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Abstract: Given the extensive utilization of cantilever retaining walls in construction and development projects, their
optimal design and analysis with proper attention to seismic loads is a typical engineering problem. This research
presents a new algorithm for pseudo-static analysis of retaining walls employing upper bound method. The algorithm
can be utilized to design and check the external and internal stability of the wall based on the proposed mechanism. One
of the main features of this algorithm is its ability to determine the critical condition of failure wedges, the minimum
safety factor and maximum force acting on the wall, as well as the minimum weight of the wall, simultaneously, by
effectively using the multi-objective optimization. The results obtained by the proposed failure mechanisms show that,
while using the upper bound limit analysis approach, the active force should be maximized concurrent with optimizing
the direction of the plane passing through the back of the heel. The present study also applies the proposed algorithm to
determine the critical direction of the earthquake acceleration coefficient. The critical direction of earthquake
acceleration coefficient is defined as the direction that maximizes the active force exerted on the wall and minimizes the
safety factor for wall stability. The results obtained in this study are in good agreement with those of similar studies
carried out based on the limit equilibrium method and finite element analysis. The critical failure mechanisms were
determined via optimization with genetic algorithm.
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of retaining walls, the purpose of determining the

1 Introduction

Better performance of cantilever retaining
walls, when compared with the gravity retaining
walls, makes them a more preferable option for
earthquake-prone areas. The assessment of stability
and force acting on the retaining walls is a classical
topic in geotechnical engineering. The existing
literature in the field provides a number of different
methods for evaluating the stability of retaining
walls [1-4]. In problems pertaining to the stability
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active and passive forces acting on the walls is to
investigate the internal and external stability. Most
works carried out on the stability of retaining walls
have ignored the passive earth pressure in front of
the wall [5-11]. Other researchers have investigated
the effect of buried depth of foundation on the
stability of the wall. However, in all these studies,
the weight of the wall has been ignored [12—15].

As a result of the significant effect of weight
and buried depth of the wall on its safety factors,
such assumptions create an error in wall stability
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checks, especially during the seismic analysis. In
2010, LI et al [16] assumed a failure block on a
gravity wall and utilized the upper bound method to
examine the wall stability against sliding. In 2011,
DI SANTOLO et al [17] indicated that a change in
the direction of this plane along the vertical axis
changes the magnitude of active force exerted on
the wall. In 2015, KLOUKINAS et al [18]
investigated the seismic response and stability of a
cantilever retaining wall by limit equilibrium
analysis and shaking table models [18]. In this
method, originated from Coulomb theory, active
force on the wall is calculated by a pseudo-static
analysis. Considering the presence of a heel in this
wall-direction, the force is determined by assuming
a vertical plane passing through the end of the heel.
Therefore, to determine the most critical state of the
wall stability, maximization of the active force
should be performed
concurrently with optimizing the direction of the
plane passing through the back of the heel. The
seismic pressure in retaining walls can be
determined using various methods [19-24], the
most famous of which is the one provided by
MONONOBE and OKABE [25-27], also known as
M-O theory. In the M-O theory which is a direct
expansion of Coulomb theory, vertical and
horizontal forces behind the wall are determined by
pseudo-static analysis. In all mentioned studies,
critical failure wedges are determined based on the
maximization of active force for earthquake
conditions. Nevertheless, it should be noted that in
actual design processes, the purpose of calculating
the active and passive forces is to ensure the
external stability by checking the factors of safety
against sliding, overturning, and bearing capacity
failure, and also to ensure the internal stability by
checking the shear and bending, etc. within the wall
structure; thus, in this study, the critical failure
wedges are determined by the maximization of the
exerted force and the minimization of the safety
factor for wall stability via upper bound limit
analysis. The assumptions made at the time of
designing the retaining walls by limit state methods
have been evaluated by different researchers [28,
29]. Coulomb introduced the concepts of plasticity
to soil mechanics for the first time [30], and
Rankine applied plasticity concepts to an infinite
region of the soil [31]. FINN showed that the limit

exerted on the wall

state methods can be employed more reliably using
the results from the experimental observations [32].

Generally, in limit state methods, shape of the
failure wedges in the soil behind the wall are
influenced by the rotation and displacement of the
wall. These results were presented in the studies by
JAMES and BRANSBY for the effective force on
retaining walls [33]. CHEN and ROSENFARB
employed the upper bound limit method in order to
determine the force exerted on retaining walls [34].
Thus far, most of the theories applied in the
retaining wall design were either upper bound limit
or the limit equilibrium methods [26, 35, 36].
CALTABIANO et al [37] used the limit equilibrium
method to determine the sliding of the retaining
wall in static and dynamic states. LI et al [38] used
the upper bound limit method to investigate the
seismic stability of gravity walls. Furthermore,
NAMA et al [4] employed three optimization
methods in order to determine the active force
exerted on the retaining walls. When determining
the active force of retaining walls, the calculated
force would be lower than the actual failure force
value if the assumed velocity field meets the
consistency and boundary conditions of the
problem. In the upper boundary method, both the
force exerted on the wall and the wall stability are
influenced by the shape of wall’s failure wedges
[39]. In the conventional retaining wall design
methods, the safety factor of external stability
against sliding and overturning are defined as the
ratio of passive to active forces. The values of both
parameters are independent of wall dimensions.

In the present study, transition failure
mechanisms were presented for investigating the
stability of cantilever retaining walls through upper
bound limit method. The proposed algorithm was
also used to determine the critical direction of
earthquake acceleration coefficients. In the
proposed method, the impact of wall dimensions
and geometry on the stability safety factors in the
seismic state was investigated. This stability is the
stability against sliding and deep shear failure.

2 Formulation and optimization method
Figure 1 shows the failure mechanisms used to

determine the seismic stability safety factors of the
retaining wall against sliding using the upper bound
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while, the external work is obtained by Eq. (3).
W, =D AG[1+ K, + K, cot(ay — 4]V -
k=1
sin(a; —¢q)} 3)

Block k

Figure 1 Failure mechanisms used to determine seismic
stability and velocity vectors

limit analysis method [40]. This mechanism is
composed of 4 blocks that are only associated with
transitional displacement.

Using the upper bound method requires the
calculation of the increments caused in the work by
external (£) and internal (W;) loads. The work done
by internal loads is calculated by Eq. (1):

E=Cd'cos¢d'Z(Lk'Vk""tk‘[V]k) (1)
k=1
where L is the length of the failure line with
external boundaries; # represents the length of the
failure line between two internal blocks; Vj is the
absolute velocity vector of the wedge k; [V]x is the
relative velocity vector between the wedges £ and
k—1; ¢q and Cy are, respectively, reduced internal
friction angle and soil cohesion, which are obtained

by Eq. (2).
_tang C
*tang, C,

)

where a; and Gy are the angles of the failure line of
the wedge k£ with respect to the horizontal and the
weight of the wedge £, respectively. Now, equate
the work by internal and external loads and
substitute Cqand ¢ with C and ¢, in which F5 is
obtained from Eq. (4) by trial and error. In this
equation, ¢ is the soil friction angle and ¢ is the soil
cohesion, also k, and Ay are, respectively, vertical
and horizontal earthquake acceleration coefficient.

C-cosgy 'Z{Lk Vi +t -V}
o =l

(G (I+k, +ky cot(ay —@q)) -V -sin(a —¢4)]

“)

In this study, in order to determine critical

failure wedges (minimum stability safety factors,

and the maximum seismic active force exerted on

the wall) genetic algorithms were used for optimize

the wall. The following was used as input
parameters for the algorithm [40]:

Peross= 07; Pmutationzo-os, Manen: 700, Np0p=2000.

M=

-
n

where Npopis the number of the population; Peross 1S
the crossover probability; Maxge, is the size of
generations; Pmutation 1S the mutation probability.

In this study, the goal is the simultaneous
optimization of safety factor for wall stability,
seismic active force, and geometric dimensions of
the wall, and this goal is realized through
multi-objective  optimization  with  genetic

algorithm.
3 Presented failure mechanisms

3.1 Sliding mechanism

The four-block failure mechanism for
determining sliding safety factor in the seismic state
is presented in Figure 2.

This mechanism includes three triangular
blocks and a polyhedral block C. It is evident that
the weights of the wall and soil are considered in
the block C. The angle of friction between concrete
and the soil in the block C was assumed (J). For the
mechanism to perform correctly, the extensions of
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Figure 2 Four-block mechanism for determining sliding

safety factor in seismic state

the velocity vector in behind, under and front of the
base with respect to the horizontal, are required to
be aligned. Therefore, the extension of the velocity
vector in front of and behind the base must make an
angle of (d—¢4) with the failure surface (which is
shown in the block C). The work done by internal
and external forces is calculated by Egs. (5) and (6):

1 L=
W, :E}/{(LIZL14 sina oasing,)-(1+ K, + K, cot,) +

(LysLoy sin azobsin ) -(1+ K, + K, cot )+

(0csinby)-(—1- K, + K, cot 0y)-[L<(2bd + (b, +
e

2b3 +b4)hstem) + (bS +b6 )hstem +L35L56 sin ﬂ7 +

2b,(D ~d) + Ly Loyg sin S, 1} + q(Lyg0asin 6; —

by ocsin by) %)

L9115+L24E+L34E+L795+

Lsy0] (6)

where L is the length of the failure surface; y and y.
are the unit weights of the soil and concrete
respectively; oa, ab *- are absolute and relative
velocity vectors on failure surfaces. The values of
Cq and ¢y are obtained from Egs. (7) and (8):

gy =tan”" (tF—¢j ™

S

S

Cy= tan ! [%J (8)

where ¢ and Cjare obtained from Egs. (9) and (10):
0=k¢q )

Cs=kCy (10)

In Egs. (9) and (10), é and Csare, the reduced
cohesion and friction angle between the soil and
concrete, and values of k£ are normally assumed
between 0 and 1.

The velocity vectors are considered to be in
the form shown in Figure 3, and are obtained from
Egs. (11) to (17). Considering the failure wedges in
Figure 2, and assuming 6 that input parameters (a),
the unknown parameters can be obtained. Relative
and absolute velocity vectors in the upper bound
limit method are similar to Figure 3 and are
obtained by Egs. (11) to (17).

05=a,~¢q
O5=Bs~0,

0y=0

0,0=B107 s
0,=6,~04
0,=05+0,
050,00,
0=n—0,~0,-2¢,
Os=n—0,—0,,~2 ¢4
O5=n=05~P1572¢4

Figure 3 Relative and absolute velocity vectors for

sliding stability
oa=1 (11)
@b = oq (%2 * 204) (12)
sin 6,
@b = 0a Sn0 (13)
sing,
&:O—Sin(aé‘ +2¢4) (14)
sin &5
be = op 02 (15)
sin &
azzsm(ﬂ}} +2¢4) (16)
sin G
od = oo S0 (17)
sin 6

According to principles of the upper bound
method and the velocity vectors shown in Figure 3,
by equating the work done by internal and external
forces (given the presence of F on both sides of the
equation), the safety factor for sliding is obtained
by trial and error. In order to determine the
minimum sliding safety factors for the wall, the
equations were programmed using MATLAB and
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the minimum values for the safety factor and
unknown angles were computed by the genetic
algorithm.

3.2 Deep failure mechanism

The five-block failure mechanism for
determining the deep shear failure safety factor in
the seismic state is presented in Figure 4.

Figure 4 Mechanism for determining deep shear safety
factor in seismic state

As shown in Figure 4, this mechanism
includes four triangular blocks and a polyhedral
block C. It is evident that the weights of the wall
and soil are considered in the block C. The work
done by internal and external forces is calculated by
Egs. (18) and (19):

Wg=% y{ (0a sinfoL12Lassinas)- (1+Ky+Kicotfo) -

(0b sinBioLasLassinas)- (1+K+Kincotho)+
(; sind, 1) : ( 1+K +Kncotbr ) : [L512L5()Si1’10£6+

LerDsinfs+2bd 7 +(2bs+bo+ba)hgem L& +
Y Ve

2@—d)bl+(b6+b5)hstem+lz312L313Sinﬂ 16]+
(od sin012L57Lsgsina7) . (*I*KV'FKhCOtle)*

(0e sindy3LrgLsosinas): (—1-Ky+Kncotfo) } +
C[[L14£ Sil’l@g‘i‘bézﬁl’l@n] (18)

E=Cqcosda[L12 0a +L23 ob +(L312+Ls12) oc+Lssod +
Lso oe +Laa ab +(Lai3tL313) be +Ls7cd +Ls de |

19)
The velocity vectors are considered to be in
the form shown in Figure 5, and are obtained by
Egs. (20) to (27). Considering the failure wedges in
Figure 4, and assuming 8 input parameters (a), the
unknown parameters can be obtained. Relative and
absolute velocity vectors in the upper bound limit
method are similar to those shown in Figure 3 and

Figure 5 Relative and absolute velocity vectors for
stability deep shear failure

are obtained by Egs. (20) to (27).

ob = oq 0@ +204) (20)
sin &5
@b = oa 0% 1)
sin &
oc = ob NP3 +204) 22)
sin 6
be=ob 3% (23)
sin &
od = oc Sin(ﬂ.w +2¢,) (24)
sin G
od = oc S0 (25)
sin G
co—od sin(ag +2¢4) (26)
sin &
P L 27)
sin &g

Table 1 shows the minimum safety factors
obtained based on the proposed stability
mechanisms. These values have been obtained by
coding the equations in MATLAB and then
applying the genetic algorithm. Table 1 shows the
good quality of optimization of safety factors based
on the geotechnical and seismic parameters.

3.3 Determining of seismic active coefficient

The seismic active force exerted on the
retaining wall can be calculated based on the failure
mechanism shown in Figure 6.

As Figure 6 shows, by equating the work done
by internal and external forces, the seismic force
(Pae) is determined by Eq. (28) based on the
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Table 1 Minimum safety factors obtained based on proposed stability mechanisms

C=0 kPa, k=0 C=10 kPa, kv=1/2kn
Optimized Ki=0 Kin=0.1 Ki=0.2 Ki=0 Ki=0.1
parameter
$=20° 30°  40°  $=20° 30° 40°  $=20° 30° 40° $=20° 30° 40° $=20° 30° 40°
Safety 085 136 196 073 1.14 167 062 098 142 143 198 257 120 162 215
factor sliding
Safety factor

deep shear failure .13 176 258 099 152 228

0.89 144 205 1.65 233 315 139 193 262

h=7m, y=17 kN/'m* , 6=2/3¢, Ca=2/3C, b1=2.5 m, b=0.1 m, b3=0.3 m, b4=0.1 m, b5=2.5 m, D=1.2 m, d=0.7 m, y=24 kN/m?, ¢g=0.

b, b, by b, bs
Figure 6 Failure mechanism for seismic active force

proposed failure mechanism.
P W,—E
7 cos(Bs +0)[5, tan(Ss + 5) + 5, ]

(28)

Wg: %@ ysin01 [E qL13+(L12L23sina2) :
Y

(1K A Kicot0 )+ (225002 1 1 sinas):
oasin 6,

(1+K+Kncotr)] (29)

Cscoso

E:CCOS¢(L12 a +104 % +L3 E +L34£)
Ccos¢

)
(30)

According to Eq. (28), assuming four input
parameters (a’s), the seismic active force values can
be obtained. In order to determine the critical force
exerted on the wall, the maximum active force
should be computed through the genetic algorithm.
The values for relative and absolute vectors based
on the proposed mechanism are presented in
Figure 7 and can be obtained by Egs. (31) to (35).

ob = oq 004 31)
sin 0,
b = 0q 500~ 6) (32)
sin 6,
dw=0b 02 (33)
sin 6

A

Figure 7 Velocity vectors plotted based on proposed
failure mechanism

5_}1:%@] 05 (34)
sin 6
5_V = obsin 0, (35)

The values for the seismic active coefficient of
the soil (Ku=Pao/[(1/2)yh*(1-K,)]) are presented in
Table 2. Based on the proposed mechanism
(Figure 6), the maximum force can be determined
by assuming four input parameters (the a’s) and
using the genetic algorithm.

According to Figure 6, the angle f5 can assume
a range of values from negative to positive.
Changing the value of angle 5, change the seismic
active coefficient. The changes of this coefficient
are presented in Table 2 considering the variation of
angle fs. The results show that increasing the angle
with respect to zero (positive value) increases the
seismic active coefficients, and decreasing the angle
with respect to zero (negative value) decreases the
seismic active coefficients. It is evident that the
value of angle fs is influenced by the length of the
heel (bs). In other words, the variation of the heel
length (bs) can change angle fs and the seismic
active coefficient of the soil. In general, in order to
maximize the seismic active force, failure wedges
tend to make angles larger than zero with respect to
the vertical (85>0).
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4 Results comparison

The results of the current research are
compared with the limit equilibrium and FEM
methods in Tables 3 and 4. In order to determine the
safety factors in the limit equilibrium method,
failure mechanisms are assumed to be circular and
planar. The minimum values obtained from the
analyses are presented in the tables. In the limit
equilibrium method, the methods proposed by
MORGENSTEN et al [41] and BISHOP [42] were
used for calculation of safety factors [41, 42]. The
minimum values for the safety factors are presented
in Tables 3 and 4.

As shown in Tables 3 and 4, the values for
safety factors obtained in the present study are
lower than the limit

those determined by

equilibrium method. Overall, the results of the
upper bound limit method are in good agreement
with FEM and limit equilibrium methods. The
failure mechanisms obtained both in the present
study and FEM are presented in Figure 8. It should
also be noted that the failure mechanisms proposed
in this study are in line with that obtained through
finite element analysis.

To determine the accuracy of the proposed
failure mechanism (Table 5), the values obtained in
this study for the seismic active force are compared
with the results of other well-known methods. This
comparison shows that the results of this study are
quite consistent with the results [25-27] and limit
analysis of CHANG et al [39].

SHUKLA et al [43] have also developed a
process for estimating the seismic active force for

Table 2 Maximum seismic active coefficient obtained based on proposed mechanisms

Optimized Ki=0 Kn=0.1 Ki=0.2

parameter #=20° #=30° #=40° #=20° #=30° ¢=40° #=20° #=30° $=40°
7 +Oliajgoo) 0.43 0.30 0.21 0.52 0.37 0.27 0.65 0.47 0.36
@ +§T=7oo) 0.61 0.50 0.43 0.73 0.61 0.54 0.89 0.76 0.69
@ +alff1 oy 031 0.17 0.09 0.40 0.23 0.14 0.53 0.32 0.19

k=0, =g, ¢=0, C=0.

Table 3 Minimum safety factors obtained based on proposed stability mechanisms on sliding stability

5=1/24, C=0, K,=0

Kiw=0.1, Ky=1/2 K, 6=2/3 ¢, Cs=2/3C

Sliding stability Ki=0 Ki=0.1 Ki=0.2 C=5kPa C=10 kPa
F=30°  $=40°  $=30°  $=40°  $=30°  $=40°  $=30°  ¢=40°  $=30°  $=40°
FEM 1297 1854  1.043 1514 0862 1232 1367 1899  1.626  2.147
Ref. [42] 1391 1964  1.146 1618 0972 1373 1588  2.158  1.817  2.389
Ref. [41] 146 2056 1237  1.746 1105 1.565 1726 2345 1968  2.587
Current research ~ 1.268  1.859  1.048 1523 0.885  1.289 1465 2016 1724 2276

h=6 m, D=1 m, d=0.6 m, h1=2.5 m, »=0.2 m, b3=0.3 m, bs=0.2 m, hs=2.5 m, y=18 kN/m?, =24 kN/m>.

Table 4 Minimum safety factors obtained based on proposed stability mechanisms on deep shear failure

5=1/24, C=0, K,=0

Kn=0.1, Kv=1/2 Ku, 6=2/3¢, Cs=2/3C

Deep shear failure Kin=0 Kin=0.1 Kn=0.2 C=5 kPa C=10 kPa
¢=30°  ¢=40° #=30° ¢=40° #=30°  ¢=40° ¢=30° ¢=40° ¢=30°  ¢=40°
FEM 1.841 2.705 1.513 2.246 1.263 1.861 1.804 2.541 2.083 2.816
Ref. [42] 1.867 2.305 1.603 2.308 1.117 2.026 1.795 2.505 2.021 2.733
Ref. [41] 2.185 3.151 2.13 3.081 2.132 3.092 2.296 3.237 2.531 3.464
Current research 1.883 2.739 1.609 2.357 1.459 2.033 1.842 2.574 2.071 2.799

h=6 m, D=1 m, d=0.6 m, b1=2.5 m, h>=0.2 m, b3=0.3 m, b+s=0.2 m, bs=2.5 m, y=18 kN/m3, =24 kN/m’.
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Figure 8 Failure mechanisms as determined by FEM: (a) Total displacement sliding stability failure; (b) Shear strain

sliding stability failure; (c) Total displacement deep shear failure; (d) Shear strain deep shear failure

Table 5 Comparison of maximum seismic active coefficient obtained based on proposed mechanisms

Birtasi=90°, K,=0, 0=¢, C=0 Ki=0.1

Analytical method Ki=0 Ki=0.1 Ki=0.2 Biras=75° Brtas=120°
¢=30  $=40°  $=30° $=40°  $=30°  $=40°  ¢=30°  $=40°  $=30°  ¢=40°
Refs. [25-27] 0.30 0.21 037 027 0.47 0.36 0.55 0.47 0.19 0.09
Ref. [39] 0.30 021 037 027 0.47 0.36 0.53 0.45 0.18 0.09
Current research®  0.30 021 037 027 0.47 0.36 0.53 0.45 0.18 0.09

C-¢ soil. In this method, the angle friction and
cohesion between the soil and wall and the depth of
tensile crack are ignored. In Table 6, the results
obtained in this study are compared with the results
provided by SHUKLA et al [43]. This comparison
shows a good agreement between the results of the
present method and those provided by SHUKLA
et al [43] for a variety of geotechnical and seismic
profiles.

In 2015, KLOUKINAS et al [18] investigated
the seismic response of cantilever retaining walls
via limit equilibrium method and shaking Table
tests. In Table 6, the results of the present study are
compared with those obtained by KLOUKINAS
et al [18] for three laboratory-sized models. In
Table 7, y is the unit weight of backfill, yr is the unit
weight of the soil under the base, yar is the unit
weight of the aluminum wall, ¢ is the angle of

internal friction of backfill, ¢ is the angle of
internal friction under the base, J is the angle of
friction between the soil and the base, while ay is
the horizontal earthquake acceleration. Table 7 also
compares the results obtained by the proposed
method, finite element method, and limit
equilibrium method, with respect to critical
acceleration for sliding and shear failure under the
base (an.SL and an.BC), assuming that the critical
factors of safety against sliding and shear failure
under the base are 1 (columns 1 and 3). Columns 2
and 4 of Table 7 present the stability safety factors
obtained based on these critical acceleration
coefficients. The results obtained in this study show
great consistency with the results obtained by these
methods.

However, it should be noted that the ultimate
purpose of calculating the active force is to check
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Table 6 Comparison of maximum seismic active coefficient in this study with results provided by SHUKLA et al [43]

5=0, C5=0, kv=0, g=0

Analytical C=5kPa

C=15kPa

method kn=0.1 kn=0.2

kn=0.3 kn=0.1 kn=0.2

F=15° §=25° $=35° $=15° $=25° ¢=35° $=15° ¢=25° $=35° ¢=15° ¢=25° $=35° $=15° $=25° ¢=35°

Ref. [43] 055 037 024 066 046 031 0.84

Current
Research

0.55 037 024 066 046 031 0.84

056 039 031 0.17 0.08 040 025 0.14

0.56 039 031 0.17 0.08 040 025 0.14

Table 7 Results of present study compared with results provided by KLOUKINAS et al [18] for three laboratory-sized

models
M“;ezl;o’ i‘jggg‘o’obgfl“zo’ Model 2: b1=b=bs=0, b>=30 mm,  Model 3: bi=h2=b4=0, h3=30 mm,
Analysis d=30 mm, 0=23.5° b5=250 mm, d=30 mm, 6=23.5 b5=250 mm, d=30 mm, 0=28.5
method Critical FSpc  Critical FSs.  Critical FSpc  Critical ~ FSsL Critical FSpc  Critical  FSsv
acceleration at acceleration at acceleration at acceleration at acceleration at acceleration at
an.SL/g  anSL  anBC/g anBC anSL/g an.SL  anBC/g anBC  anSL/g anSL anBC/g anBC
Ref. [18] 0.18 — 0.35 0.68 — 0.17 0.93 0.23 — 0.17 1.14
Finite element  0.166 1.769 0.342 0.729 0.127 1.402 0.175 0.929 0.219 1.229 0.175 1.078

Current study  0.169 1.754 0.37 0.698 0.131

1.521 0.183 0.881 0.225 1435 0.183 1.025

h=600 mm, y=15.1 kN/m?, y=15.1 KN/m?, yar=27 KN/m?, ¢=33.5°, $=42.5°.

the wall’s structural strength and its stability against
overturning, and not just to maximize the force.
This implies that when assessing the critical
conditions of the wall, as well as, the magnitude of
the active force, its direction should also be taken
into consideration. A particular force can be
assumed to cause the most critical condition for
wall stability, only when its magnitude and
direction are simultaneously analyzed by the
optimization of failure wedges (for sliding,

overturning, or deep shear failure).

5 Optimal geometry of wall considering
critical failure mechanism

As stated in previous sections, the dimensions
of the wall influence the stability safety factors and
the seismic active force of the wall. Therefore, the
dimensions of the wall are to be optimized at the
same time as the failure mechanisms of the soil are
determined (to control the seismic stability safety
factors of the wall). When designing a retaining
wall by the upper bound method, the designer must
try to minimize the weight of the wall as one
maximizes the active force and minimizes the
stability safety factor. Considering the fact that
multiple parameters (active force, stability safety
factors and the weight of the wall) are to be

optimized, a multi-objective optimization should be

used in the analysis.

5.1 Determining stability safety factors of
retaining wall

When designing retaining walls, in order to
control external stability of the wall, the stability
safety factors must be higher than the allowable
values. The minimum sliding safety factors and
deep shear failure of the wall were assumed 1.2 in
the present study [44].

Moreover, in order to prevent overturning of
the retaining wall, common methods were used to
determine the safety factor. The equations presented
in ACI 318-05 were used in order to control the
internal stability of the retaining wall, which is
determined based on the Eq. (36).

F Z (the moments of resistant against overturning)
st =

z (the moments of overturning)
(36)

In this study, the safety factor overturning was
selected as 1.5 [44]. For optimizing the geometry of
the wall and controlling the internal and external
stability of the wall by the upper bound limit
method, 25 parameters are to be optimized based on
the proposed failure mechanisms according to
Table 8.
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Table 8 Parameters optimized based on proposed
mechanisms

Controlled variable Optimization parameter

Safety factor sliding stability
a1, 02, 03, 04, 45, 06

(Figure 2)
Safety factor deep shear
failure (Figure 4) al, 02, 03, a4, 05, 06, 07, 08, 09
Maximum active force
(Figure 6) a1, 02, a3, 04
Wall geometry (Figure 2) b1, ba, b3, ba, bs, d

Figure 9 shows the dimensions of an example
retaining wall optimized by MATLAB, while
simultaneously, the stability safety factors of the

wall were controlled. It also shows the shape of the
failure wedges.

According to Figure 9, the critical failure
wedges for determining the seismic active force of
the wall are displayed in blue, the critical failure
wedges for determining the sliding safety factor of
the wall are displayed in green and the critical
failure wedges for determining the deep shear
failure of the wall are shown in red. The optimal
dimensions obtained in this study are presented in
Table 9 along with the those obtained by the
common wall design method (limit equilibrium).
Fs, is the sliding safety factor; Fs, is the overturning

53

Input data
H=6 m
¢=30°
C=5kPa
y=18 kN/m?
Kh:()z
K=12 K,

, 1.7m 0.10.30.11.3 m
Stability checks 1 L ¥
fs.overturning=2.18 T
fs.stability.sliding=1.4
fs.stability.bearing.capacity=1.75
P,.=83 kPa
3l 1 89 |
~12 m
# 7
8 \L0 19 ==
\‘\\\ 6 H‘ 84 i /»-"'//
= Bl

Figure 9 Critical failure wedges for determining seismic active force of wall (output MATLAB)

Table 9 Optimal dimensions obtained in this study, as well as those obtained by common wall design method

K=0, D=1.2 m, g=0, =18 kKN/m?, y:=24 kN/m3, 5=2/3 ¢, C=2/3C

Analysis

hod Condition FEM
metho bi b b3 bs bs d Fs: Fs Fsbe
Fse F'sbe
Common h=6m,
method for #=35° 1.4 0.2 0.3 0.2 1.2 04 1.22 1.92 3.18 1.16 1.33
wall design C=0 kPa,
Current study ~ Kn=0.15 1.2 0.1 0.3 0.1 1.4 0.4 1.21 1.91 1.62 1.17 1.31
Common h=7m
method for #=30°, 1.9 0.2 0.3 0.2 2.2 0.6 1.21 2.67 3.01 1.23 1.47
wall design C=5 kPa,
Current study Kn=0.1 1.4 0.1 0.3 0.1 1.3 0.5 1.22 1.88 1.55 1.19 1.27
Common h=7m,
method for #=25° 3 0.2 0.3 0.3 1.4 0.6 1.21 2.31 3.06 1.21 1.49
wall design 15 kPpa
Current study Kn=0.2 1.7 0.1 0.3 0.1 1.9 0.5 1.32 2.1 1.49 1.29 1.44
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safety factor; Fsy. is the safety factor deep shear
failure.

In the common method for designing retaining
walls (limit equilibrium), the minimum safety
factors for overturning, sliding and bearing capacity
were assumed in accordance with regulations 1.5,
1.2, and 3 [45]. The stability safety factors in FEM,
the limit equilibrium method (the common design
method) and the upper bound limit method (the
present study) are compared in Table 10.

According to Table 10, the dimensions of the
wall were first optimized by the limit equilibrium
method and then, considering the obtained optimal
dimensions, the safety factors were calculated by
FEM and upper bound limit methods. In all cases,
the results show the safety factors obtained by the
upper bound limit method to be larger than the
minimum values allowed by the regulations and to
have good agreement with FEM results. Therefore,
the upper bound limit method (based on the
proposed mechanisms), provides the optimal
dimensions for the retaining wall that are close to
the results of the limit equilibrium method.
further investigations following the
present study can offer the minimum allowed safety
factors for controlling the external stability of
cantilever retaining walls using the upper bound
limit method.

However,

The results show that the proposed algorithm
can be used for designing the cantilever retaining
walls through simultaneous examination of stability
factors along with internal stability checks. One
feature of this algorithm is that in the presence of
complex loading and layering conditions behind or
under the base, as well as, the presence of a
near-surface hard layer or other complex conditions,
the retaining wall can still be designed for C-¢ soil
with just some changes in formulation.

6 Critical direction of earthquake force
for instability of retaining walls

When designing the retaining walls using the
upper bound and limit equilibrium methods, a
hypothetical mechanism should be selected for
calculating the minimum values of the safety factor
for wall stability. In the seismic design of these
walls, the results are influenced not only by the
shape of the failure mechanism, but also by the
magnitude earthquake
coefficients. The direction of the resultant seismic
acceleration varies from one earthquake to another.
Although HOUSNER [46] claimed that K~(1/2—
2/3) kh for most earthquakes, current practice tends
to assume that the seismic acceleration is essentially
horizontal (#=0°). The effect of this assumption on
the results of analyses depends on how much the
most critical direction differs from the horizontal
direction, how the actual seismic acceleration
differs from the horizontal and what is the
magnitude of the earthquake.

In 1990, CHEN et al [29] determined the
critical direction of the earthquake acceleration
coefficient. They attempted to determine the
earthquake acceleration direction that maximizes
the active force exerted on the wall. Nevertheless,
the goal of maximizing the force is to minimize the
safety factor for wall stability. Therefore, in this
study, the critical direction of the earthquake
acceleration coefficient is assumed to maximize the
active force and minimize the stability safety
factors. The resultant acceleration of earthquake is
defined according to Eq. (37):

K =\K,’+K,

where Ky is the horizontal earthquake acceleration

and direction of the

(37

Table 10 Values of stability safety factors in FEM, limit equilibrium method (common design method) and upper bound

limit method (present study)

Kn=0, C=0 Kiw=0.1, C=0 Kiy=0.2, C=10 kPa
Analysis method ¢=30° ¢=40° ¢=30° ¢=40° ¢=30° ¢=40°
Fs; Fsbe Fs; Fsbe Fs; Fspe Fse Fspe Fsr Fspe Fs; Fsbe
The common method 121 329 1.86 6.3 1.2 3.35 1.51 6.34 133 5.26 1.6 8.18
FEM 1.13 1.33 1.37 151 1.14 1.42 1.35 1.61 124 157 158 1.87
Current Study 1.15 1.49 1.51 1.87 1.15 1.69 1.41 1.98 1.31 1.79  1.59  2.02

#=7m, D=1 m, g=0, y=18 kN/m’, yc=24 kN/m’, 6=2/3 ¢, Cs=2/3C.



252

J. Cent. South Univ. (2019) 26: 241-255

coefficient, and K, is the vertical earthquake
acceleration coefficient, which gives the direction
of earthquake acceleration as shown in Eq. (38):

K
—tan"'| 2V 38
(5] -

To determine the critical direction and
magnitude of seismic force, the parameters (7,,) are
defined in Eq. (39):

_ (Kae)y/#)

= 39
M Ky 39

In this equation, (Kae)yo represents the value
of seismic active force coefficient when the
earthquake acceleration coefficient (k) has a
horizontal orientation. Changing the direction of
earthquake with respect to horizon will change the
value of #,. Critical direction of the earthquake
acceleration (w.r) is defined as the direction that
maximizes the value of 7,,.

Figure 10 shows the values of normalized K.
against the values of y for different earthquake
coefficients based on the failure mechanisms
discussed in the previous sections. The results
indicate that as k increases, so does 7,’s rate of
decline, and the maximum (Ka)y~y,, can be
observed in y=30°-45°.

v, =30°-45°
1ol $=40°, 6=40°
' prta,<90°
%
X L
= 0.8 =
S 0 k=2
so04r 7
k =3
K, =P, /(1/2yh*
90° ae ae( i )
1 1 1

O 1 1
90 60 30 0 -30 -60 -90
Direction of earthquake

acceleration coefficient/(°)

Figure 10 Changes in parameter #,, for normalized value
of seismic active force coefficient

Figure 11 illustrates the changes in direction of
earthquake acceleration versus parameter 7, for
normalized stability safety factors. The results
indicate that determining the critical acceleration
direction with the purpose of minimizing the
stability safety factor yields a w. equal to 15°-30°
(to the horizontal). Changing the values of the

(@) 900 ¢=40°, 6=9,
35 Bi+04<90°, C=0
k=0.3
T
=23
I
=
=15
0.5 1 1 1 1 1
90 60 30 0 -30 -60 -90
Direction of earthquake
acceleration coefficient/(°)
(b) —gp°  ¢=30°,06=1/2¢,
1.6 C=5 kPa, y=18 kN/m3
T N k=0.3
~14F 0 L
& 4 ;
=
Lg 90° k=0.1
=10} ——J/
Ye=15°-30°
08 | 1 1 | 1
90 60 30 0 -30  -60 -90
Direction of earthquake
acceleration coefficient/(°)
(©) $=30°, 5=1/2¢,
L7F =90° (=5 kPa, y=18 kN/m?
T15p k=0.3
= 0°
< v
= k 0.2
&

n 1//:
—
—_

w Wcr:150_30%

1 L | | 1

90 60 30 0 =30 -60 -90
Direction of earthquake

acceleration coefficient/(°)

=
N=)

Figure 11 Changes in parameter 7, for normalized:
(a) Overturning safety factors; (b) Bearing capacity
safety factors; (c) Sliding safety factors (h=6, b;=2.5,
b>=0.2, b5=0.3, b4=0.2, bs=2.5, D=1, d=0.6, y.=24 kN/m?®)

earthquake coefficient and increasing or decreasing
w, increases the rate of change in #,, which are
negligible around .. So these values can be
suggested as the critical direction to be employed
when designing the cantilever retaining walls with
the purpose of minimizing their stability safety
factors.
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Generally, the results indicate that the exertion
of wvertical earthquake acceleration not only
increases the magnitude of the resultant acceleration,
but can also changes the direction of the resultant
acceleration towards critical orientation, thereby
reducing the wall stability safety factor.

Given that the maximum acceleration in
majority of earthquakes is horizontal and that most
relationships and software, commonly applied for
designing the cantilever retaining walls, have been
formulized such that they require vertical and
horizontal acceleration coefficients as inputs, the
critical earthquake acceleration direction 1is
substituted into Eq. (38) to obtain the critical
vertical acceleration coefficient as expressed in
Eq. (40):

Kv:Khtanl//cr (40)
. 1 2 . .
In this case, K, z(g—gjl(h is obtained by

Eq. (40).
Therefore, assuming that K, z(%—%)Kh , it

will lead to the resultant earthquake coefficient to
align with critical orientation. The safety factors for
controlling the external stability of cantilever
retaining walls will be minimized by the upper
bound limit method. The results obtained in this
study are in line with the results of Husner, who
proposed K, z(%—%th for wvertical earthquake

coefficients.
7 Conclusions

1) The present study presented a new
algorithm for pseudo-static analysis of retaining
walls using the upper bound method. This algorithm
can be utilized to design and check the external and
internal stability of the wall based on the proposed
mechanism.

2) Comparing the findings of the current
research with the results of other studies showed
that the results obtained from the upper bound
method are consistent with those of similar studies
conducted based on the limit equilibrium method
and finite element analysis.

3) The results showed that the dimensions of
the wall influence the stability safety factors and the
seismic active force of the wall. Therefore, the

dimensions of the wall are to be optimized at the
same time as the failure mechanisms of the soil are
determined (to control the seismic stability safety
factors of the wall). When designing a retaining
wall by the upper bound method, the designer must
try to minimize the weight of the wall as one
maximizes the active force and minimizes the
stability safety factor.

4) The results showed that the exertion of
vertical earthquake acceleration not only increases
the magnitude of the resultant acceleration, but also
pushes the direction of the resultant acceleration
towards the critical orientation and reduces the wall
stability safety factor. Determining the critical
direction of the earthquake acceleration with the
purpose of minimizing the stability safety factor
gives wo=(15°-30°) (to the horizontal). Therefore,
these values can be suggested as the critical
direction to be utilized when designing the
cantilever retaining walls with the purpose of
minimizing their stability safety factors.

5) In this study, the stability safety factor,
seismic active force, and geometric dimensions of
the wall were simultaneously optimized via multi-
objective optimization with genetic algorithm.
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