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Abstract: Due to the increasing number of cloud applications, the amount of data in the cloud shows signs of growing 
faster than ever before. The nature of cloud computing requires cloud data processing systems that can handle huge 
volumes of data and have high performance. However, most cloud storage systems currently adopt a hash-like approach 
to retrieving data that only supports simple keyword-based enquiries, but lacks various forms of information search. 
Therefore, a scalable and efficient indexing scheme is clearly required. In this paper, we present a skip list-based cloud 
index, called SLC-index, which is a novel, scalable skip list-based indexing for cloud data processing. The SLC-index 
offers a two-layered architecture for extending indexing scope and facilitating better throughput. Dynamic 
load-balancing for the SLC-index is achieved by online migration of index nodes between servers. Furthermore, it is a 
flexible system due to its dynamic addition and removal of servers. The SLC-index is efficient for both point and range 
queries. Experimental results show the efficiency of the SLC-index and its usefulness as an alternative approach for 
cloud-suitable data structures. 
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1 Introduction 
 

Emerging cloud computing [1] systems can 
provide users with cheap and powerful facilities for 
communication. Existing cloud computing systems 
include Amazon’s Elastic Compute Cloud (EC2) [2], 
IBM’s Blue Cloud [3], Microsoft’s Azure [4], etc. 
These adopt flexible resource management 
mechanisms and perform well. Users share a 
“black-box” known as the cloud that consists of a 
large number of interconnected virtual machines. 
They can tailor the computing resources for their 
own purposes from an infinite amount of resources 

that cloud systems can provide. 
Being synonymous with the cloud computing 

movement, the amount of data generated by people 
shows signs of growing faster than ever before [5, 
6]. Without efficient large-scale data processing, 
cloud computing systems cannot provide services 
for millions of users. Therefore, distributed data 
processing infrastructures play an essential part in 
cloud systems. Most cloud data storage systems, 
however, currently adopt a hash-like approach to 
retrieve data that only supports simple keyword- 
based enquiries, but lacks various forms of 
information search. For example, Hadoop operates 
on key-value pairs and serially reads data blocks. If 
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users want to find videos within a given date range 
in a cloud video system, Hadoop will completely 
scan the dataset and find only a few relevant 
records for further consideration. Recent studies 
have shown that indexes can improve the 
performance of cloud storage systems dramatically. 
To support range queries, an auxiliary index is 
produced offline by running a MapReduce job. 
However, this offline approach is time-consuming 
and does not guarantee timeliness. Newly inserted 
keywords cannot be queried until the offline batch 
task completes the scanning and the index is 
updated. Based on the analysis above, it is clear that 
a gap exists and there is a need for a novel index 
structure that can dynamically handle different 
types of queries. 

In this paper, we present a skip list-based cloud 
index (SLC-index) as an auxiliary indexing scheme 
for cloud data processing. This paper makes the 
following contributions: 

1) Extending skip lists to provide a two- 
layered architecture for large-scale cloud data 
process indexing, which facilitates better 
throughput. By combing the local index and global 
index, the scanning of the data nodes that do not 
contain the query results can be mostly avoided. 

2) Proposing scaling strategies with splitting 
and merging algorithms that could dynamically 
migrate index’s nodes for balancing loads. 
Querying and updating algorithms are also 
discussed. The SLC-index is efficient for both point 
and range queries. 

3) Mathematical analysis of the SLC-index’s 
two-layered architecture. An expression is deduced 
to estimate the benefit of nodes published from the 
lower layer to the upper layer. An adaptive 
publishing algorithm is also developed to integrate 
the gap between the upper layer and the lower layer, 
based on which the SLC-index achieves better 
performance. 

4) A simulator extended from Peersim is 
developed to evaluate the effectiveness of the 
SLC-index. 

This paper is organized as follows: Section 2 
introduces related work. Section 3 presents the 
overview of the SLC-index. Section 4 gives the 
analysis of the SLC-index’s adaptive publishing 
strategy. Section 5 presents the SLC-index’s process 

details. Section 6 shows experimental evaluations 
of the SLC-index. Section 7 summarizes the paper. 
 
2 Related work 
 

Some existing cloud storage systems include: 
Google’s Bigtable [7], GFS [8] and its open-source 
implementation Hadoop [9], Amazon’s Dynamo [10] 
and Facebook’s Cassandra [11]. As a de facto 
standard for cloud storage systems, Hadoop has 
been widely used in many business companies, 
including Yahoo, LinkedIn, and Twitter. Being large 
scale, Hadoop allows multiple petabytes of data 
storage across hundreds or thousands of physical 
storage servers or nodes. However, some inherent 
weaknesses of Hadoop affect its high-performance 
operations, such as range queries and dynamic 
selections. 

Recent studies have shown that an index can 
improve the performance of a cloud storage system 
dramatically. In general, there are two approaches 
to implementing a cloud storage index, the 
embedded-index model and the bypass-index model. 
The embedded-index model refers to setting up an 
index directly within cloud storage systems. There 
have been several studies focusing on efficient 
index access in Hadoop [12–17]. DITTRICH et al 
[12] proposes a Trojan index to improve runtime 
performance. It injects technology at the right 
places through UDFs (User Defined Functions) 
only and affects Hadoop from inside. YANG et al 
[13] explores ways to build tree indexes. It also 
incorporates a new algorithm into the Map-Reduce- 
Merge framework. In general, the embedded-index 
model is a kind of tight coupling solution. It 
integrates the index itself into the Hadoop 
framework closely for achieving high-performance 
block selection. In order to decouple the index and 
the storage system, a generalized search tree for 
MapReduce systems is designed in Ref. [15]. 
However, there are also some weaknesses in these 
indexing approaches. For example, all of the above 
approaches require changing some bottom-level 
operations concerning the file store systems or job 
schedules, which makes them difficult to implement 
and not scalable. If there is a new Hadoop release 
version, such as YARN, a considerable amount of 
further work needs to be done. Another problem is 
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that these approaches do not always maintain a full 
index in memory, but adopt a run-time index 
creation strategy. This leads to a high index creation 
cost, especially when users only aim to find a few 
relevant records for further consideration and 
quickly change their queries. 

The bypass-index model is another kind of 
approach. It builds the index outside the cloud 
storage system and always maintains it in memory. 
The index can communicate with the cloud storage 
system through an application program interface 
(API). Recent studies, such as [18–25], attempt to 
propose a dynamic auxiliary cloud indexing. In  
Ref. [18], a global distributed B-tree index is built 
to organize large-scale cloud data. This method has 
high scalability and fault tolerance, while it takes up 
a lot of memory to cache index information in the 
client. HUANG et al [19] and ZHOU et al [20] 
present improved B+ tree indexes. A local B+ tree 
index is built for each compute node. Further, these 
computer nodes are organized as a structured 
overlay and a portion of the local B+ tree nodes are 
published to the overlay for efficient query 
processing. In Ref. [21], a multi-dimensional 
indexing, called RT-CAN (R-tree-based index in 
content addressable networks), is proposed. Local 
R-tree servers are indexes and the global index is 
organized as a logical CAN-based overlay network. 
Similar to RT-CAN, a VA-file and CAN-based 
index framework is presented in Ref. [22], which 
improved query performance by eliminating the 
false positive queries in RT-CAN. LU et al [23] 
adopt a compressed bitmap index to construct the 
cloud index, which can save a lot of storage costs 
than other index structures. In practice, a parallel 
positional inverted index is proposed to improve 
graph queries [24]. HE et al [25] utilize the 
randomized idea to construct a hierarchal Octree 

index for three dimensional data. Comparing with 
the embedded-index model, the bypass-index model 
may be not as fast due to its loose coupling 
characteristics. However, it is more flexible and 
easier to maintain such a dynamic index system. 

The SLC-index is a kind of bypass-index 
model. But unlike other previous approaches, we 
have developed a novel skip list-based dynamic 
index. The SLC-index adopts a two-layered 
architecture (the upper layer and the lower layer). In 
the upper layer, a global server acts as a main 
controller to ensure the integrity and consistency of 
the whole index. In the lower layer, each local 
server maintains a subset of the global skip list. The 
SLC-index is flexible and can be employed with 
systems such as GFS and Hadoop, among cluster 
nodes. 
 
3 Overview of SLC-index 
 
3.1 Skip lists 

A skip list [26] is a randomized, ordered list of 
keys with additional parallel links. Each key is first 
inserted into the base layer and then it randomly 
promotes itself to the upper layer with probability 
of 1/2. If successful, the key will leave a logical 
node copy in the previous layer and try to promote 
itself again in the upper layer until it fails or a 
MaxLayer is met. When a search operation is 
executed, the highest layer’s node will first be 
compared. If the search key is less than the 
compared node’s key, it will follow the top layer’s 
link to quickly skip over unnecessary nodes. 
Otherwise, it will move down to a lower layer and 
execute the compare operation again until it reaches 
the base layer, and then it will perform a linear 
search to finish the search operation. Figure 1 
shows the processing to find node 17 in a skip list  

 

 
Figure 1 A regular skip list of 12 nodes to find 17 
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of 12 nodes. Compared to balanced binary search 
trees, a skip list is more efficient with its auxiliary 
lists. 
 
3.2 SLC-index architecture 

The SLC-index is logically composed of a 
very large skip list (referred to as the global skip 
list), which is divided into several pieces and stored 
in local servers. Figure 2 depicts the overall 
architecture of the SLC-index. As shown above, the 
SLC-index adopts a two-layered architecture (the 
upper layer and the lower layer). In the upper layer, 
a global server acts as a main controller to ensure 
the integrity and consistency of the whole index. In 
the lower layer, each local server maintains a subset 
of the global skip list, while the index boundaries of 
each local server are not overlapped. The 
distributed data stored in the cloud storage system 
can be uniquely mapped to the nodes of the skip 
lists in the local servers. 

To expedite queries, the global index in the 
upper layer is fully buffered in the memory of the 
global server. However, due to limited memory, the 
global server stores only meta-indexes that are 
published by the local servers. The meta-index is 
denoted as a triple in the form of (key, ip, blk), 

where key refers to the search key in the local skip 
list node, ip is the IP address of the computer node 
that really holds the local skip list node, and blk is 
the disk block number to locate the local skip list 
node. Moreover, local servers selectively publish 
some of their nodes to a global server based on the 
adaptive publishing strategy discussed in Section 4 
below. To guarantee the integrality of the indexing, 
each local server publishes at least one node that 
must contain the first node as a stub to identify the 
boundary of its index. 

The SLC-index stores a set of key-value pairs 
(k, v) that is spread over multiple servers and 
supports the standard dictionary operations (Insert, 
Update, Lookup, and Delete). The request process 
in the SLC-index is illustrated in the sequence of 
numbers denoted in black in Figure 2. Hence, for a 
typical request, query processing can be divided 
into two phases: locating a relative local index 
server in the upper layer and processing the request 
on the selected local server in the lower layer. 

In contrast to the benefits of the SLC-index’s 
two-layered architecture, the global server may be 
overloaded if the lower layer contains too many 
local servers. To address this potential problem, the 
SLC-index uses a replica strategy to disperse the 

 

 
Figure 2 SLC-index system overview 
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loading on the global server. Basically, there are 
two replicas of the global server; any update 
process will actively engage all replicas. In the 
global server, the replication involved in this 
strategy may increase costs in the global server for 
ensuring the consistency of the update process. 
However, this cost is well worth the expenditure 
due to the benefit that is evident in the scalability of 
the SLC-index. 
 
4 Analysis of adaptive publishing 
 

As discussed in above section, the SLC-index 
is designed to support large-scale data processing 
with dynamic changing volumes of data. The nature 
of the two-layer architecture requires that the index 
must be synchronized across both the lower layer 
and the upper layer. Such frequent data updating 
and information synchronization causes challenges 
for index maintenance in the SLC-index. Besides, 
only a proportion of the local nodes can be 
published into the upper layer due to limited 
memory. If the local server publishes larger 
numbers of the lower nodes’ meta-indexes, then the 
query process can be expedited in the local server. 
However, this increases the memory consumption 
in the global server. Hence, we need to estimate the 
benefits of such node publishing. 
 
4.1 Cost model 

In the SLC-index, the query process involves 
cooperation of both global servers and local servers. 
The total query cost (refers to costglobal) of the 
SLC-index must be a function that involves the 
query cost of the global server (refers to costglobal) 
and the query cost of the local servers (refers to 
costlocal). The relationship can be defined as follows: 

 
) ,( localglobaltotal tcostcosftcos                (1) 

 
The SLC-index’s adaptive publishing strategy 

needs to calculate the variation of costtotal in order to 
make a decision between publishing or removing 
nodes from the local servers. First, let us 
differentiate between two types of variation: 
variation of costglobal (refers to Pglobal) and variation 
of costlocal (refers to Plocal). In order to calculate this, 
it is necessary to have an expression that can 
indicate the query cost in a skip list that starts 
search from any median node. Based on analysis of 
skip lists in Ref. [26], given n nodes in the bottom 

level of a skip list, there are Lpn )/1/(  nodes 
expected in the L level. Hence, the highest level L 
in a skip list with n nodes can be presented as 
follows:  

nnL
p

1log)(                              (2) 

 
Furthermore, PUGH [26] uses backward 

traversing to estimate a skip list’s search cost, the 
expression is as follows:  
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By Eq. (3), 1/(1–p) may be taken as a constant, 

and the time cost of a skip list could be simplified 
as ./)(log 1 pn

p

Based on this, now we can estimate 

the variation of the query cost of the global server 
(Pglobal) and the variation of the query cost of the 
local server (Plocal). 

In the following, we define Pglobal. Suppose 
that the skip list in the global server represents nm 
nodes, and each local server represents ns nodes. 
After new nodes are published, there would be nm 
nodes in the global skip list, and the number of 
nodes in the local server is also ns. Putting the 
results together, we get the increment of the global 
server’s query cost Pglobal as follow: 
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Let k denote the published layers in the local 

server. When new nodes are published in the global 
server, the SLC-index not only redirects to the local 
server but also starts search in the median node in 
level k. Similarly, the decrement of the local 
server’s query cost Plocal can be deduced as follows:  
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In the SLC-index, we expect that use of the 

published nodes at the local server will improve the 
overall performance. Assume Ptotal as the saved time 
cost when the local server’s nodes are published to 
the global server. Ptotal can be defined as follows:  
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In order to achieve the best performance of 
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searching in a skip list, the probability p must be set 
to 1/e [26]. In Eq. (6), let p=1/e, intuitively Ptotal 
increase by k, where k is the local server’s 
published level that must be between 1 and lnnm 
(the highest level defined in Eq. (2)). To ensure the 
local server’s publishing benefit for the SLC-index, 
Ptotal is must greater than 0 in that the publishing 
can expedite queries. Hence, a further limitation of 
k is needed in Eq. (6) as follows: 
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Based on Limitation (7), it ensures that nodes 

published in the SLC-index always result in a 
positive benefit. On the other hand, if it 
dynamically changes the probability p of a skip list, 
the best performance of the SLC-index can be 
estimated by the following expression: 
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The optimized value of Ptotal with dynamically 

changing probability of p in a skip list can also be 
calculated by taking a derivation from Eq. (6): 

 

0lglglglg 2 





m

m

m

m

n

n
pkp

n

n
                (9) 

 
Based on Limitation (8) and Equation (9), we 

can find that when 
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performance theoretically. In practice, the 
probability of p in a skip list is usually set to a 
constant, because dynamic changing of p may lead 
to the overhead of nodes adjusting. Hence, 
Limitation (8) and Equation (9) are not practical; in 
this paper, the SLC-index’s adaptive publishing 
strategy is actually based on Equation (6) and 
Limitation (7), and will be discussed below. 
 
4.2 Adaptive publishing strategy 

In the SLC-index, the publishing of the nodes 
from the local server to the global server will affect 
both the system’s query efficiency and the global 
server’s memory load. In Section 4.1, we have 
analyzed the query process in the SLC-index, and 
derived its benefit predictive expression (Eq. (6)). 
Figure 3 shows the variation tendency of the 

SLC-index’s query benefit, based on Eq. (6). We 
can see that the overall query efficiency increases 
with published levels in local servers. However, the 
growth rate of the overall query efficiency 
progressively decreases. On the other hand, based 
on the feature of the skip list that a node’s level 
increases progressively with probability p, the 
number of nodes using top-down publishing 
approach will increase exponentially. Therefore, 
Figure 4 shows the variation tendency of the global 
server’s memory loads with same conditions as in 
Figure 3. It shows that although the SLC-index’s 
publishing enhances the overall query efficiency, 
the memory loads of the global server also increase 
exponentially. 
 

 
Figure 3 Variation of query benefit 

 

 
Figure 4 Variation of memory load 

 
Therefore, the adaptive publishing strategy in 

the SLC-index must balance the query efficiency 
and memory cost. The SLC-index uses the 
incremental ratio as the identifier to decide whether 
publishing is beneficial. Specifically, before 
publishing the next level’s node, the local server 
will calculate the current incremental ratio of the 
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query benefit and the global server’s memory load. 
Let Qold be the query benefit before publishing the 
next level’s nodes, Qnew is the predictive query 
benefit after publishing the next level’s nodes. The 
incremental ratio of query efficiency is defined as 
Aquery=(Qnew–Qold)/Qold. The incremental ratio of the 
global server’s memory load Amem_load=(Mnew–Mold)/ 
Mold is defined similar to Aquery, in which Mnew 
denotes the memory load after publishing the next 
level’s nodes and Mold is the original load. Based on 
the two incremental ratios, the judgment condition 
of adaptive publishing can be defined as: 

 












men_loadquery

men_loadquery

 if ,false

 if ,true
isBenef

AA

AA
 

 
This expression is used in the 

LocalIndexPublish() algorithm that is discussed in 
the next section. It guarantees the positive and 
optimal performance of the SLC-index’s adaptive 
publishing strategy. 
 
5 SLC-index process details 
 
5.1 Local index publishing algorithm 

As described above, the local server 
selectively and adaptively publishes the meta-index 
of other nodes to expedite the query process. Due to 
the feature that a skip list’s nodes in higher levels 
decline exponentially, the SLC-index’s local servers 
adopt a top-down approach to publish their 
meta-index. First, nodes at the highest level (must 
contain stub nodes) in the local server will be 
published into the global index, then each local 
server periodically calculates its publishing benefit 
prediction with the expression defined in Section 4. 
If the local server finds that publishing the next 
level’s nodes can achieve better performance, it will 
publish these nodes into the global index. This 
publishing procedure will repeat until it cannot 
achieve better performance. 

Figure 5 gives an example of one local server 
changing its top-down publishing approach from 
level 3 to level 2. Obviously, a decrease of 
publishing level in a local server requires that more 
nodes insert into the global server. It is significant 
that the lower level nodes always contain all the 
replicas of the upper level nodes in a skip list. As 
the local server publishes nodes level by level, only 
new nodes (i.e., those that have not been included 

in the last level) are now inserted into the global 
server. 
 
Algorithm 1: LocalIndexPublish(Si) 
Input: Si — local server that needs to publish its 

local skip list nodes 
1: Si publishes the stub node of its local skip list 
2: l := Level(Si) 
3: while true do 
4:  Si checks its published local skip list nodes 
5:   if isBeneficial(l–1) then 
6:    Si additionally publishes the meta-index at 

level l–1 
7:   else 
8:     if benefit(l) < maintenanceCost(l) then 
9:       Si remove meta-index at level l which is 

published in the global meta-index of the 
global server 

10: wait for a time 
 

Algorithm 1 shows the details of how a local 
server publishes its nodes’ meta-index into the 
global server. Initially, only the index of a stub node 
is published (line 1). Then it will decide if it is 
beneficial to publish the meta-index at the next 
level. If the meta-index at the next level can 
improve search efficiency, the next level meta-index 
will be added to the global server (lines 4–6). In 
contrast, if the meta-index is published at the 
current level with low benefit and high maintenance 
cost, these indexes will be removed from the global 
node-indexes server (lines 8–9). The checking 
process described above will be invoked 
periodically. 
 
5.2 Range querying and update strategy 

A typical range query processing in the 
SLC-index can be divided into two phases: 1) 
locating the relevant local index server in the upper 
layer, and 2) processing the request to the selected 
local server in the lower layer. The sequences of the 
numbers are identified in black in Figure 2. If the 
client invokes a query request with any key, it will 
first send the query request to the global server 
which covers the entire index boundary (Step 1). 
Next, the global server uses these matched meta- 
indexes to redirect to some specific local servers 
(Step 2). Finally, the local servers invoke a local 
searching and return the query results to the client 
(Step 3). The procedure can be expressed as 
Algorithm 2. 
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Figure 5 Details of local server’s node publishing: (a) Before publishing; (b) After publishing 

 
Algorithm 2: Rangequery (Q=[l, u]) 
Input: Q – keys map to data that range from l to u 
Output: Sresult – set contains data that maps to keys 

in search range 
1: Si := lookup(l) 
2: Ni := localSearch(Si, l) 

//if it is a range query, performs a linear search to 
get others 

3: while Niforward exists and Ni.key < u do 
4:   local search on Ni and put the indexed nodes 

overlapping with Q into set Sresult 
5:   Ni := Niforward 
6: forward Sresult to query requestor 

 
Algorithm 2 shows the overall query process 

in the SLC-index. Initially, the client uses lookup() 
to access the global server in order to get the result 
of local server redirection (line 1). After locating a 
local server with lookup(), a local search is 
performed in that local server (line 2). For a range 
query, a linear search is performed from the first 
node as the lower bound to the end of the node in 
the upper bound. Further search results will be 
added to the read set of transactions (lines 3–5), 
until the search process has been completed. Finally, 
the data are output directly to the client (line 6). 

The performance of data insertions and 
deletions are a major consideration for index 
maintenance. In the SLC-index, the process of 
insertion is in two stages that require both location 
and addition. The locating phase is similar to a 
search process as discussed above. In the adding 

phase, new data are stored as a skip list node in a 
local server. The new node is given a random level l 
with probability. Then, the local server will publish 
the new node to the global server if its level l is 
greater than current published level. Otherwise, the 
process of this insertion is complete and returns the 
state of the code to the client. 
 
Algorithm 3: Insert(key, value) 
Input: key – entry to get index 
Input: value – index that maps to distributed file 

system 
1: Si := lookup(key) 
2: lv := randomLevel(Si.StubLevel) 
3: txn := BeginTx() 
4: node := store(txn, lv, key, value) 
5: if Si’s current published level <= lv then 
6:   metaIndex := getMeta(node); 
7:   publishToGlobal(Si, metaIndex); 
8: Commit(txn) 
9: EndTx(txn) 

 
Algorithm 3 is the process of insertion in the 

SLC-index. The operation of insertion is executed 
with key-value pairs, in which the key used to 
locate the server and decide where to store the value. 
Due to the characteristic that every server has its 
first node at the highest level, a helper function 
randomLevel() is used to ensure that a new node 
that is being inserted is always lower than the first 
node (also called the stub node). In the insert 
algorithm, the client first uses lookup() as the 
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method to locate which server will accept the add 
request (line 1). Then, the client sends information 
to the server. When the server accepts an insert 
request, it first undertakes a local search with the 
insert key to locate where the new value will be 
inserted. If it finds the position, a new node will be 
created to store the key-value pairs (line 4). A 
transaction actually stores the new value to ensure 
consistency. Specifically, if the new node is created 
with a level higher than the publishing level of the 
server, the meta-index of new node must also be 
published to the global server (lines 5–7). The 
deletion process is similar to the insertion process. 
 
5.3 Dynamic load balancing 

Load balancing is significant in distributed 
systems. The migration process in the SLC-index 
allows the local servers to split part of their data to 
other servers or merge together some local servers’ 
data. The SLC-index uses a statistical approach to 
monitor the status of the system load. Here, each 
local server saves information as it accesses and 
periodically sends the statistics to the global server. 
Statistics from the local servers are calculated at the 
global server to identify the loading factor at each 
local server, and the global server will decide 
whether some migrations need to be invoked. 

In the SLC-index, an overloaded local server 
can split its local skip list, then migrate part of the 
skip list to a new server or adjacent server. Here we 
give some definitions used in the splits as follows: 

S is a non-empty skip list consisting of several 
non-empty sorted linked lists. All the items are 
stored in the list of level 1. Some of them also 
belong to the list of level 2 and so forth. 

key(x) denotes the key of each item x in S. 
level(x) denotes the height of each item x in S. 

We write  level(S) to denote the maximum level 
among the levels of its items. 

wall(x, l)=“the first node y to the right of x, i.e., 
key(x)<key(y), such that level(y)>l”. Given a skip 
list S and a node x≠NIL and some integer 
0≤l≤level(x), we can get wall(x, l). For instance, in 
Figure 6, wall(5, 3) is the node having key 24, and 
wall(5, 2) is the node having key 14. 

The SLC-index has a stub node as the first 
node and also identifies the highest level in each 
server. With the stub node, the splitting of the local 
skip list can be done locally without communicating 
with neighbor servers. The splitting algorithm can 

be described as follows: 
 

Algorithm 4 Split (S1, S2, l) 
Input: S1 – server which needs to split its local skip 

list 
Input: S2 – server which accepts the back part of the 

split local skip list 
Input: l – argument to decide split span 
1:   //validate whether wall(S1, l) exists, if not 

adjust l 
2: for i := l downto 1 do 
3:   if wall(S1, i) exists then break; 
4: l := i 
5:   //record the links which need to be updated 

after splitting 
6: local updateLink[1…S1. StubLevel] 
7: x := S1.list→header 
8: for i := S1.StubLevel downto 1 do 
9:   while x→forward[i] < wall(x, l) do 
10:    x := x→forward[i] 
11:  updateLink[i] := x 
12:  x := x→forward[1] 
13:  //migrate nodes and relink two servers 
14: if x == wall(x, l) then 
15:  for i := l+1 to S1. StubLevel do 
16: x→forward[i] := updateLink[i]→forward[i] 
17:   updateLink[i]→forward[i] := x 
18: migrate(S1, S2, x); 

 
Algorithm 4 splits the local skip list of server 

S1 into two parts, then migrates the back part into 
server S2. The argument l is configured to decide 
the splitting span. If the l is near the stub level, after 
splitting, more nodes will remain in S1. In contrast, 
if the l is far from the stub level, more nodes will 
migrate to S2. Figure 6 is an example of splitting 
with level(S)=5 and l=4, the skip list of server S1 is 
divided into two parts from node 24 which is the 
first node in level 4, then the back part of the 
original skip list is migrated to server S2. 

The splitting algorithm initially checks if a 
node is at a level l that can be used as the splitting 
node. If not, it will adjust l until a splitting node can 
successfully be found (lines 2–4). The nodes that 
link to the splitting node will then be recorded in 
order to update the links after splitting (lines 6–12). 
When all the preparatory work is finished, the back 
part from the splitting node will be migrated to a 
new server, and the nodes in the front part that link 
to the migrated splitting node will update their 
pointers to link to new server (lines 14–18). 
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Figure 6 Migration with splitting: (a) Before splitting; (b) After splitting 

 
The SLC-index also provides a merging 

algorithm as a process to support migration between 
existing servers or to deal with a server crash. 
 
Algorithm 5: Merge(S1, S2) 
Input: S1 – server that needs to migrate its local skip 

list 
Input: S2 – server that accepts the migrated local 

skip list 
Output: whether merge operation is successful 
1: // get all data from S1, buffered them in 

migrateList 
2: migrateList := extractIndexData(S1); 
3: foreach index in migrateList do 
4:   // use insert interface of skip list to save 
migrated index at a proper location in S2 
5:   insert(S2, index); 
6:   node := getNodeInfo(S2, index); 
7:   // if the new inserted node is in a published 

level, it must be updated to the global server 
6:   if node.level >= S2. publisedLevel then 
7:       metaIndex := getMeta(node); 
8:       updateToGlobal(S2, metaIndex); 

 
The merging algorithm migrates the local skip 

list of server S1 into server S2. First, all the index 
data in S1 are extracted and buffered in a list (line 2). 
Then the list is sent to S2. When S2 receives the 
buffered list, it invokes the insert() interface of the 
skip list to store the index data in proper locations 
(lines 3–5). To guarantee indexing correctness, after 
the insertions of each migrated data, if the inserted 
node’s level is greater or equal to S2’s published 
level, S2 needs to publish its meta-index into the 
global server because the newly inserted node 
might have changed S2’s indexing range (lines 6–8). 
 
6 Experimental evaluations 
 

To evaluate the performance of the SLC-index, 
we developed a simulator extended from Peersim 
[27]. The testing computer had an Intel Core 
i3-350M 2.26 GHz CPU, 2 GB RAM, and 320 GB 
disk space, and ran CentOS 6.0 (64-bit). It was used 
to simulate different sizes of cloud computing 
systems, ranging from 32 nodes to 256 nodes. In the 
simulator, each node manages 5000 resource files 
with sizes from 32 kB to 64 kB. For comparison, 
we also implemented a distributed B+ tree index, 
described in Ref. [18]. 

Figure 7 shows the performance of point query 
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in the SLC-index. We can see that the 
ScalableBTree is faster than the SLC-index. By 
analyzing the experiment data, we discovered two 
reasons for this result. The first one is that the 
SLC-index adopts a two-layered architecture, for 
each query process. Consequently, additional 
routing cost may arise due to the routing from the 
global server to a local server. The second one is 
that although a skip list can provide query 
performance of O(logN) in theory, it does however 
under-perform a little compared with B-tree, in 
practice. 
 

 
Figure 7 Performance of point query in SLC-index 

 
Figure 8 illustrates a comparison of 

range-query performance between the SLC-index 
and the ScalableBTree. We can see that the 
SLC-index performs better than the ScalableBTree 
as systems are scaled up. The SLC-index benefits 
from the indexing boundary distribution that data 
are sequentially located in local servers. Hence, it 
can reduce routing cost as the indexing range 
covers more servers. Conversely, the randomly 
dispersed nodes in ScalableBTree also affect its 
range-query performance due to the need for more  
 

 
Figure 8 Comparison of range query performance 

between SLC-index and scalable BTree 

hops per range-query. 
System scalability is an essential indicator for 

distributed systems. We dynamically and randomly 
insert keys to test SLC-index performance in 
scale-up. From Figure 9, we can see that the 
SLC-index performs stably as the system is scaled 
up. This is because the SLC-index adopts a 
two-layered architecture, and most of the key 
insertions can be completed in a local server 
without any adverse impact on the global server. As 
discussed in Section 3.3, the SLC-index’s local 
server publishes only some higher level nodes to 
the global server. Hence, if a new key is inserted 
into the SLC-index, only the new inserted node 
whose level is higher than published level needs to 
be sent to the global server. The two-layered 
architecture is a prominent feature that reduces the 
cost of indexing boundary adjustment. 
 

 
Figure 9 System scalability 

 

The dynamic splitting and merging of local 
servers for load-balancing are also interesting 
features of the SLC-index. In Figure 10, we test the 
splitting and merging cost of the SLC-index with 
different scale-ups of the system. We can see that 
the adjusting time increases with system scale-up 
with effects of splitting or merging that can result in 
affecting the indexing boundary adjustment in the 
system. In the SLC-index, the global server 
maintains consistency across the indexing boundary 
as a whole. After splitting or merging, the level of 
moved nodes may change because a skip list is a 
probabilistic data structure. To guarantee 
correctness of the indexing boundary at the local 
server, the SLC-index must decide for each moved 
node whether or not it needs to be published to the 
global server. 
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Figure 10 Load adjusting performance 

 
7 Conclusions 
 

We have presented the design and 
implementation of a skip list-based indexing 
scheme for cloud data processing. We analyze the 
profit and cost arising from the publishing of nodes 
at local servers. We illustrate that the SLC-index 
can achieve better performance with dynamic 
adjusting. Moreover, the SLC-index also provides 
system scaling strategies that support dynamic 
splitting and merging for online migrations. The 
SLC-index is a flexible, dynamic and easily 
maintainable index system. It is efficient for both 
point and range queries, and can help to filter 
relative block selection. The SLC-index can also be 
employed with cloud storage systems with cluster 
nodes. 
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中文导读 
 

SLC：基于跳表的可扩展云数据索引 
 
摘要：随着基于云平台的应用的增加，云存储系统中的数据呈现出爆炸式增长的趋势，要求云数据处

理系统具备高效的海量数据处理能力，然而，现有的云存储系统大多采用哈希方法检索数据，主要提

供针对键值的查询，范围查询效率较低。因此，有必要为云存储系统构建辅助数据索引。提出了一种

基于跳表的云数据索引结构，简称 SLC 索引。SLC 索引采用双层体系结构，该索引结构契合云存储

系统的分布式存储特性，易于在多个服务器节点上灵活扩展。局部索引节点基于查询耗费计算模型向

全局索引节点发布索引信息，保证 SLC 索引结构的整体高效性。通过动态的索引节点分裂与合并机

制，降低数据倾斜带来的性能影响，实现索引结构负载均衡。实验结果表明，SLC 索引能够支持高效

的单点查询和范围查询，是一种适用于云计算系统的具有高可扩展性的辅助数据索引。 
 
关键词：云计算；分布式索引；云数据处理；跳表 


