

J. Cent. South Univ. (2018) 25: 2438−2450
DOI: https://doi.org/10.1007/s11771-018-3927-0

SLC-index: A scalable skip list-based index for cloud data processing

HE Jing(何婧)1, 2, YAO Shao-wen(姚绍文)1, 2, CAI Li(蔡莉)1, 2, ZHOU Wei(周维)1, 2

1. National Pilot School of Software, Yunnan University, Kunming 650091, China;
2. Key Laboratory in Software Engineering of Yunnan Province, Kunming 650091, China

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: Due to the increasing number of cloud applications, the amount of data in the cloud shows signs of growing
faster than ever before. The nature of cloud computing requires cloud data processing systems that can handle huge
volumes of data and have high performance. However, most cloud storage systems currently adopt a hash-like approach
to retrieving data that only supports simple keyword-based enquiries, but lacks various forms of information search.
Therefore, a scalable and efficient indexing scheme is clearly required. In this paper, we present a skip list-based cloud
index, called SLC-index, which is a novel, scalable skip list-based indexing for cloud data processing. The SLC-index
offers a two-layered architecture for extending indexing scope and facilitating better throughput. Dynamic
load-balancing for the SLC-index is achieved by online migration of index nodes between servers. Furthermore, it is a
flexible system due to its dynamic addition and removal of servers. The SLC-index is efficient for both point and range
queries. Experimental results show the efficiency of the SLC-index and its usefulness as an alternative approach for
cloud-suitable data structures.

Key words: cloud computing; distributed index; cloud data processing; skip list

Cite this article as: HE Jing, YAO Shao-wen, CAI Li, ZHOU Wei. SLC-index: A scalable skip list-based index for
cloud data processing [J]. Journal of Central South University, 2018, 25(10): 2438–2450. DOI: https://doi.org/10.1007/
s11771-018-3927-0.

1 Introduction

Emerging cloud computing [1] systems can
provide users with cheap and powerful facilities for
communication. Existing cloud computing systems
include Amazon’s Elastic Compute Cloud (EC2) [2],
IBM’s Blue Cloud [3], Microsoft’s Azure [4], etc.
These adopt flexible resource management
mechanisms and perform well. Users share a
“black-box” known as the cloud that consists of a
large number of interconnected virtual machines.
They can tailor the computing resources for their
own purposes from an infinite amount of resources

that cloud systems can provide.
Being synonymous with the cloud computing

movement, the amount of data generated by people
shows signs of growing faster than ever before [5,
6]. Without efficient large-scale data processing,
cloud computing systems cannot provide services
for millions of users. Therefore, distributed data
processing infrastructures play an essential part in
cloud systems. Most cloud data storage systems,
however, currently adopt a hash-like approach to
retrieve data that only supports simple keyword-
based enquiries, but lacks various forms of
information search. For example, Hadoop operates
on key-value pairs and serially reads data blocks. If

Foundation item: Projects(61363021, 61540061, 61663047) supported by the National Natural Science Foundation of China;

Project(2017SE206) supported by the Open Foundation of Key Laboratory in Software Engineering of Yunnan
Province, China

Received date: 2017−07−11; Accepted date: 2018−01−09
Corresponding author: ZHOU Wei, PhD, Professor; E-mail: zwei@ynu.edu.cn; ORCID: 0000-0002-5881-9436

J. Cent. South Univ. (2018) 25: 2438–2450

2439

users want to find videos within a given date range
in a cloud video system, Hadoop will completely
scan the dataset and find only a few relevant
records for further consideration. Recent studies
have shown that indexes can improve the
performance of cloud storage systems dramatically.
To support range queries, an auxiliary index is
produced offline by running a MapReduce job.
However, this offline approach is time-consuming
and does not guarantee timeliness. Newly inserted
keywords cannot be queried until the offline batch
task completes the scanning and the index is
updated. Based on the analysis above, it is clear that
a gap exists and there is a need for a novel index
structure that can dynamically handle different
types of queries.

In this paper, we present a skip list-based cloud
index (SLC-index) as an auxiliary indexing scheme
for cloud data processing. This paper makes the
following contributions:

1) Extending skip lists to provide a two-
layered architecture for large-scale cloud data
process indexing, which facilitates better
throughput. By combing the local index and global
index, the scanning of the data nodes that do not
contain the query results can be mostly avoided.

2) Proposing scaling strategies with splitting
and merging algorithms that could dynamically
migrate index’s nodes for balancing loads.
Querying and updating algorithms are also
discussed. The SLC-index is efficient for both point
and range queries.

3) Mathematical analysis of the SLC-index’s
two-layered architecture. An expression is deduced
to estimate the benefit of nodes published from the
lower layer to the upper layer. An adaptive
publishing algorithm is also developed to integrate
the gap between the upper layer and the lower layer,
based on which the SLC-index achieves better
performance.

4) A simulator extended from Peersim is
developed to evaluate the effectiveness of the
SLC-index.

This paper is organized as follows: Section 2
introduces related work. Section 3 presents the
overview of the SLC-index. Section 4 gives the
analysis of the SLC-index’s adaptive publishing
strategy. Section 5 presents the SLC-index’s process

details. Section 6 shows experimental evaluations
of the SLC-index. Section 7 summarizes the paper.

2 Related work

Some existing cloud storage systems include:
Google’s Bigtable [7], GFS [8] and its open-source
implementation Hadoop [9], Amazon’s Dynamo [10]
and Facebook’s Cassandra [11]. As a de facto
standard for cloud storage systems, Hadoop has
been widely used in many business companies,
including Yahoo, LinkedIn, and Twitter. Being large
scale, Hadoop allows multiple petabytes of data
storage across hundreds or thousands of physical
storage servers or nodes. However, some inherent
weaknesses of Hadoop affect its high-performance
operations, such as range queries and dynamic
selections.

Recent studies have shown that an index can
improve the performance of a cloud storage system
dramatically. In general, there are two approaches
to implementing a cloud storage index, the
embedded-index model and the bypass-index model.
The embedded-index model refers to setting up an
index directly within cloud storage systems. There
have been several studies focusing on efficient
index access in Hadoop [12–17]. DITTRICH et al
[12] proposes a Trojan index to improve runtime
performance. It injects technology at the right
places through UDFs (User Defined Functions)
only and affects Hadoop from inside. YANG et al
[13] explores ways to build tree indexes. It also
incorporates a new algorithm into the Map-Reduce-
Merge framework. In general, the embedded-index
model is a kind of tight coupling solution. It
integrates the index itself into the Hadoop
framework closely for achieving high-performance
block selection. In order to decouple the index and
the storage system, a generalized search tree for
MapReduce systems is designed in Ref. [15].
However, there are also some weaknesses in these
indexing approaches. For example, all of the above
approaches require changing some bottom-level
operations concerning the file store systems or job
schedules, which makes them difficult to implement
and not scalable. If there is a new Hadoop release
version, such as YARN, a considerable amount of
further work needs to be done. Another problem is

J. Cent. South Univ. (2018) 25: 2438–2450

2440

that these approaches do not always maintain a full
index in memory, but adopt a run-time index
creation strategy. This leads to a high index creation
cost, especially when users only aim to find a few
relevant records for further consideration and
quickly change their queries.

The bypass-index model is another kind of
approach. It builds the index outside the cloud
storage system and always maintains it in memory.
The index can communicate with the cloud storage
system through an application program interface
(API). Recent studies, such as [18–25], attempt to
propose a dynamic auxiliary cloud indexing. In
Ref. [18], a global distributed B-tree index is built
to organize large-scale cloud data. This method has
high scalability and fault tolerance, while it takes up
a lot of memory to cache index information in the
client. HUANG et al [19] and ZHOU et al [20]
present improved B+ tree indexes. A local B+ tree
index is built for each compute node. Further, these
computer nodes are organized as a structured
overlay and a portion of the local B+ tree nodes are
published to the overlay for efficient query
processing. In Ref. [21], a multi-dimensional
indexing, called RT-CAN (R-tree-based index in
content addressable networks), is proposed. Local
R-tree servers are indexes and the global index is
organized as a logical CAN-based overlay network.
Similar to RT-CAN, a VA-file and CAN-based
index framework is presented in Ref. [22], which
improved query performance by eliminating the
false positive queries in RT-CAN. LU et al [23]
adopt a compressed bitmap index to construct the
cloud index, which can save a lot of storage costs
than other index structures. In practice, a parallel
positional inverted index is proposed to improve
graph queries [24]. HE et al [25] utilize the
randomized idea to construct a hierarchal Octree

index for three dimensional data. Comparing with
the embedded-index model, the bypass-index model
may be not as fast due to its loose coupling
characteristics. However, it is more flexible and
easier to maintain such a dynamic index system.

The SLC-index is a kind of bypass-index
model. But unlike other previous approaches, we
have developed a novel skip list-based dynamic
index. The SLC-index adopts a two-layered
architecture (the upper layer and the lower layer). In
the upper layer, a global server acts as a main
controller to ensure the integrity and consistency of
the whole index. In the lower layer, each local
server maintains a subset of the global skip list. The
SLC-index is flexible and can be employed with
systems such as GFS and Hadoop, among cluster
nodes.

3 Overview of SLC-index

3.1 Skip lists

A skip list [26] is a randomized, ordered list of
keys with additional parallel links. Each key is first
inserted into the base layer and then it randomly
promotes itself to the upper layer with probability
of 1/2. If successful, the key will leave a logical
node copy in the previous layer and try to promote
itself again in the upper layer until it fails or a
MaxLayer is met. When a search operation is
executed, the highest layer’s node will first be
compared. If the search key is less than the
compared node’s key, it will follow the top layer’s
link to quickly skip over unnecessary nodes.
Otherwise, it will move down to a lower layer and
execute the compare operation again until it reaches
the base layer, and then it will perform a linear
search to finish the search operation. Figure 1
shows the processing to find node 17 in a skip list

Figure 1 A regular skip list of 12 nodes to find 17

J. Cent. South Univ. (2018) 25: 2438–2450

2441

of 12 nodes. Compared to balanced binary search
trees, a skip list is more efficient with its auxiliary
lists.

3.2 SLC-index architecture

The SLC-index is logically composed of a
very large skip list (referred to as the global skip
list), which is divided into several pieces and stored
in local servers. Figure 2 depicts the overall
architecture of the SLC-index. As shown above, the
SLC-index adopts a two-layered architecture (the
upper layer and the lower layer). In the upper layer,
a global server acts as a main controller to ensure
the integrity and consistency of the whole index. In
the lower layer, each local server maintains a subset
of the global skip list, while the index boundaries of
each local server are not overlapped. The
distributed data stored in the cloud storage system
can be uniquely mapped to the nodes of the skip
lists in the local servers.

To expedite queries, the global index in the
upper layer is fully buffered in the memory of the
global server. However, due to limited memory, the
global server stores only meta-indexes that are
published by the local servers. The meta-index is
denoted as a triple in the form of (key, ip, blk),

where key refers to the search key in the local skip
list node, ip is the IP address of the computer node
that really holds the local skip list node, and blk is
the disk block number to locate the local skip list
node. Moreover, local servers selectively publish
some of their nodes to a global server based on the
adaptive publishing strategy discussed in Section 4
below. To guarantee the integrality of the indexing,
each local server publishes at least one node that
must contain the first node as a stub to identify the
boundary of its index.

The SLC-index stores a set of key-value pairs
(k, v) that is spread over multiple servers and
supports the standard dictionary operations (Insert,
Update, Lookup, and Delete). The request process
in the SLC-index is illustrated in the sequence of
numbers denoted in black in Figure 2. Hence, for a
typical request, query processing can be divided
into two phases: locating a relative local index
server in the upper layer and processing the request
on the selected local server in the lower layer.

In contrast to the benefits of the SLC-index’s
two-layered architecture, the global server may be
overloaded if the lower layer contains too many
local servers. To address this potential problem, the
SLC-index uses a replica strategy to disperse the

Figure 2 SLC-index system overview

J. Cent. South Univ. (2018) 25: 2438–2450

2442

loading on the global server. Basically, there are
two replicas of the global server; any update
process will actively engage all replicas. In the
global server, the replication involved in this
strategy may increase costs in the global server for
ensuring the consistency of the update process.
However, this cost is well worth the expenditure
due to the benefit that is evident in the scalability of
the SLC-index.

4 Analysis of adaptive publishing

As discussed in above section, the SLC-index
is designed to support large-scale data processing
with dynamic changing volumes of data. The nature
of the two-layer architecture requires that the index
must be synchronized across both the lower layer
and the upper layer. Such frequent data updating
and information synchronization causes challenges
for index maintenance in the SLC-index. Besides,
only a proportion of the local nodes can be
published into the upper layer due to limited
memory. If the local server publishes larger
numbers of the lower nodes’ meta-indexes, then the
query process can be expedited in the local server.
However, this increases the memory consumption
in the global server. Hence, we need to estimate the
benefits of such node publishing.

4.1 Cost model

In the SLC-index, the query process involves
cooperation of both global servers and local servers.
The total query cost (refers to costglobal) of the
SLC-index must be a function that involves the
query cost of the global server (refers to costglobal)
and the query cost of the local servers (refers to
costlocal). The relationship can be defined as follows:

) ,(localglobaltotal tcostcosftcos (1)

The SLC-index’s adaptive publishing strategy

needs to calculate the variation of costtotal in order to
make a decision between publishing or removing
nodes from the local servers. First, let us
differentiate between two types of variation:
variation of costglobal (refers to Pglobal) and variation
of costlocal (refers to Plocal). In order to calculate this,
it is necessary to have an expression that can
indicate the query cost in a skip list that starts
search from any median node. Based on analysis of
skip lists in Ref. [26], given n nodes in the bottom

level of a skip list, there are Lpn)/1/(nodes
expected in the L level. Hence, the highest level L
in a skip list with n nodes can be presented as
follows:

nnL
p

1log)((2)

Furthermore, PUGH [26] uses backward

traversing to estimate a skip list’s search cost, the
expression is as follows:

pp

nL
ncos

1

1)(
)(t (3)

By Eq. (3), 1/(1–p) may be taken as a constant,

and the time cost of a skip list could be simplified
as ./)(log 1 pn

p

Based on this, now we can estimate

the variation of the query cost of the global server
(Pglobal) and the variation of the query cost of the
local server (Plocal).

In the following, we define Pglobal. Suppose
that the skip list in the global server represents nm
nodes, and each local server represents ns nodes.
After new nodes are published, there would be nm
nodes in the global skip list, and the number of
nodes in the local server is also ns. Putting the
results together, we get the increment of the global
server’s query cost Pglobal as follow:

p

n

n

p

n

p

n

P
m

m

p

m

p

m

p

111

global

logloglog

 (4)

Let k denote the published layers in the local

server. When new nodes are published in the global
server, the SLC-index not only redirects to the local
server but also starts search in the median node in
level k. Similarly, the decrement of the local
server’s query cost Plocal can be deduced as follows:

p

k

p

kn

p

n

P pp

s1s1

local

loglog

 (5)

In the SLC-index, we expect that use of the

published nodes at the local server will improve the
overall performance. Assume Ptotal as the saved time
cost when the local server’s nodes are published to
the global server. Ptotal can be defined as follows:

p

pn

n

p

n

n

p

k
PPP

k
m

m

pm

m

p

11

globallocaltotal

loglog

 (6)

In order to achieve the best performance of

J. Cent. South Univ. (2018) 25: 2438–2450

2443

searching in a skip list, the probability p must be set
to 1/e [26]. In Eq. (6), let p=1/e, intuitively Ptotal
increase by k, where k is the local server’s
published level that must be between 1 and lnnm
(the highest level defined in Eq. (2)). To ensure the
local server’s publishing benefit for the SLC-index,
Ptotal is must greater than 0 in that the publishing
can expedite queries. Hence, a further limitation of
k is needed in Eq. (6) as follows:

 elg1

e
0

e
lnetotal

m

m

m

k
m

m

k
m

n

n
k

n

n

n

n
P (7)

Based on Limitation (7), it ensures that nodes

published in the SLC-index always result in a
positive benefit. On the other hand, if it
dynamically changes the probability p of a skip list,
the best performance of the SLC-index can be
estimated by the following expression:

p
n

n
p

n

n

pn

n

m

mk

m

m
k

m

m

1 (8)

The optimized value of Ptotal with dynamically

changing probability of p in a skip list can also be
calculated by taking a derivation from Eq. (6):

0lglglglg 2

m

m

m

m

n

n
pkp

n

n
 (9)

Based on Limitation (8) and Equation (9), we

can find that when

m

mmmm

nk

nknnn
p

2

4
e

2

 and

 k

m

m

n

n
p , the SLC-index can achieve its best

performance theoretically. In practice, the
probability of p in a skip list is usually set to a
constant, because dynamic changing of p may lead
to the overhead of nodes adjusting. Hence,
Limitation (8) and Equation (9) are not practical; in
this paper, the SLC-index’s adaptive publishing
strategy is actually based on Equation (6) and
Limitation (7), and will be discussed below.

4.2 Adaptive publishing strategy

In the SLC-index, the publishing of the nodes
from the local server to the global server will affect
both the system’s query efficiency and the global
server’s memory load. In Section 4.1, we have
analyzed the query process in the SLC-index, and
derived its benefit predictive expression (Eq. (6)).
Figure 3 shows the variation tendency of the

SLC-index’s query benefit, based on Eq. (6). We
can see that the overall query efficiency increases
with published levels in local servers. However, the
growth rate of the overall query efficiency
progressively decreases. On the other hand, based
on the feature of the skip list that a node’s level
increases progressively with probability p, the
number of nodes using top-down publishing
approach will increase exponentially. Therefore,
Figure 4 shows the variation tendency of the global
server’s memory loads with same conditions as in
Figure 3. It shows that although the SLC-index’s
publishing enhances the overall query efficiency,
the memory loads of the global server also increase
exponentially.

Figure 3 Variation of query benefit

Figure 4 Variation of memory load

Therefore, the adaptive publishing strategy in

the SLC-index must balance the query efficiency
and memory cost. The SLC-index uses the
incremental ratio as the identifier to decide whether
publishing is beneficial. Specifically, before
publishing the next level’s node, the local server
will calculate the current incremental ratio of the

J. Cent. South Univ. (2018) 25: 2438–2450

2444

query benefit and the global server’s memory load.
Let Qold be the query benefit before publishing the
next level’s nodes, Qnew is the predictive query
benefit after publishing the next level’s nodes. The
incremental ratio of query efficiency is defined as
Aquery=(Qnew–Qold)/Qold. The incremental ratio of the
global server’s memory load Amem_load=(Mnew–Mold)/
Mold is defined similar to Aquery, in which Mnew
denotes the memory load after publishing the next
level’s nodes and Mold is the original load. Based on
the two incremental ratios, the judgment condition
of adaptive publishing can be defined as:

men_loadquery

men_loadquery

 if ,false

 if ,true
isBenef

AA

AA

This expression is used in the

LocalIndexPublish() algorithm that is discussed in
the next section. It guarantees the positive and
optimal performance of the SLC-index’s adaptive
publishing strategy.

5 SLC-index process details

5.1 Local index publishing algorithm

As described above, the local server
selectively and adaptively publishes the meta-index
of other nodes to expedite the query process. Due to
the feature that a skip list’s nodes in higher levels
decline exponentially, the SLC-index’s local servers
adopt a top-down approach to publish their
meta-index. First, nodes at the highest level (must
contain stub nodes) in the local server will be
published into the global index, then each local
server periodically calculates its publishing benefit
prediction with the expression defined in Section 4.
If the local server finds that publishing the next
level’s nodes can achieve better performance, it will
publish these nodes into the global index. This
publishing procedure will repeat until it cannot
achieve better performance.

Figure 5 gives an example of one local server
changing its top-down publishing approach from
level 3 to level 2. Obviously, a decrease of
publishing level in a local server requires that more
nodes insert into the global server. It is significant
that the lower level nodes always contain all the
replicas of the upper level nodes in a skip list. As
the local server publishes nodes level by level, only
new nodes (i.e., those that have not been included

in the last level) are now inserted into the global
server.

Algorithm 1: LocalIndexPublish(Si)
Input: Si — local server that needs to publish its

local skip list nodes
1: Si publishes the stub node of its local skip list
2: l := Level(Si)
3: while true do
4: Si checks its published local skip list nodes
5: if isBeneficial(l–1) then
6: Si additionally publishes the meta-index at

level l–1
7: else
8: if benefit(l) < maintenanceCost(l) then
9: Si remove meta-index at level l which is

published in the global meta-index of the
global server

10: wait for a time

Algorithm 1 shows the details of how a local
server publishes its nodes’ meta-index into the
global server. Initially, only the index of a stub node
is published (line 1). Then it will decide if it is
beneficial to publish the meta-index at the next
level. If the meta-index at the next level can
improve search efficiency, the next level meta-index
will be added to the global server (lines 4–6). In
contrast, if the meta-index is published at the
current level with low benefit and high maintenance
cost, these indexes will be removed from the global
node-indexes server (lines 8–9). The checking
process described above will be invoked
periodically.

5.2 Range querying and update strategy

A typical range query processing in the
SLC-index can be divided into two phases: 1)
locating the relevant local index server in the upper
layer, and 2) processing the request to the selected
local server in the lower layer. The sequences of the
numbers are identified in black in Figure 2. If the
client invokes a query request with any key, it will
first send the query request to the global server
which covers the entire index boundary (Step 1).
Next, the global server uses these matched meta-
indexes to redirect to some specific local servers
(Step 2). Finally, the local servers invoke a local
searching and return the query results to the client
(Step 3). The procedure can be expressed as
Algorithm 2.

J. Cent. South Univ. (2018) 25: 2438–2450

2445

Figure 5 Details of local server’s node publishing: (a) Before publishing; (b) After publishing

Algorithm 2: Rangequery (Q=[l, u])
Input: Q – keys map to data that range from l to u
Output: Sresult – set contains data that maps to keys

in search range
1: Si := lookup(l)
2: Ni := localSearch(Si, l)

//if it is a range query, performs a linear search to
get others

3: while Niforward exists and Ni.key < u do
4: local search on Ni and put the indexed nodes

overlapping with Q into set Sresult
5: Ni := Niforward
6: forward Sresult to query requestor

Algorithm 2 shows the overall query process

in the SLC-index. Initially, the client uses lookup()
to access the global server in order to get the result
of local server redirection (line 1). After locating a
local server with lookup(), a local search is
performed in that local server (line 2). For a range
query, a linear search is performed from the first
node as the lower bound to the end of the node in
the upper bound. Further search results will be
added to the read set of transactions (lines 3–5),
until the search process has been completed. Finally,
the data are output directly to the client (line 6).

The performance of data insertions and
deletions are a major consideration for index
maintenance. In the SLC-index, the process of
insertion is in two stages that require both location
and addition. The locating phase is similar to a
search process as discussed above. In the adding

phase, new data are stored as a skip list node in a
local server. The new node is given a random level l
with probability. Then, the local server will publish
the new node to the global server if its level l is
greater than current published level. Otherwise, the
process of this insertion is complete and returns the
state of the code to the client.

Algorithm 3: Insert(key, value)
Input: key – entry to get index
Input: value – index that maps to distributed file

system
1: Si := lookup(key)
2: lv := randomLevel(Si.StubLevel)
3: txn := BeginTx()
4: node := store(txn, lv, key, value)
5: if Si’s current published level <= lv then
6: metaIndex := getMeta(node);
7: publishToGlobal(Si, metaIndex);
8: Commit(txn)
9: EndTx(txn)

Algorithm 3 is the process of insertion in the

SLC-index. The operation of insertion is executed
with key-value pairs, in which the key used to
locate the server and decide where to store the value.
Due to the characteristic that every server has its
first node at the highest level, a helper function
randomLevel() is used to ensure that a new node
that is being inserted is always lower than the first
node (also called the stub node). In the insert
algorithm, the client first uses lookup() as the

J. Cent. South Univ. (2018) 25: 2438–2450

2446

method to locate which server will accept the add
request (line 1). Then, the client sends information
to the server. When the server accepts an insert
request, it first undertakes a local search with the
insert key to locate where the new value will be
inserted. If it finds the position, a new node will be
created to store the key-value pairs (line 4). A
transaction actually stores the new value to ensure
consistency. Specifically, if the new node is created
with a level higher than the publishing level of the
server, the meta-index of new node must also be
published to the global server (lines 5–7). The
deletion process is similar to the insertion process.

5.3 Dynamic load balancing

Load balancing is significant in distributed
systems. The migration process in the SLC-index
allows the local servers to split part of their data to
other servers or merge together some local servers’
data. The SLC-index uses a statistical approach to
monitor the status of the system load. Here, each
local server saves information as it accesses and
periodically sends the statistics to the global server.
Statistics from the local servers are calculated at the
global server to identify the loading factor at each
local server, and the global server will decide
whether some migrations need to be invoked.

In the SLC-index, an overloaded local server
can split its local skip list, then migrate part of the
skip list to a new server or adjacent server. Here we
give some definitions used in the splits as follows:

S is a non-empty skip list consisting of several
non-empty sorted linked lists. All the items are
stored in the list of level 1. Some of them also
belong to the list of level 2 and so forth.

key(x) denotes the key of each item x in S.
level(x) denotes the height of each item x in S.

We write level(S) to denote the maximum level
among the levels of its items.

wall(x, l)=“the first node y to the right of x, i.e.,
key(x)<key(y), such that level(y)>l”. Given a skip
list S and a node x≠NIL and some integer
0≤l≤level(x), we can get wall(x, l). For instance, in
Figure 6, wall(5, 3) is the node having key 24, and
wall(5, 2) is the node having key 14.

The SLC-index has a stub node as the first
node and also identifies the highest level in each
server. With the stub node, the splitting of the local
skip list can be done locally without communicating
with neighbor servers. The splitting algorithm can

be described as follows:

Algorithm 4 Split (S1, S2, l)
Input: S1 – server which needs to split its local skip

list
Input: S2 – server which accepts the back part of the

split local skip list
Input: l – argument to decide split span
1: //validate whether wall(S1, l) exists, if not

adjust l
2: for i := l downto 1 do
3: if wall(S1, i) exists then break;
4: l := i
5: //record the links which need to be updated

after splitting
6: local updateLink[1…S1. StubLevel]
7: x := S1.list→header
8: for i := S1.StubLevel downto 1 do
9: while x→forward[i] < wall(x, l) do
10: x := x→forward[i]
11: updateLink[i] := x
12: x := x→forward[1]
13: //migrate nodes and relink two servers
14: if x == wall(x, l) then
15: for i := l+1 to S1. StubLevel do
16: x→forward[i] := updateLink[i]→forward[i]
17: updateLink[i]→forward[i] := x
18: migrate(S1, S2, x);

Algorithm 4 splits the local skip list of server

S1 into two parts, then migrates the back part into
server S2. The argument l is configured to decide
the splitting span. If the l is near the stub level, after
splitting, more nodes will remain in S1. In contrast,
if the l is far from the stub level, more nodes will
migrate to S2. Figure 6 is an example of splitting
with level(S)=5 and l=4, the skip list of server S1 is
divided into two parts from node 24 which is the
first node in level 4, then the back part of the
original skip list is migrated to server S2.

The splitting algorithm initially checks if a
node is at a level l that can be used as the splitting
node. If not, it will adjust l until a splitting node can
successfully be found (lines 2–4). The nodes that
link to the splitting node will then be recorded in
order to update the links after splitting (lines 6–12).
When all the preparatory work is finished, the back
part from the splitting node will be migrated to a
new server, and the nodes in the front part that link
to the migrated splitting node will update their
pointers to link to new server (lines 14–18).

J. Cent. South Univ. (2018) 25: 2438–2450

2447

Figure 6 Migration with splitting: (a) Before splitting; (b) After splitting

The SLC-index also provides a merging

algorithm as a process to support migration between
existing servers or to deal with a server crash.

Algorithm 5: Merge(S1, S2)
Input: S1 – server that needs to migrate its local skip

list
Input: S2 – server that accepts the migrated local

skip list
Output: whether merge operation is successful
1: // get all data from S1, buffered them in

migrateList
2: migrateList := extractIndexData(S1);
3: foreach index in migrateList do
4: // use insert interface of skip list to save
migrated index at a proper location in S2
5: insert(S2, index);
6: node := getNodeInfo(S2, index);
7: // if the new inserted node is in a published

level, it must be updated to the global server
6: if node.level >= S2. publisedLevel then
7: metaIndex := getMeta(node);
8: updateToGlobal(S2, metaIndex);

The merging algorithm migrates the local skip

list of server S1 into server S2. First, all the index
data in S1 are extracted and buffered in a list (line 2).
Then the list is sent to S2. When S2 receives the
buffered list, it invokes the insert() interface of the
skip list to store the index data in proper locations
(lines 3–5). To guarantee indexing correctness, after
the insertions of each migrated data, if the inserted
node’s level is greater or equal to S2’s published
level, S2 needs to publish its meta-index into the
global server because the newly inserted node
might have changed S2’s indexing range (lines 6–8).

6 Experimental evaluations

To evaluate the performance of the SLC-index,
we developed a simulator extended from Peersim
[27]. The testing computer had an Intel Core
i3-350M 2.26 GHz CPU, 2 GB RAM, and 320 GB
disk space, and ran CentOS 6.0 (64-bit). It was used
to simulate different sizes of cloud computing
systems, ranging from 32 nodes to 256 nodes. In the
simulator, each node manages 5000 resource files
with sizes from 32 kB to 64 kB. For comparison,
we also implemented a distributed B+ tree index,
described in Ref. [18].

Figure 7 shows the performance of point query

J. Cent. South Univ. (2018) 25: 2438–2450

2448

in the SLC-index. We can see that the
ScalableBTree is faster than the SLC-index. By
analyzing the experiment data, we discovered two
reasons for this result. The first one is that the
SLC-index adopts a two-layered architecture, for
each query process. Consequently, additional
routing cost may arise due to the routing from the
global server to a local server. The second one is
that although a skip list can provide query
performance of O(logN) in theory, it does however
under-perform a little compared with B-tree, in
practice.

Figure 7 Performance of point query in SLC-index

Figure 8 illustrates a comparison of

range-query performance between the SLC-index
and the ScalableBTree. We can see that the
SLC-index performs better than the ScalableBTree
as systems are scaled up. The SLC-index benefits
from the indexing boundary distribution that data
are sequentially located in local servers. Hence, it
can reduce routing cost as the indexing range
covers more servers. Conversely, the randomly
dispersed nodes in ScalableBTree also affect its
range-query performance due to the need for more

Figure 8 Comparison of range query performance

between SLC-index and scalable BTree

hops per range-query.
System scalability is an essential indicator for

distributed systems. We dynamically and randomly
insert keys to test SLC-index performance in
scale-up. From Figure 9, we can see that the
SLC-index performs stably as the system is scaled
up. This is because the SLC-index adopts a
two-layered architecture, and most of the key
insertions can be completed in a local server
without any adverse impact on the global server. As
discussed in Section 3.3, the SLC-index’s local
server publishes only some higher level nodes to
the global server. Hence, if a new key is inserted
into the SLC-index, only the new inserted node
whose level is higher than published level needs to
be sent to the global server. The two-layered
architecture is a prominent feature that reduces the
cost of indexing boundary adjustment.

Figure 9 System scalability

The dynamic splitting and merging of local
servers for load-balancing are also interesting
features of the SLC-index. In Figure 10, we test the
splitting and merging cost of the SLC-index with
different scale-ups of the system. We can see that
the adjusting time increases with system scale-up
with effects of splitting or merging that can result in
affecting the indexing boundary adjustment in the
system. In the SLC-index, the global server
maintains consistency across the indexing boundary
as a whole. After splitting or merging, the level of
moved nodes may change because a skip list is a
probabilistic data structure. To guarantee
correctness of the indexing boundary at the local
server, the SLC-index must decide for each moved
node whether or not it needs to be published to the
global server.

J. Cent. South Univ. (2018) 25: 2438–2450

2449

Figure 10 Load adjusting performance

7 Conclusions

We have presented the design and
implementation of a skip list-based indexing
scheme for cloud data processing. We analyze the
profit and cost arising from the publishing of nodes
at local servers. We illustrate that the SLC-index
can achieve better performance with dynamic
adjusting. Moreover, the SLC-index also provides
system scaling strategies that support dynamic
splitting and merging for online migrations. The
SLC-index is a flexible, dynamic and easily
maintainable index system. It is efficient for both
point and range queries, and can help to filter
relative block selection. The SLC-index can also be
employed with cloud storage systems with cluster
nodes.

References

[1] ARMBRUST M, FOX A, GRIFFITH R. A view of cloud

computing [J]. Communications of the ACM, 2010, 53(4):

50–58. DOI: 10.1145/1721654.1721672.

[2] BEN-YEHUDA O A, BEN-YEHUDA M, SCHUSTER A,

TSAFRIR D. Deconstructing Amazon EC2 spot instance

pricing [J]. ACM Transactions on Economics and

Computation, 2013, 1(3): 16. DOI: 10.1145/2509413.

2509416.

[3] WANG Li-zhe, von LASXEWSKI G, YOUNGE A. Cloud

computing: A perspective study [J]. New Generation

Computing, 2010, 28(2): 137–146. DOI: 10.1007/s00354-

008-0081-5.

[4] CALDER B, WANG J, OGUS A W. Windows Azure storage:

A highly available cloud storage service with strong

consistency [C]// ACM Symposium on Operating Systems

Principles. Cascais: ACM, 2011: 143–157. DOI:

10.1145/2043556. 2043571.

[5] LIU An-feng, LIU Xiao, LI He. MDMA: A multi-data and

multi-ACK verified selective forwarding attack detection

scheme in WSNs [J]. IEICE Transactions on Information and

Systems, 2016, E99-D(8): 2010–2018. [2016-08-01] https://

search.ieice.org/bin/summary.php?id=e99-d_8_2010.

[6] DING Y S, HAO K R. Multi-objective workflow scheduling

in cloud system based on cooperative multi-swarm

optimization algorithm [J]. Journal of Central South

University, 2017, 24(5):1050-1062. DOI: 10.1007/s11771-

017-3508-7.

[7] CHANG F, DEAN J, GHEMAWAT S. Bigtable: A

distributed storage system for structured data [J]. ACM

Transactions on Computer Systems, 2008, 26(2): 1–26. DOI:

10.1145/1365815.1365816.

[8] GHEMAWAT S, GOBIOFF H, LEUNG S T. The Google file

system [C]// ACM Symposium on Operating Systems

Principles. Bolton landing: ACM, 2003, 37(5): 29–43. DOI:

10.1145/1165389. 945450.

[9] VAVILAPALLI V K, MURTHY A C, DOUGLAS C. Apache

hadoop yarn: Yet another resource negotiator [C]// ACM

Annual Symposium on Cloud Computing. Santa clara: ACM,

2013(5): 1–16. DOI: 10.1145/2523616.2523633.

[10] DECANDIA G, HASTORUN D, JAMPANI M. Dynamo:

Amazon’s highly available key-value store [C]// ACM

Symposium on Operating Systems Principles. Stevenson:

ACM, 2007, 41(6): 205–220. DOI: 10.1145/1323293.

1294281.

[11] LAKSHMAN A, MALIK P. Cassandra: A decentralized

structured storage system [J]. ACM SIGOPS Operating

Systems Review, 2010, 44(2): 35–40. DOI: 10.1145/

1773912.1773922.

[12] DITTRICH J, QUIANERUIZ J, JINDAL A. Hadoop++:

Making a yellow elephant run like a cheetah (without it even

noticing) [J]. Proceedings of The VLDB Endowment, 2010,

3(1, 2): 515–529. DOI: 10.14778/1920841.1920908.

[13] YANG H C, PARKER D S. Traverse: Simplified indexing on

large map-reduce-merge clusters [C]// International

Conference on Database Systems for Advanced Applications.

Brisbane: Springer, 2009: 308–322. DOI: https://doi.org/

10.1007/978-3-642-00887-0_27.

[14] LIN J, RYABOY D, WEIL K. Full-text indexing for

optimizing selection operations in large-scale data analytics

[C]// The Second International Workshop on Map Reduce

and Its Applications. San Jose: ACM, 2011: 59–66. DOI:

10.1145/1996092. 1996105.

[15] LU Peng, CHEN Guang, OOI B C. ScalaGiST: Scalable

generalized search trees for mapreduce systems [innovative

systems paper] [J]. Proceedings of the VLDB Endowment,

2014, 7(14): 1797–1808. DOI: 10.14778/2733085.2733087.

[16] RICHTER S, QUIANERUIZ J, SCHUH S. Towards

zero-overhead static and adaptive indexing in Hadoop [J].

Proceedings of the VLDB Endowment, 2014, 23(3):

469–494. DOI: https://doi.org/10.1007/s00778-013-0332-z.

[17] CHANG B R, TSAI H F, HSU H T. Secondary ındex to big

data NoSQL database–ıncorporating solr to HBase approach

[J]. Journal of Information Hiding and Multimedia Signal

Processing, 2016, 7(1): 80–89. http://bit.kuas.edu.tw/~

jihmsp/2016/vol7/JIH-MSP-2016-01-009.pdf.

[18] AGUILERA M K, GOLAB W, SHAH M A. A practical

scalable distributed B-Tree [J]. Proceedings of the VLDB

Endowment, 2008, 1(1): 598–609. DOI: 10.14778/

J. Cent. South Univ. (2018) 25: 2438–2450

2450

1453856.1453922.

[19] HUANG Bin, PENG Yu-xing. An efficient two-level bitmap

index for cloud data management [C]// IEEE International

Conference on Communication Software and Networks.

Xi’an: IEEE, 2011: 509–513. DOI: 10.1109/ICCSN.2011.

6014776.

[20] ZHOU Wei, LU Jin, LUAN Zhong-zhi. SNB-index: A

SkipNet and B+ tree based auxiliary Cloud index [J]. Cluster

Computing, 2014, 17(2): 453–462. DOI 10.1007/s10586-

013-0246-y.

[21] WANG Jin-bao, WU Sai, GAO Hong. Indexing multi-

dimensional data in a cloud system [C]// ACM SIGMOD

International Conference on Management of Data.

Indianapolis: ACM, 2010: 591–602. DOI: 10.1145/1807167.

1807232.

[22] CHENG Chun-lin, SUN Chun-ju, XU Xiao-long. A

multi-dimensional ındex structure based on ımproved

VA-file and CAN in the cloud [J]. International Journal of

Automation and Computing, 2014, 11(1): 109–117. DOI:

https://doi.org/10.1007/s11633-014-0772-y.

[23] LU Peng, WU Sai, SHOU Li-dan. An efficient and compact

indexing scheme for large-scale data store [C]// IEEE

International Conference on Data Engineering. Brisbane:

IEEE, 2013: 326–337. DOI: 10.1109/ICDE.2013.6544836.

[24] DINARI H, NADERI H. A method for improving graph

queries processing using positional inverted index (PII) idea

in search engines and parallelization techniques [J]. Journal

of Central South University, 2016, 23(1): 150–159 DOI:

10.1007/s11771-016-3058-4.

[25] HE Jing, WU Yue, DONG Yun-yun. Dynamic

multidimensional index for large-scale cloud data [J]. Journal

of Cloud Computing Advances Systems & Applications,

2016, 5(1): 1–12. DOI: 10.1186/s13677-016-0060-1.

[26] PUGH W. Skip lists: A probabilistic alternative to balanced

trees [J]. Communications of The ACM, 1990, 33(6):

668–676. DOI: 10.1145/78973.78977.

[27] JESI G. P. Peersim HOWTO: Build a new protocol for the

PeerSim 1.0 simulator [EB/OL]. [2011-08-04] http://peersim.

sourceforge.net/.

(Edited by HE Yun-bin)

中文导读

SLC：基于跳表的可扩展云数据索引

摘要：随着基于云平台的应用的增加，云存储系统中的数据呈现出爆炸式增长的趋势，要求云数据处

理系统具备高效的海量数据处理能力，然而，现有的云存储系统大多采用哈希方法检索数据，主要提

供针对键值的查询，范围查询效率较低。因此，有必要为云存储系统构建辅助数据索引。提出了一种

基于跳表的云数据索引结构，简称 SLC 索引。SLC 索引采用双层体系结构，该索引结构契合云存储

系统的分布式存储特性，易于在多个服务器节点上灵活扩展。局部索引节点基于查询耗费计算模型向

全局索引节点发布索引信息，保证 SLC 索引结构的整体高效性。通过动态的索引节点分裂与合并机

制，降低数据倾斜带来的性能影响，实现索引结构负载均衡。实验结果表明，SLC 索引能够支持高效

的单点查询和范围查询，是一种适用于云计算系统的具有高可扩展性的辅助数据索引。

关键词：云计算；分布式索引；云数据处理；跳表

