one provided by 
MONONOBE and OKABE [25–27], also known as 
M-O theory. In the M-O theory which is a direct 
expansion of Coulomb theory, vertical and 
horizontal forces behind the wall are determined by 
pseudo-static analysis. In all mentioned studies, 
critical failure wedges are determined based on the 
maximization of active force for earthquake 
conditions. Nevertheless, it should be noted that in 
actual design processes, the purpose of calculating 
the active and passive forces is to ensure the 
external stability by checking the factors of safety 
against sliding, overturning, and bearing capacity 
failure, and also to ensure the internal stability by 
checking the shear and bending, etc. within the wall 
structure; thus, in this study, the critical failure 
wedges are determined by the maximization of the 
exerted force and the minimization of the safety 
factor for wall stability via upper bound limit 
analysis. The assumptions made at the time of 
designing the retaining walls by limit state methods 
have been evaluated by different researchers [28, 
29]. Coulomb introduced the concepts of plasticity 
to soil mechanics for the first time [30], and 
Rankine applied plasticity concepts to an infinite 
region of the soil [31]. FINN showed that the limit 

state methods can be employed more reliably using 
the results from the experimental observations [32]. 

Generally, in limit state methods, shape of the 
failure wedges in the soil behind the wall are 
influenced by the rotation and displacement of the 
wall. These results were presented in the studies by 
JAMES and BRANSBY for the effective force on 
retaining walls [33]. CHEN and ROSENFARB 
employed the upper bound limit method in order to 
determine the force exerted on retaining walls [34]. 
Thus far, most of the theories applied in the 
retaining wall design were either upper bound limit 
or the limit equilibrium methods [26, 35, 36]. 
CALTABIANO et al [37] used the limit equilibrium 
method to determine the sliding of the retaining 
wall in static and dynamic states. LI et al [38] used 
the upper bound limit method to investigate the 
seismic stability of gravity walls. Furthermore, 
NAMA et al [4] employed three optimization 
methods in order to determine the active force 
exerted on the retaining walls. When determining 
the active force of retaining walls, the calculated 
force would be lower than the actual failure force 
value if the assumed velocity field meets the 
consistency and boundary conditions of the 
problem. In the upper boundary method, both the 
force exerted on the wall and the wall stability are 
influenced by the shape of wall’s failure wedges 
[39]. In the conventional retaining wall design 
methods, the safety factor of external stability 
against sliding and overturning are defined as the 
ratio of passive to active forces. The values of both 
parameters are independent of wall dimensions. 

In the present study, transition failure 
mechanisms were presented for investigating the 
stability of cantilever retaining walls through upper 
bound limit method. The proposed algorithm was 
also used to determine the critical direction of 
earthquake acceleration coefficients. In the 
proposed method, the impact of wall dimensions 
and geometry on the stability safety factors in the 
seismic state was investigated. This stability is the 
stability against sliding and deep shear failure. 
 
2 Formulation and optimization method 
 

Figure 1 shows the failure mechanisms used to 
determine the seismic stability safety factors of the 
retaining wall against sliding using the upper bound 
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Figure 1 Failure mechanisms used to determine seismic 

stability and velocity vectors 

 
limit analysis method [40]. This mechanism is 
composed of 4 blocks that are only associated with 
transitional displacement. 

Using the upper bound method requires the 
calculation of the increments caused in the work by 
external (E) and internal (Wg) loads. The work done 
by internal loads is calculated by Eq. (1): 
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where Lk is the length of the failure line with 
external boundaries; tk represents the length of the 
failure line between two internal blocks; Vk is the 
absolute velocity vector of the wedge k; [V]k is the 
relative velocity vector between the wedges k and 
k–1; d and Cd are, respectively, reduced internal 
friction angle and soil cohesion, which are obtained 
by Eq. (2). 
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while, the external work is obtained by Eq. (3). 
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where αk and Gk are the angles of the failure line of 
the wedge k with respect to the horizontal and the 
weight of the wedge k, respectively. Now, equate 
the work by internal and external loads and 
substitute Cd and d with C and in which Fs is 
obtained from Eq. (4) by trial and error. In this 
equation,  is the soil friction angle and  is the soil 
cohesion, also kv and kh are, respectively, vertical 
and horizontal earthquake acceleration coefficient. 
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In this study, in order to determine critical 
failure wedges (minimum stability safety factors, 
and the maximum seismic active force exerted on 
the wall) genetic algorithms were used for optimize 
the wall. The following was used as input 
parameters for the algorithm [40]: 
 
Pcross= 0.7, Pmutation=0.05, Maxgen= 700, Npop=2000. 
 
where Npop is the number of the population; Pcross is 
the crossover probability; Maxgen is the size of 
generations; Pmutation is the mutation probability. 

In this study, the goal is the simultaneous 
optimization of safety factor for wall stability, 
seismic active force, and geometric dimensions of 
the wall, and this goal is realized through 
multi-objective optimization with genetic 
algorithm. 
 
3 Presented failure mechanisms 
 
3.1 Sliding mechanism 

The four-block failure mechanism for 
determining sliding safety factor in the seismic state 
is presented in Figure 2. 

This mechanism includes three triangular 
blocks and a polyhedral block C. It is evident that 
the weights of the wall and soil are considered in 
the block C. The angle of friction between concrete 
and the soil in the block C was assumed (δ). For the 
mechanism to perform correctly, the extensions of 
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Figure 2 Four-block mechanism for determining sliding 

safety factor in seismic state 

 
the velocity vector in behind, under and front of the 
base with respect to the horizontal, are required to 
be aligned. Therefore, the extension of the velocity 
vector in front of and behind the base must make an 
angle of (δ–d) with the failure surface (which is 
shown in the block C). The work done by internal 
and external forces is calculated by Eqs. (5) and (6): 
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where L is the length of the failure surface; γ and γc 
are the unit weights of the soil and concrete 
respectively; ,oa  ab  … are absolute and relative 
velocity vectors on failure surfaces. The values of 
Cd and d are obtained from Eqs. (7) and (8): 
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where δ and Cδ are obtained from Eqs. (9) and (10): 
 
δ=kd                                                      (9) 

Cδ=kCd                                      (10) 
 

In Eqs. (9) and (10), δ and Cδ are, the reduced 
cohesion and friction angle between the soil and 
concrete, and values of k are normally assumed 
between 0 and 1. 

The velocity vectors are considered to be in 
the form shown in Figure 3, and are obtained from 
Eqs. (11) to (17). Considering the failure wedges in 
Figure 2, and assuming 6 that input parameters (α), 
the unknown parameters can be obtained. Relative 
and absolute velocity vectors in the upper bound 
limit method are similar to Figure 3 and are 
obtained by Eqs. (11) to (17). 
 

 
Figure 3 Relative and absolute velocity vectors for 

sliding stability 
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According to principles of the upper bound 

method and the velocity vectors shown in Figure 3, 
by equating the work done by internal and external 
forces (given the presence of Fs on both sides of the 
equation), the safety factor for sliding is obtained 
by trial and error. In order to determine the 
minimum sliding safety factors for the wall, the 
equations were programmed using MATLAB and 
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the minimum values for the safety factor and 
unknown angles were computed by the genetic 
algorithm. 
 
3.2 Deep failure mechanism 

The five-block failure mechanism for 
determining the deep shear failure safety factor in 
the seismic state is presented in Figure 4. 
 

 
Figure 4 Mechanism for determining deep shear safety 

factor in seismic state 

 
As shown in Figure 4, this mechanism 

includes four triangular blocks and a polyhedral 
block C. It is evident that the weights of the wall 
and soil are considered in the block C. The work 
done by internal and external forces is calculated by 
Eqs. (18) and (19): 
 

Wg=
2

1
γ{ oa( sinθ9L12L24sinα2)ꞏ(1+Kv+Khcotθ9)+ 

ob( sinθ10L23L24sinα4)ꞏ(1+Kv+Khcotθ10)+ 

oc( sinθ11)ꞏ(1+Kv+Khcotθ11)ꞏ[L512L56sinα6+ 

L67Dsinβ8+2bd

 c +(2b3+b2+b4)hstem


 c + 

2(D–d)b1+(b6+b5)hstem+L312L313sinβ16]+ 
od( sinθ12L57L58sinα7)ꞏ(–1–Kv+Khcotθ12)– 

oe( sinθ13L78L89sinα9)ꞏ(–1–Kv+Khcotθ9)}+ 

q[L14 oa sinθ9+b6 oc sinθ11]              (18) 
 
E=Cdcosd[L12 oa +L23 ob +(L312+L512) oc +L58 od + 

L89 oe +L24 ab +(L413+L313) bc +L57 cd +L78 de ] 

(19)  
The velocity vectors are considered to be in 

the form shown in Figure 5, and are obtained by 
Eqs. (20) to (27). Considering the failure wedges in 
Figure 4, and assuming 8 input parameters (α), the 
unknown parameters can be obtained. Relative and 
absolute velocity vectors in the upper bound limit 
method are similar to those shown in Figure 3 and 

 

 
Figure 5 Relative and absolute velocity vectors for 

stability deep shear failure 

 
are obtained by Eqs. (20) to (27). 
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Table 1 shows the minimum safety factors 

obtained based on the proposed stability 
mechanisms. These values have been obtained by 
coding the equations in MATLAB and then 
applying the genetic algorithm. Table 1 shows the 
good quality of optimization of safety factors based 
on the geotechnical and seismic parameters. 

 
3.3 Determining of seismic active coefficient 

The seismic active force exerted on the 
retaining wall can be calculated based on the failure 
mechanism shown in Figure 6. 

As Figure 6 shows, by equating the work done 
by internal and external forces, the seismic force 
(Pae) is determined by Eq. (28) based on the  
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Table 1 Minimum safety factors obtained based on proposed stability mechanisms 

Optimized 
parameter 

C=0 kPa, kv=0 C=10 kPa, kv=1/2kh 

Kh=0  Kh=0.1 Kh=0.2 Kh=0  Kh=0.1 

=20°  30°   40°   =20°  30°  40°  =20°  30°  40°  =20°  30°   40°   =20°  30°   40°

Safety 
factor sliding 

0.85 1.36 1.96  0.73 1.14 1.67 0.62 0.98 1.42 1.43 1.98 2.57  1.20 1.62 2.15

Safety factor 
deep shear failure 

1.13 1.76 2.58  0.99 1.52 2.28 0.89 1.44 2.05 1.65 2.33 3.15  1.39 1.93 2.62

h=7 m, γ=17 kN/m3 , δ=2/3, Cd=2/3C, b1=2.5 m, b2=0.1 m, b3=0.3 m, b4=0.1 m, b5=2.5 m, D=1.2 m, d=0.7 m, γc=24 kN/m3, q=0. 

 

 
Figure 6 Failure mechanism for seismic active force 

 
proposed failure mechanism. 
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According to Eq. (28), assuming four input 
parameters (a’s), the seismic active force values can 
be obtained. In order to determine the critical force 
exerted on the wall, the maximum active force 
should be computed through the genetic algorithm. 
The values for relative and absolute vectors based 
on the proposed mechanism are presented in  
Figure 7 and can be obtained by Eqs. (31) to (35). 
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Figure 7 Velocity vectors plotted based on proposed 

failure mechanism 
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The values for the seismic active coefficient of 
the soil (Kae=Pae/[(1/2)γh2(1–Kv)]) are presented in 
Table 2. Based on the proposed mechanism  
(Figure 6), the maximum force can be determined 
by assuming four input parameters (the a’s) and 
using the genetic algorithm. 

According to Figure 6, the angle β5 can assume 
a range of values from negative to positive. 
Changing the value of angle β5, change the seismic 
active coefficient. The changes of this coefficient 
are presented in Table 2 considering the variation of 
angle β5. The results show that increasing the angle 
with respect to zero (positive value) increases the 
seismic active coefficients, and decreasing the angle 
with respect to zero (negative value) decreases the 
seismic active coefficients. It is evident that the 
value of angle β5 is influenced by the length of the 
heel (b5). In other words, the variation of the heel 
length (b5) can change angle β5 and the seismic 
active coefficient of the soil. In general, in order to 
maximize the seismic active force, failure wedges 
tend to make angles larger than zero with respect to 
the vertical (β5>0). 
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4 Results comparison 
 

The results of the current research are 
compared with the limit equilibrium and FEM 
methods in Tables 3 and 4. In order to determine the 
safety factors in the limit equilibrium method, 
failure mechanisms are assumed to be circular and 
planar. The minimum values obtained from the 
analyses are presented in the tables. In the limit 
equilibrium method, the methods proposed by 
MORGENSTEN et al [41] and BISHOP [42] were 
used for calculation of safety factors [41, 42]. The 
minimum values for the safety factors are presented 
in Tables 3 and 4. 

As shown in Tables 3 and 4, the values for 
safety factors obtained in the present study are 
lower than those determined by the limit 

equilibrium method. Overall, the results of the 
upper bound limit method are in good agreement 
with FEM and limit equilibrium methods. The 
failure mechanisms obtained both in the present 
study and FEM are presented in Figure 8. It should 
also be noted that the failure mechanisms proposed 
in this study are in line with that obtained through 
finite element analysis. 

To determine the accuracy of the proposed 
failure mechanism (Table 5), the values obtained in 
this study for the seismic active force are compared 
with the results of other well-known methods. This 
comparison shows that the results of this study are 
quite consistent with the results [25–27] and limit 
analysis of CHANG et al [39]. 

SHUKLA et al [43] have also developed a 
process for estimating the seismic active force for  

 

Table 2 Maximum seismic active coefficient obtained based on proposed mechanisms 

Optimized 
parameter 

Kh=0 Kh=0.1 Kh=0.2 

=20° =30° =40° =20° =30° =40° =20° =30° =40° 

Kae  
(β1+α4=90°) 

0.43 0.30 0.21 0.52 0.37 0.27 0.65 0.47 0.36 

Kae 

 (β1+α4=70°) 
0.61 0.50 0.43 0.73 0.61 0.54 0.89 0.76 0.69 

Kae 
(β1+α4=110°) 

0.31 0.17 0.09 0.40 0.23 0.14 0.53 0.32 0.19 

kv=0, δ= , q=0, C=0. 
 
Table 3 Minimum safety factors obtained based on proposed stability mechanisms on sliding stability 

Sliding stability 

δ=1/2, C=0, Kv=0 Kh=0.1, Kv=1/2 Kh, δ=2/3, Cδ=2/3C 

Kh=0  Kh=0.1 Kh=0.2 C=5 kPa  C=10 kPa 

=30° =40°  =30° =40° =30° =40° =30° =40°  =30° =40°

FEM 1.297 1.854  1.043 1.514 0.862 1.232 1.367 1.899  1.626 2.147

Ref. [42] 1.391 1.964  1.146 1.618 0.972 1.373 1.588 2.158  1.817 2.389

Ref. [41] 1.46 2.056  1.237 1.746 1.105 1.565 1.726 2.345  1.968 2.587

Current research 1.268 1.859  1.048 1.523 0.885 1.289 1.465 2.016  1.724 2.276

h=6 m, D=1 m, d=0.6 m, b1=2.5 m, b2=0.2 m, b3=0.3 m, b4=0.2 m, b5=2.5 m, γ=18 kN/m3, γc=24 kN/m3. 

 
Table 4 Minimum safety factors obtained based on proposed stability mechanisms on deep shear failure 

Deep shear failure 

δ=1/2, C=0, Kv=0 Kh=0.1, Kv=1/2 Kh, δ=2/3, Cδ=2/3C 

Kh=0  Kh=0.1 Kh=0.2 C=5 kPa  C=10 kPa 

=30° =40°  =30° =40° =30° =40° =30° =40°  =30° =40°

FEM 1.841 2.705  1.513 2.246 1.263 1.861 1.804 2.541  2.083 2.816 

Ref. [42] 1.867 2.305  1.603 2.308 1.117 2.026 1.795 2.505  2.021 2.733 

Ref. [41] 2.185 3.151  2.13 3.081 2.132 3.092 2.296 3.237  2.531 3.464 

Current research 1.883 2.739  1.609 2.357 1.459 2.033 1.842 2.574  2.071 2.799 

h=6 m, D=1 m, d=0.6 m, b1=2.5 m, b2=0.2 m, b3=0.3 m, b4=0.2 m, b5=2.5 m, γ=18 kN/m3, γc=24 kN/m3. 
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Figure 8 Failure mechanisms as determined by FEM: (a) Total displacement sliding stability failure; (b) Shear strain 

sliding stability failure; (c) Total displacement deep shear failure; (d) Shear strain deep shear failure 

 
Table 5 Comparison of maximum seismic active coefficient obtained based on proposed mechanisms 

Analytical method 

β1+α4=90°, Kv=0, δ=, C=0 Kh=0.1 

Kh=0  Kh=0.1 Kh=0.2 β1+α4=75°  β1+α4=120° 

=30 =40°  =30° =40° =30° =40° =30° =40°  =30° =40°

Refs. [25–27] 0.30 0.21  0.37 0.27 0.47 0.36 0.55 0.47  0.19 0.09 

Ref. [39] 0.30 0.21  0.37 0.27 0.47 0.36 0.53 0.45  0.18 0.09 

Current research ` 0.30 0.21  0.37 0.27 0.47 0.36 0.53 0.45  0.18 0.09 

 
C- soil. In this method, the angle friction and 
cohesion between the soil and wall and the depth of 
tensile crack are ignored. In Table 6, the results 
obtained in this study are compared with the results 
provided by SHUKLA et al [43]. This comparison 
shows a good agreement between the results of the 
present method and those provided by SHUKLA  
et al [43] for a variety of geotechnical and seismic 
profiles. 

In 2015, KLOUKINAS et al [18] investigated 
the seismic response of cantilever retaining walls 
via limit equilibrium method and shaking Table 
tests. In Table 6, the results of the present study are 
compared with those obtained by KLOUKINAS  
et al [18] for three laboratory-sized models. In  
Table 7, γ is the unit weight of backfill, γf is the unit 
weight of the soil under the base, γAL is the unit 
weight of the aluminum wall,  is the angle of 

internal friction of backfill, f is the angle of 
internal friction under the base, δ is the angle of 
friction between the soil and the base, while ah is 
the horizontal earthquake acceleration. Table 7 also 
compares the results obtained by the proposed 
method, finite element method, and limit 
equilibrium method, with respect to critical 
acceleration for sliding and shear failure under the 
base (ah.SL and ah.BC), assuming that the critical 
factors of safety against sliding and shear failure 
under the base are 1 (columns 1 and 3). Columns 2 
and 4 of Table 7 present the stability safety factors 
obtained based on these critical acceleration 
coefficients. The results obtained in this study show 
great consistency with the results obtained by these 
methods. 

However, it should be noted that the ultimate 
purpose of calculating the active force is to check 
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Table 6 Comparison of maximum seismic active coefficient in this study with results provided by SHUKLA et al [43] 

Analytical 
method 

δ=0, Cδ=0, kv=0, q=0 

C=5 kPa C=15 kPa 

kh=0.1  kh=0.2 kh=0.3 kh=0.1  kh=0.2 

=15° =25° =35°  =15° =25° =35° =15° =25° =35° =15° =25° =35°  =15° =25° =35°

Ref. [43] 0.55 0.37 0.24  0.66 0.46 0.31 0.84 0.56 0.39 0.31 0.17 0.08  0.40 0.25 0.14

Current 
Research 

0.55 0.37 0.24  0.66 0.46 0.31 0.84 0.56 0.39 0.31 0.17 0.08  0.40 0.25 0.14

 
Table 7 Results of present study compared with results provided by KLOUKINAS et al [18] for three laboratory-sized 

models 

Analysis 
method 

Model 1: b1=70 mm, b2=b4=0, 
b3=30 mm, b5=300 mm, 

d=30 mm, δ=23.5° 

Model 2: b1=b2=b4=0, b3=30 mm, 
b5=250 mm, d=30 mm, δ=23.5° 

Model 3: b1=b2=b4=0, b3=30 mm, 
b5=250 mm, d=30 mm, δ=28.5° 

Critical 
acceleration 

ah.SL/g 

FSBC

at 
ah.SL

Critical 
acceleration 

ah.BC/g 

FSSL

at 
ah.BC

Critical 
acceleration 

ah.SL/g

FSBC

at
ah.SL

Critical 
acceleration 

ah.BC/g 

FSSL

at 
ah.BC

Critical 
acceleration 

ah.SL/g 

FSBC 
at 

ah.SL 

Critical 
acceleration 

ah.BC/g

FSSL 
at 

ah.BC

Ref. [18] 0.18 — 0.35 0.68  — 0.17  0.93 0.23 — 0.17 1.14

Finite element 0.166 1.769 0.342 0.729 0.127 1.402 0.175  0.929 0.219 1.229 0.175 1.078

Current study 0.169 1.754 0.37 0.698 0.131 1.521 0.183  0.881 0.225 1.435 0.183 1.025

h=600 mm, γ=15.1 kN/m3, γf=15.1 kN/m3, γAL=27 kN/m3, =33.5°, f=42.5°. 
 
the wall’s structural strength and its stability against 
overturning, and not just to maximize the force. 
This implies that when assessing the critical 
conditions of the wall, as well as, the magnitude of 
the active force, its direction should also be taken 
into consideration. A particular force can be 
assumed to cause the most critical condition for 
wall stability, only when its magnitude and 
direction are simultaneously analyzed by the 
optimization of failure wedges (for sliding, 
overturning, or deep shear failure). 
 
5 Optimal geometry of wall considering 

critical failure mechanism 
 

As stated in previous sections, the dimensions 
of the wall influence the stability safety factors and 
the seismic active force of the wall. Therefore, the 
dimensions of the wall are to be optimized at the 
same time as the failure mechanisms of the soil are 
determined (to control the seismic stability safety 
factors of the wall). When designing a retaining 
wall by the upper bound method, the designer must 
try to minimize the weight of the wall as one 
maximizes the active force and minimizes the 
stability safety factor. Considering the fact that 
multiple parameters (active force, stability safety 
factors and the weight of the wall) are to be 

optimized, a multi-objective optimization should be 
used in the analysis. 
 
5.1 Determining stability safety factors of 

retaining wall 
When designing retaining walls, in order to 

control external stability of the wall, the stability 
safety factors must be higher than the allowable 
values. The minimum sliding safety factors and 
deep shear failure of the wall were assumed 1.2 in 
the present study [44]. 

Moreover, in order to prevent overturning of 
the retaining wall, common methods were used to 
determine the safety factor. The equations presented 
in ACI 318-05 were used in order to control the 
internal stability of the retaining wall, which is 
determined based on the Eq. (36). 
 




)goverturnin of moments the(

)goverturninagainst resistant  of moments the(
stF  

(36) 
 

In this study, the safety factor overturning was 
selected as 1.5 [44]. For optimizing the geometry of 
the wall and controlling the internal and external 
stability of the wall by the upper bound limit 
method, 25 parameters are to be optimized based on 
the proposed failure mechanisms according to  
Table 8. 
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Table 8 Parameters optimized based on proposed 

mechanisms 

Controlled variable Optimization parameter 
Safety factor sliding stability 

(Figure 2) 
α1, α2, α3, α4, α5, α6 

Safety factor deep shear 
failure (Figure 4) 

α1, α2, α3, α4, α5, α6, α7, α8, α9

Maximum active force 
(Figure 6) 

α1, α2, α3, α4 

Wall geometry (Figure 2) b1, b2, b3, b4, b5, d 

 
Figure 9 shows the dimensions of an example 

retaining wall optimized by MATLAB, while 
simultaneously, the stability safety factors of the 

wall were controlled. It also shows the shape of the 
failure wedges. 

According to Figure 9, the critical failure 
wedges for determining the seismic active force of 
the wall are displayed in blue, the critical failure 
wedges for determining the sliding safety factor of 
the wall are displayed in green and the critical 
failure wedges for determining the deep shear 
failure of the wall are shown in red. The optimal 
dimensions obtained in this study are presented in 
Table 9 along with the those obtained by the 
common wall design method (limit equilibrium). 
FSr is the sliding safety factor; FSt is the overturning 

 

  
Figure 9 Critical failure wedges for determining seismic active force of wall (output MATLAB) 

 

Table 9 Optimal dimensions obtained in this study, as well as those obtained by common wall design method 

Analysis 
method 

Condition 

Kv=0, D=1.2 m, q=0, γ=18 kN/m3, γc=24 kN/m3, δ=2/3, Cδ=2/3C 

b1 b2 b3 b4 b5 d Fsr Fst Fsbc 
FEM 

Fsr Fsbc 

Common 
method for 
wall design 

h=6 m, 
=35°, 

C=0 kPa, 
Kh=0.15 

1.4 0.2 0.3 0.2 1.2 0.4 1.22 1.92 3.18 1.16 1.33 

Current study 1.2 0.1 0.3 0.1 1.4 0.4 1.21 1.91 1.62 1.17 1.31 

Common 
method for 
wall design 

h=7 m, 
=30°, 

C=5 kPa, 
Kh=0.1 

1.9 0.2 0.3 0.2 2.2 0.6 1.21 2.67 3.01 1.23 1.47 

Current study 1.4 0.1 0.3 0.1 1.3 0.5 1.22 1.88 1.55 1.19 1.27 

Common 
method for 
wall design 

h=7 m, 
=25°, 

C=15 kPa, 
Kh=0.2 

3 0.2 0.3 0.3 1.4 0.6 1.21 2.31 3.06 1.21 1.49 

Current study 1.7 0.1 0.3 0.1 1.9 0.5 1.32 2.1 1.49 1.29 1.44 
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safety factor; Fsbc is the safety factor deep shear 
failure. 

In the common method for designing retaining 
walls (limit equilibrium), the minimum safety 
factors for overturning, sliding and bearing capacity 
were assumed in accordance with regulations 1.5, 
1.2, and 3 [45]. The stability safety factors in FEM, 
the limit equilibrium method (the common design 
method) and the upper bound limit method (the 
present study) are compared in Table 10. 

According to Table 10, the dimensions of the 
wall were first optimized by the limit equilibrium 
method and then, considering the obtained optimal 
dimensions, the safety factors were calculated by 
FEM and upper bound limit methods. In all cases, 
the results show the safety factors obtained by the 
upper bound limit method to be larger than the 
minimum values allowed by the regulations and to 
have good agreement with FEM results. Therefore, 
the upper bound limit method (based on the 
proposed mechanisms), provides the optimal 
dimensions for the retaining wall that are close to 
the results of the limit equilibrium method. 
However, further investigations following the 
present study can offer the minimum allowed safety 
factors for controlling the external stability of 
cantilever retaining walls using the upper bound 
limit method. 

The results show that the proposed algorithm 
can be used for designing the cantilever retaining 
walls through simultaneous examination of stability 
factors along with internal stability checks. One 
feature of this algorithm is that in the presence of 
complex loading and layering conditions behind or 
under the base, as well as, the presence of a 
near-surface hard layer or other complex conditions, 
the retaining wall can still be designed for C- soil 
with just some changes in formulation. 

 
6 Critical direction of earthquake force 

for instability of retaining walls 
 

When designing the retaining walls using the 
upper bound and limit equilibrium methods, a 
hypothetical mechanism should be selected for 
calculating the minimum values of the safety factor 
for wall stability. In the seismic design of these 
walls, the results are influenced not only by the 
shape of the failure mechanism, but also by the 
magnitude and direction of the earthquake 
coefficients. The direction of the resultant seismic 
acceleration varies from one earthquake to another. 
Although HOUSNER [46] claimed that Kv≈(1/2– 
2/3) kh for most earthquakes, current practice tends 
to assume that the seismic acceleration is essentially 
horizontal (θ=0°). The effect of this assumption on 
the results of analyses depends on how much the 
most critical direction differs from the horizontal 
direction, how the actual seismic acceleration 
differs from the horizontal and what is the 
magnitude of the earthquake. 

In 1990, CHEN et al [29] determined the 
critical direction of the earthquake acceleration 
coefficient. They attempted to determine the 
earthquake acceleration direction that maximizes 
the active force exerted on the wall. Nevertheless, 
the goal of maximizing the force is to minimize the 
safety factor for wall stability. Therefore, in this 
study, the critical direction of the earthquake 
acceleration coefficient is assumed to maximize the 
active force and minimize the stability safety 
factors. The resultant acceleration of earthquake is 
defined according to Eq. (37): 
 

2 2
h vK K K                           (37) 

 
where Kh is the horizontal earthquake acceleration 

 
Table 10 Values of stability safety factors in FEM, limit equilibrium method (common design method) and upper bound 

limit method (present study) 

Analysis method 

Kh=0, C=0 Kh=0.1, C=0 Kh=0.2, C=10 kPa 

=30°  =40° =30° =40° =30°  =40° 

Fsr Fsbc  Fsr Fsbc Fsr Fsbc Fsr Fsbc Fsr Fsbc  Fsr Fsbc

The common method 1.21 3.29  1.86 6.3 1.2 3.35 1.51 6.34 1.33 5.26  1.6 8.18

FEM 1.13 1.33  1.37 1.51 1.14 1.42 1.35 1.61 1.24 1.57  1.58 1.87

Current Study 1.15 1.49  1.51 1.87 1.15 1.69 1.41 1.98 1.31 1.79  1.59 2.02

h=7 m, D=1 m, q=0, γ=18 kN/m3, γc=24 kN/m3, δ=2/3, Cδ=2/3C. 
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coefficient, and Kv is the vertical earthquake 
acceleration coefficient, which gives the direction 
of earthquake acceleration as shown in Eq. (38): 
 

1 v

h

tan
K

K
   

  
 

                          (38) 

 
To determine the critical direction and 

magnitude of seismic force, the parameters (ηψ) are 
defined in Eq. (39): 
 

ae 0

ae 0

( )

( )

K

K





 


                           (39) 

 
In this equation, (Kae)ψ=0 represents the value 

of seismic active force coefficient when the 
earthquake acceleration coefficient (k) has a 
horizontal orientation. Changing the direction of 
earthquake with respect to horizon will change the 
value of ηψ. Critical direction of the earthquake 
acceleration (ψcr) is defined as the direction that 
maximizes the value of ηψ. 

Figure 10 shows the values of normalized Kae 
against the values of ψ for different earthquake 
coefficients based on the failure mechanisms 
discussed in the previous sections. The results 
indicate that as k increases, so does ηψ’s rate of 
decline, and the maximum (Kae)ψ=ψcr can be 
observed in ψ=30°–45°. 
 

 
Figure 10 Changes in parameter ηψ for normalized value 

of seismic active force coefficient 

 

Figure 11 illustrates the changes in direction of 
earthquake acceleration versus parameter ηψ for 
normalized stability safety factors. The results 
indicate that determining the critical acceleration 
direction with the purpose of minimizing the 
stability safety factor yields a ψcr equal to 15°–30° 
(to the horizontal). Changing the values of the 

 

  
Figure 11 Changes in parameter ηψ for normalized:    

(a) Overturning safety factors; (b) Bearing capacity 

safety factors; (c) Sliding safety factors (h=6, b1=2.5, 

b2=0.2, b3=0.3, b4=0.2, b5=2.5, D=I, d=0.6, γc=24 kN/m3) 

 
earthquake coefficient and increasing or decreasing 
ψ, increases the rate of change in ηψ, which are 
negligible around ψcr. So these values can be 
suggested as the critical direction to be employed 
when designing the cantilever retaining walls with 
the purpose of minimizing their stability safety 
factors. 
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Generally, the results indicate that the exertion 
of vertical earthquake acceleration not only 
increases the magnitude of the resultant acceleration, 
but can also changes the direction of the resultant 
acceleration towards critical orientation, thereby 
reducing the wall stability safety factor. 

Given that the maximum acceleration in 
majority of earthquakes is horizontal and that most 
relationships and software, commonly applied for 
designing the cantilever retaining walls, have been 
formulized such that they require vertical and 
horizontal acceleration coefficients as inputs, the 
critical earthquake acceleration direction is 
substituted into Eq. (38) to obtain the critical 
vertical acceleration coefficient as expressed in  
Eq. (40): 
 
Kv=Khtanψcr                           (40) 
 

In this case, hv 3

2

3

1
KK 





   is obtained by   

Eq. (40). 

Therefore, assuming that hv 3

2

3

1
KK 





  , it 

will lead to the resultant earthquake coefficient to 
align with critical orientation. The safety factors for 
controlling the external stability of cantilever 
retaining walls will be minimized by the upper 
bound limit method. The results obtained in this 
study are in line with the results of Husner, who 

proposed hv 3

2

2

1
KK 





  for vertical earthquake 

coefficients. 
 
7 Conclusions 
 

1) The present study presented a new 
algorithm for pseudo-static analysis of retaining 
walls using the upper bound method. This algorithm 
can be utilized to design and check the external and 
internal stability of the wall based on the proposed 
mechanism. 

2) Comparing the findings of the current 
research with the results of other studies showed 
that the results obtained from the upper bound 
method are consistent with those of similar studies 
conducted based on the limit equilibrium method 
and finite element analysis. 

3) The results showed that the dimensions of 
the wall influence the stability safety factors and the 
seismic active force of the wall. Therefore, the 

dimensions of the wall are to be optimized at the 
same time as the failure mechanisms of the soil are 
determined (to control the seismic stability safety 
factors of the wall). When designing a retaining 
wall by the upper bound method, the designer must 
try to minimize the weight of the wall as one 
maximizes the active force and minimizes the 
stability safety factor. 

4) The results showed that the exertion of 
vertical earthquake acceleration not only increases 
the magnitude of the resultant acceleration, but also 
pushes the direction of the resultant acceleration 
towards the critical orientation and reduces the wall 
stability safety factor. Determining the critical 
direction of the earthquake acceleration with the 
purpose of minimizing the stability safety factor 
gives ψcr=(15°–30°) (to the horizontal). Therefore, 
these values can be suggested as the critical 
direction to be utilized when designing the 
cantilever retaining walls with the purpose of 
minimizing their stability safety factors. 

5) In this study, the stability safety factor, 
seismic active force, and geometric dimensions of 
the wall were simultaneously optimized via multi- 
objective optimization with genetic algorithm. 
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中文导读 
 

采用上限分析方法对悬臂式挡土墙进行伪静力分析 
 
摘要：鉴于悬臂式挡土墙在建设和开发项目中的广泛应用，合理考虑地震荷载的优化设计和分析是一

个典型的工程问题。本文提出了一种利用上限法进行挡土墙拟静力分析的新算法。该算法可用于基于

该机理墙体内外稳定性设计和校核。该算法的主要特点之一是能够有效地利用多目标优化，同时确定

失效楔块的临界条件、作用在墙体上的最小安全系数和最大受力，以及墙体的最小重量。由所提出的

失效机制所得到的结果表明，在使用上限极限分析方法时，作用力的最大化应同时考虑通过墙根后部

平面方向的优化。本文还应用该算法确定了地震加速度系数的临界方向。地震加速度系数的临界方向

定义为作用在墙体上的最大力方向，以保证墙体稳定的安全系数最小。本研究结果与基于极限平衡法

和有限元分析的类似研究结果一致，通过遗传算法优化确定了关键失效机制。 
 
关键词：挡土墙；上限；伪静态的分析；安全系数；多目标优化 


