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Abstract: Building a cloud geodatabase for a sponge city is crucial to integrate the geospatial information dispersed in 
various departments for multi-user high concurrent access and retrieval, high scalability and availability, efficient 
storage and management. In this study, Hadoop distributed computing framework, including Hadoop distributed file 
system and MapReduce (mapper and reducer), is firstly designed with a parallel computing framework to process 
massive spatial data. Then, access control with a series of standard application programming interfaces for different 
functions is designed, including spatial data storage layer, cloud geodatabase access layer, spatial data access layer and 
spatial data analysis layer. Subsequently, a retrieval model is designed, including direct addressing via file name, 
three-level concurrent retrieval and block data retrieval strategies. Main functions are realised, including real-time 
concurrent access, high-performance computing, communication, massive data storage, efficient retrieval and 
scheduling decisions on the multi-scale, multi-source and massive spatial data. Finally, the performance of Hadoop 
cloud geodatabases is validated and compared with that of the Oracle database. The cloud geodatabase for the sponge 
city can avoid redundant configuration of personnel, hardware and software, support the data transfer, model debugging 
and application development, and provide accurate, real-time, virtual, intelligent, reliable, elastically scalable, dynamic 
and on-demand cloud services of the basic and thematic geographic information for the construction and management 
of the sponge city. 
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1 Introduction 
 

Presently, the rapid urbanisation has changed 
the urban land use pattern and hydrological 
mechanism, increased the impervious area of the 
city. These changes deteriorate the microclimate 
environment, shorten the flood peak time, increase 
surface runoff, peak discharge, runoff pollution and 
waterlogging risk, decrease the amount of 
groundwater recharge and surface interception. 

China has vigorously constructed sponge cities to 
solve the abovementioned ‘urban diseases’. A 
sponge city refers to a city like a sponge that has 
certain flexibility in response to natural disasters 
and environmental changes. Sponge city is a 
construction model of low-impact development 
(LID) for natural infiltration, natural accumulation 
and natural purification. Rainwater in sponge cities 
is infiltrated, stored, absorbed and purified in the 
rainy season, and then the stored rainwater is 
released and utilised in the dry season. 
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The spatial layout of spongy bodies, such as 
bio-swale, green roof, rainwater garden, is the most 
important factor that determines the efficiency of 
sponge city. The optimal spatial layout of sponge 
bodies can improve the overall performance, capital 
utilization and operation efficiency of sponge city. 
However, massive spatial data and attribute data are 
involved during the optimisation of spatial layout of 
the sponge bodies [1, 2]. Vector data include 
administrative boundaries, topography, roads and 
buildings. Raster data include digital elevation 
model, remote sensing images and land use. 
Drainage data include municipal pipe network, 
drainage node and water inlet node. Land use data 
include soil, vegetation, rivers and lakes, watershed 
and waterlogging area. Hydrologic data include 
permeability rate, groundwater level, impervious 
area, Manning coefficient, storage volume, erosion 
coefficient and erosion index. Pollution data include 
maximum pollutant accumulation and distribution 
of major pollutants. Meteorological data include 
temperature and precipitation. Attribute data 
include hydrological and hydraulic parameters, LID 
facility parameters, water supply, water demand and 
construction costs. 

All of these data will be stored from the 
terabyte (TB) level to petabyte (PB) level. 
Meanwhile, these data will be distributed among 
various departments, such as the construction 
headquarter for sponge city, construction bureau, 
planning bureau, water conservancy bureau, 
meteorological bureau, institute of remote sensing 
surveying and mapping and land resource bureau. 
The data are massive, multi-scale, multi-type, 
multi-source and spatiotemporal so that they are 
difficult to concurrently access, process and 
compute [3–5]. Building a cloud geodatabase for a 

sponge city can solve these problems. Cloud 
geodatabase can integrate the geospatial 
information dispersed in various departments for 
massive data processing and multi-user high 
concurrent access. 

Many cloud geodatabases have been 
developed, such as Database as a Service [6], 
geoprocessing-tools-for-hadoop [7], MongoDB [8], 
Amazon Relational Database Service [9], Building 
information models (BIMs) [10], GeoCouch [11], 
SpatialHadoop [12], GRIDDBLite [13], TerraFly 
GeoCloud [14], RDB-KV CloudDB [15], Geopot 
[16], Cloud-based geographic information system 
(GIS) [17], Hadoop-GIS [18, 19] and GeoMPP [20]. 
These cloud database products are to ensure the 
high efficiency and high availability of data. 
However, their architectures are not the same, and 
their functions, compared to that of traditional 
databases, have not been completely realized. These 
cloud geodatabases provide methods and techniques 
to achieve our cloud geodatabase for sponge city. 

Cloud geodatabases have developed with the 
increase in demands of cloud computing technology, 
such as massive data storage space, fast data 
retrieval and processing and high data security. 
Cloud geodatabases have been applied to various 
fields as shown in Table 1. 

According to the application fields and 
software types of cloud geodatabases 
abovementioned, cloud geodatabase has not been 
applied to the sponge city for spatial data storage, 
MapReduce, retrieval and access to optimize the 
spatial layout of the sponge bodies. Therefore, the 
purpose of this paper is to design and achieve a 
cloud geodatabase to provide accurate, real-time, 
virtual, intelligent, reliable, elastically scalable, 
dynamic and on-demand cloud services of the basic 

 
Table 1 Application of cloud geodatabases 

Application of cloud geodatabase Usage of techniques Reference

Evaluation of the dynamic groundwater quality using a spatial database, 
a property database and mathematical models 

GIS and cloud- 
based simulation technologies 

[21] 

An efficient retrieval method for skewed spatial data An R+-tree [22] 

Online spatial analytical processing that is three-layer architecture: 
data layer, service layer and application layer 

Cloud spatial data warehouses [23] 

High-performance cloud computing system for remote sensing image 
analysis, storage, data processing and on-demand services 

Cloud Hadoop MapReduce [24–27]

A middleware and a vector spatial data storage schema to express 
spatial topological relations and store large-scale vector spatial data

Key/value mapping, GeoTools toolkit and 
column-oriented storage structures 

[28] 

A cloud-based service for analysing, storing and viewing massive 
building information models 

MapReduce and Bigtable as the data processing 
and storage paradigms 

[29] 

Data indexing of large-scale spatial and non-spatial datasets 
Combination of MapReduce programming model 

with cloud computing 
[30] 
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and thematic geographic information for the 
optimal spatial layout of the sponge bodies. 

In this study, Hadoop distributed computing 
framework including a master and multiple slaves is 
first designed using virtualisation technology, 
geohash fragmentation, parallel computing and 
cross-platform service-oriented architecture of 
WebService. Cloud geodatabase access for the 
sponge city is then achieved including spatial data 
storage layer, cloud geodatabase access layer, 
spatial data access layer and spatial data analysis 
layer. Retrieval model is also constructed using 
direct addressing via a file name, three-level 
concurrent retrieval and block data retrieval 
techniques. Finally, the cloud geodatabase for 
sponge city is implemented and validated. It is 
shown that the cloud geodatabase for sponge city 
can support data transfer, model debugging and 
application development. It can also store and 
retrieve massive data with high-performance 
computing and communication. 
 
2 Distributed computing framework of 

Hadoop 
 

Cloud geodatabase for the sponge city is built 
using Hadoop distributed computing framework. 
MongoDB is used to keep the details of geodata set 
in the hadoop distributed file system (HDFS). The 
servers of the construction headquarter and other 
departments with relation to sponge city are 
abstracted as physical resources, such as central 
processing unit (CPU), memory, disk. These 
physical resources can be managed dynamically 
into a logical resource pool by using virtualisation 
technology. Cloud geodatabase for the sponge city 
adopts a master and multiple slaves’ architecture. 
Servers of construction headquarter for the sponge 
city are the master centre. They mainly take charge 
of receiving and parsing the production order, 
results feedback, scheduling of task and allocation 
of data and service portals. The portals can provide 
cloud storage service, production service and data 
service. The master centre also accepts cloud 
register, preserves cloud information list, collects 
query results and consumes thumbnails and 
metadata from each slave centres. Slave clouds are 
the servers of the construction bureau, planning 
bureau, water conservancy bureau, meteorological 
bureau, land resource bureau and institute of remote 
sensing surveying and mapping. They are mainly 

responsible for task execution and massive data 
storage. 

The parallel import function of spatial data is 
realised by using the geohash fragmentation method 
to improve the spatial query and concurrent access 
performances. Geohash is a geocoding method that 
transforms the two-dimensional coordinates of 
longitude and latitude into a string in accordance 
with the accuracy requirement. 

A communication framework is built for data 
communication and sharing by using the 
cross-platform service-oriented architecture of 
WebService between the master and slave centres. 
It provides the external service interfaces, such as 
query, download and upload, for the cloud 
geodatabase. The framework can directly achieve 
interoperability between data and information, and 
also integrate and share data among different 
operating system users. 

Hadoop is an open source programming of the 
Google FileSystem. Hadoop can process huge 
datasets across clusters of computers and is widely 
applied in many fields, such as graph processing, 
machine learning and behavioral simulations. It can 
scale up from single servers to a great many 
machines. Hadoop provides a cloud platform 
software with a parallel computing framework, 
including HDFS and MapReduce, to process 
massive spatial data [25]. Hadoop utilizes the high 
operation speed and mass data storage of the cluster. 
Meanwhile, it hides the underlying distributed 
details of parallel computing, data distribution and 
failure processing to users. HDFS locates the 
underlying part of Hadoop framework and accesses 
the file system data in binary stream form with high 
throughput and high fault tolerance. HDFS is 
deployed on a low-cost hardware. It can divide the 
data in the HDFS file into tile data and then store 
the tile data on each DataNode of Hadoop. 
MapReduce is a parallel computing framework that 
generates and processes large datasets for batch 
workloads of data-intensive applications 
implemented by HDFS. It can divide the 
computational work into small segments and 
distribute the segments among hundreds of different 
machines to ensure data reliability. 

MapReduce computing consists of the 
mapping phase (Mapper) and the Reduce 
specification stage (Reducer). In the mapping phase, 
a set of key-value pairs are inputted by utilising the 
Map function to generate a set of intermediate 
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results <Key, Value>. Each DataNode of 
MapReduce has a Mapper under the default 
configuration. Each Mapper reads the split file data 
from the DataNode as the key-value pair of the Map 
function, where key is a row number by default, and 
value is a string. The value contains the hierarchical 
structure and computing metrics for all dimensions. 
The Map function splits the fields based on 
dimension and hierarchical structure descriptions. A 
new string forms a key of the output key-value pair, 
whereas the string calculating metric is the value of 
the output key-value pair. At the same time, the 
MapReduce computing model sorts and groups the 
intermediate key-value pair output from the 
mapping phase according to the keys. The model 
then generates the intermediate data <key, list 
(value)> as the input of the Reduce stage. 

In the Reduce specification stage, the Reduce 
function is used to aggregate and simplify the 
intermediate results from Mapper. All of the 
intermediate data <key, list (value)> are inputted 
into the Reduce function and then iterated until a set 
of values and fields corresponding to each key are 
accumulated. A new string is reconstructed as a 
value of key-value pair which is outputted from the 
Reducer. 

The key-value pair of Hadoop MapReduce 
model can convert relational data in a relational 
database into structural data [31] to enhance the 
interoperability of Hadoop cloud geodatabase with 
Oracle relational database. Firstly, all dimension 
and metric relational datasets are calculated by 
using Cartesian product according to association 
key. Each dimension table is connected with fact 
table to generate a new dataset. Secondly, data in 
each row of the new dataset in HDFS forms a string 
as the value of the key-value pair which is inputted 
from the Map function of the MapReduce model. 
The row number is the key of the key-value pair. 
Finally, the dimensions are extracted from the value 
via Map operation to form a new string, which is 
the key of the Reducer. The information of all 
dimensions contained in the value is removed. 
Calculating metric is used as the value of the 
Reducer. 
 
3 Design of cloud geodatabase access 
 

Cloud geodatabase access is an important part 
of the cloud geodatabase application for the sponge 
city. It mainly includes spatial data storage layer, 

cloud geodatabase access layer, spatial data access 
layer and spatial data analysis layer. Each layer 
provides a series of standard application 
programming interfaces (APIs) for different 
functions. The functions of cloud geodatabase are 
abstracted and packaged into the engines to shield 
the differences among multi-source heterogeneous 
databases and provide a unified data access 
interface for the application layer. Figure 1 shows 
the architectural design of the cloud geodatabase 
access. 

 
3.1 Spatial data storage layer 

The spatial data storage layer is located at the 
bottom layer of the cloud geodatabase access. It is 
composed of many storage engines, such as stored 
procedures, triggers, and views, of an Oracle 
relational database and a Hadoop cloud geodatabase 
for sponge city. The Oracle relational database 
stores small amount of real-time data. It can also 
stores data that can be directly involved in model 
calculation, such as attribute data, metadata, water 
level and water quality. Cloud geodatabase for 
sponge city based on Hadoop stores large-scale 
raster and vector datasets. Then, the massive data in 
the cloud geodatabase are segmented, aggregated, 
cleaned and optimised using the MapReduce 
calculation model. It generates the relatively small 
ordered datasets to meet the high concurrent access 
demand of a large number of users [32]. 

The storage space of a storage node in the 
study is divided into several visual disk spaces 
(VDSs) [33]. The VDSs are adjacently encoded 
with Arabic numerals. It improves the parallel 
access and bandwidth utilisation of the cloud 
geodatabase for sponge city and shields the 
computer hardware details of the distributed 
database. The hardware configuration information 
is transparent within the cloud. 

The mapping relation between tile file and 
VDS is established according to some vector or 
raster tile data attributes as follows:  
E=(Ir+Ic)Mod Nmax  
where E is a VDS-encoded tile datum. Ir and Ic are 
the row and column numbers of a tile data. Mod is 
modulo operator. Nmax is the total number of VDSs. 

According to the above equation, tile data with 
the same row number and column number are 
stored in the adjacent VDSs, whereas tile data with 
the same summation of row number and column  
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Figure 1 Access structure of cloud geodatabase 

 
number are stored in a VDS to sort them based on 
row major order. 

The purpose of spatial data partitioning is to 
horizontally fragment spatial dimension tables via a 
spatial hierarchy and replicate the remaining tables 
of the cloud geodatabase for parallel processing 
according to spatial proximity. The start-point of 
data partitioning is the spatial data with the large 
level of granularity to avoid spatial data redundancy. 
A cloud node must store spatial data instances with 
large and fine levels of granularity. Let dataset 
D={∪I=1… I, si}, where I defines the number of 
partitions, si is the ith non-overlapping subset. 
Cloud node set N={n1, n2, …, nj …}, where nj is 

the jth cloud node. H1≤H2≤…≤ Hn is a hierarchy of 
spatial data which instances are{h1

1, h1
2 …}, {h2

1, 
h2

2…}, …, {h n
 1 , h n

 2 …}, respectively, where H1 
is the large level of granularity and Hn is the fine 
level of granularity. One or more instances {h1

1, 
h1

2 …} of H1 are stored in the cloud node nj (n≥1). 
Each instance h1

k of H1 (k≥1) and all instances hl
k 

(l>1 and k≥1) related to h1
k are stored in the same 

cloud node nj. 
The abovementioned data block method can 

realise rapid location and flexible scheduling of 
spatial data. The spatial data are divided into tiles 
with unique identifiers. The target level index of 
geography is established for geographical target 
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contained in a data block to realise multilevel index 
of spatial data. Each spatial data block is 
compressed, serialised and then stored in HDFS in 
binary stream form as a table cell. The tile data are 
stored and organised based on the vector or raster 
target record, and the block is used as a unit to 
compress. Redundant attribute data are stored in the 
Oracle relational database, including layer 
description table, spatial data table, information 
table of map sheet and its version and attribute 
information table. Spatial data stored in the Hadoop 
cloud geodatabase are used for load display and 
spatial query, whereas attribute data stored in the 
Oracle relational database are used to support 
attribute query. This method improves data storage 
granularity and loading speed and map display and 
spatial query performances. 
 
3.2 Cloud geodatabase access layer 

The cloud geodatabase access layer is located 
at the top of the spatial data storage layer. Spatial 
data access model is mapped into the spatial data of 
the cloud geodatabase for intelligent invocation, 
efficient and transparent access and communication 
with other databases. The cloud geodatabase access 
layer is divided into two sub-layers with small 
granularity. The lower sub-layer is the feature 
interface layer of the database. The features of each 
database are abstracted into a series of interfaces, 
and different databases implement different 
interface sets. Transparent access of the cloud 
geodatabase is realised by using a mapping 
conversion strategy according to the feature 
interface provided by the database. The 
corresponding features of the database are extended 
in the feature library if a new database is added in 
the cloud geodatabase. 

The upper sub-layer is the data access mapping 
layer. To realise transparent access to data, the 
access commands of spatial data and spatial index 
are passed down from the spatial data access layer. 
They are transformed into a series of invocations of 
interface functions according to the mapping 
conversion strategy. The transformation can directly 
communicate with the feature interface library and 
shield the differences among the slave nodes. The 
mapping conversion strategy is described as follows: 
Firstly, judging whether the requested database 
directly supports a set data structure. If the set 
structure is supported, it is directly called. 
Otherwise, examing whether a list structure is 

supported. If supported, the list data structure is 
used to simulate the set data structure. Otherwise, 
the KeyValue data structure is simulated. The data 
access mapping feature of the database isolated the 
data model from the spatial database. Thus, the 
realisation of physical model is not dependent 
anymore on the specific database, which 
significantly improved the scalability of spatial data 
engine. 
 
3.3 Spatial data access layer 

The spatial data access layer is located at the 
top of the cloud geodatabase access layer, which is 
encapsulated into three modules: spatial access, 
data model and spatial index. The spatial access 
module, that is, access API module, provides all the 
interfaces that operate on the geospatial data. The 
interfaces are packaged into small modules, such as 
feature access, layer access, database access, spatial 
analysis and index access. The interfaces can access 
spatial geographical data with different levels and 
granularities for operation, implementation and 
query. 

Spatial data access begins with cloud 
geodatabase. Spatial dataset information is obtained 
from the cloud geodatabase, and then layer 
information is acquired from the spatial dataset. 
Finally, the layer features are found via spatial 
index. Spatial data access includes the following 
steps (Figure 2): 

1) The metadata of the cloud geodatabase is 
read and the spatial dataset information is obtained. 

2) The metadata of the spatial dataset is read 
and the layer name is obtained. 

3) The layer metadata is read through layer 
name, and the name and type of the spatial index 
are obtained. 

4) Whether the index name is empty is 
determined. If index name is empty, the primary 
key index is read through the ‘key=Index: Primary 
Key-layer name’ because of only one primary key 
index. The filtering results are obtained according 
to the minimum bounding rectangle (MBR) 
filtering and primary key index information. 

5) If the index name is not empty, whether the 
index type is a quadtree index is determined. If it is 
a quadtree index, quadtree metadata is read by 
considering the index name. The node location of 
the quadtree in the spatial query window is 
calculated. 

6) All node records on the path between the 
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Figure 2 Algorithm of spatial data access 

 
root node and slave node of the quadtree are 
obtained. Then, the encoding of data object and 
preorder traversal encodings of all the slave nodes 
of the node are obtained. 

7) Data object details are queried according to 
sequential coding. Whether the data object 
intersects or contains the query frame is judged. 

8) If the index type is a grid index, the 
metadata information of the grid index is read 
through the index name. 

9) The grid cell intersected by the grid index 
and the spatial query window are calculated. All the 
intersected code sets are obtained. 

10) All the index information of the intersected 
grid cell is combined, and then the union sets are 
filtered according to MBR. 

11) The filtered features are read, and whether 
they are a compulsory primary key index or an 
optional spatial index is judged. An intersection test 
is performed for the results filtered by MBR to 
obtain the final query results. 
 
3.4 Spatial data analysis layer 

The spatial data analysis layer is located at the 
top of the cloud geodatabase access. It supports the 
user-oriented declarative Map Query Language 
(MapQL), including lexical analysis, syntax 
analysis, semantic analysis, code generation and 
interpreter execution. 

MapQL is a query language for semantically- 
translatable extracting and mapping from inclusion 
relation to classification of indivisuals according to 
description logic [34]. MapQL can convert from 
one representation to query mapping by using an 
operator, and to mapping expression by using a 

translator. For example, a MapQL model 
‘map_implies (C, D)’, if its MapQL operator is ‘isa 
<C, D>’, then its response result is ‘{True, False}’. 
For another example, a MapQL model 
‘map_instance (C(a), D)’, if its MapQL opterator is 
‘translate <C, a, D>’, then its response result is 
‘D(a) or None’. A MapQL request of the operator 
‘isa’ is translated using JSON (JavaScript Object 
Notation) format, for example, as follows: 
{‘domain-class’: ‘LID’, ‘domain-instance’: ‘Roof 
Garden’, ‘range-class’: ‘Sponge city’}. The 
response will be returned ‘True’ if there is a 
mapping inclusion relation among ‘LID’, ‘Roof 
Garden’ and ‘Sponge city’. Otherwise, the response 
will be returned ‘False’ if the mapping does not 
exist or there is an inference error. 

The specific processes of the layer are as 
follows: 1) The spatial data analysis layer accepts 
the MapQL input by a user and transmits it to a 
lexical analyser. 2) The lexical analyser performs 
lexical analysis of the MapQL, then generates a 
token stream and transmits the token stream to a 
syntax analyser. 3) The syntax analyser analyses the 
syntax of the token stream and obtains the 
structurised abstract syntax tree objects. 4) The 
spatial geographic data engine system analyses the 
abstract syntax tree semantics and constructs a 
corresponding execution plan. 5) Obtain the query 
results and return them to the user interface in the 
format of pictures, tables, vactors or images. 

Implementation of lexical analyser. Lexical 
analysis reads source program characters one by 
one and identifies relatively independent tokens, 
also known as marks or words. The tokens include 
keywords such as select, from, and and as, identifier 
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and special symbols. Unnecessary content such as 
annotation symbols is filtered down during the 
compilation process. The remaining content forms a 
sequential token stream. The general design process 
of the lexical analyser is as follows (Figure 3): 1) 
Aggregate the statement form and expression 
limitation supported by the descriptive language 
according to spatial query demand. 2) The 
descriptive language is decomposed into lexical 
granularities and expressed in terms of compiler 
syntax. 3) Query the symbol table of keywords. If 
the string is queried and found, it is a keyword. 
Otherwise, the string is an identifier. Token type is 
described by a regular expression to form a syntax 
regular expression. 4) Lexical analyser with a 
specified program language such as C source code 
is generated using an ANother Tool for Language 
Recognition compiler. 

Implementation of syntax analyser. The syntax 
analyser accepts a token stream text file that 
conforms to the MapQL specification and then 
generates a syntax tree. Take the SELECT query 
statement of spatial data as an example, its general 
form is ‘SELECT < query object set > FROM < data 
source > WHERE < query condition >’, where 
SELECT statement is an object property, which can 
provide an attribute name directly, or point out an 
attribute source of an object with the format of 
‘object.’, or find all the attribute information of an 
object with the symbol of ‘*’. The FROM 
sub-clause is an object set that has already been 
found in a database, or acquired from the nested 
queries. The object result set must define an alias 
using the AS keyword to facilitate references to 
other sub-clauses. The WHERE sub-clause is 
optional, which represents the filter condition of the 
query, such as a logical expression, a function 
expression and a comparison among object 
attributes, or between object attributes and their 
values. 

The semantic analyser checks static semantics, 
such as type checking and transformation of the 
syntactic unit in a syntax tree based on semantic 
rules. Semantic analysis does not need code 

generation. It iterates and analyses a syntax tree, 
and calls the corresponding interface to obtain the 
information of a string. The syntax analysis tree is a 
geometric arborescence representation of the 
abstract syntax structure of source code in the 
course of sentence pattern derivation. Meaningless 
nodes, such as separator ‘,’ left parenthesis ‘(‘ and 
right parenthesis ‘)’, are hidden when a syntax tree 
is built. Meanwhile, the syntax tree adds virtual 
nodes with abstract meaning and keywords with a 
unified form. Translation process is separated from 
the process of syntax analysis to reflect the natural 
and distinct hierarchical structure of language 
elements and explicit node meaning of syntax tree. 
 
4 Design of cloud geodatabase retrieval 
 
4.1 Direct addressing via file name 

The relative path of tile data is adopted to store 
tile data for efficient data migration, backup, 
recovery and parallel access. It is determined by 
computation and query of global information. The 
front part of a relative path is composed of IP and 
VDS encoding of a storage node. The mapping 
table between a storage node and a VDS encoding 
determines a one-to-many relationship between IP 
and VDS encoding. A field in the mapping table 
exists to identify whether a storage node is an 
operation node. The latter part of the relative path is 
composed of the determinant attributes of tile data. 
Many tile data can exist in a VDS, thus its retrieval 
rate is far less than that of data records in a database. 
Therefore, stratifying the storage space is necessary 
in each VDS and directory structure in the virtual 
space according to the determinant attributes of tile 
data. For example, raster tile data are stratified as 
follows: ‘\Number of tile levels\Satellite name\ 
Sensor name\Year of shooting image\Month of 
shooting image\Day of shooting image\Tile type 
(band file or thumbnail file)\Tile name’. The 
stratification can significantly reduce the number of 
files in a subdirectory and facilitate direct 
addressing via a file name in the case of the known 
path for high-efficiency concurrent retrieval. 

 

 
Figure 3 Implementation of lexical analyzer 
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Direct addressing via a file name utilises the 

file name of tile data and the mapping relationship 
between a storage node and VDS encoding. It has 
been initialised when the cloud geodatabase starts 
to provide services. Finding the file’s storage path 
through a massive database is not required. The 
mapping relationship table between VDS encoding 
and storage node is only modified if data need to be 
transfered and recovered due to hardware failure. 
And continual update of the storage path of tile data 
is unnecessary. Direct addressing via file name and 
mapping relationships between the cloud centre and 
various clouds and between storage nodes and VDS 
encoding constitute the mapping part of 
MapReduce model. They can map file names of tile 
data into a storage path of tile file. Direct 
addressing via file name based on virtual 
distribution enhances the storage security and 
efficient retrieval of data. 
 
4.2 Three-level concurrent retrieval 

The cloud geodatabase for sponge city is 
composed of clouds with unpredictable number and 
no theoretical upper limit. Therefore, a three-level 
concurrent retrieval strategy is constructed to 
improve data storage efficiency, retrieval, backup, 
recovery and the overall system of concurrent 
execution mechanism (Figure 4). 

The storage node in the bottom level of the 
architecture has multiple VDSs, each of which 
stores an index file of tile data. The number of 
VDSs determines the number of threads, which 
deploys request information from a storage node to 
VDSs and then process them separately [35]. 
Multiple thread processing results from multiple 
VDSs are aggregated through the interprocess 
communication channels provided by .NET 
Remoting technology. Microsoft.NET remote 
processing is a kind of network communication and 
transmission technology between the registered 
client and server using Hypertext Transfer Protocol 
and Transmission Control Protocol (TCP) / Internet 
Protocol. It speeds up the internal data exchange 
within a storage node and realises command issue, 
result collection, data communication and 
transmission among the storage nodes. 

The cloud in the middle level has multiple 
storage nodes, which can apply multiple threads 
after the external service interface issued uniformly 
receives data processing request [36]. Each thread 

releases data request at the same time inside each 
node through the TCP channel of .NET Remoting 
technology. The results from parallel processing 
within the node are also aggregated to the operation 
node via the TCP channel. If the processing request 
comes from the outside of a cloud, the result returns 
to the requester via the web service. If the 
processing request comes from the inside of a cloud, 
it returns directly to the requester for quick data 
transmission. 

Clouds on the top level constitute cloud 
geodatabase. Data processing requests at the clouds 
level are generally received from the external 
service interface of the cloud centre. The server of 
cloud centre can also apply multiple threads, each 
of which accesses the external service interface of 
the clouds or cloud centre via reflection calls. Data 
processing results are transmitted through the web 
service when performing global retrieval in the 
clouds [37]. A large amount of data will take a long 
period of time for retrieval. 
 
4.3 Block data retrieval 

Although the three-level concurrent processing 
architecture speeds up parallel data processing, long 
period of time may be consumed when a mass of 
query results are returned from a massive database. 
Furthermore, the user cannot quickly find one or 
several data records from the returned massive 
query results. Meanwhile, the user is difficultly 
utilising quadratic search from the returned massive 
query results [38]. Therefore, a block retrieval 
algorithm (Figure 5) is designed to improve data 
retrieval efficiency within the cloud geodatabase. 

The block retrieval algorithm is described in 
detail as follows: 

1) Compute the centroid of a space object 
according to the MBR. 

2) Encode the longitude and latitude of the 
centroid with base32 and then combine them 
according to the Geohash algorithm. 

3) Obtain and sort the Geohash value of the 
target object. 

4) Divide the Geohash value into n blocks 
according to the sorting code. 

5) Establish the spatial index for the 
geographic object of each block according to 
Hilbert curve. The index information from the 
query condition and query result is transmitted 
based on cache mechanism for retrieval efficiency. 
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Figure 4 Architecture of three-level concurrent retrieval 

 
Each query fragment can independently run in the 
table fragments of the slave node. Each block 
generally contains the same number of records. 

6) Deploy data in parallel among different 
physical nodes. Each slave node supports local 
index. 

7) Receive data query request, judge whether 
the request is new or the same as the previous 
request. 

8) If the request is a new query combination, 
hand out the request to each cloud, and then to each 
node. The algorithm returns to step (10). If the 
request is consistent with the last request, the 
algorithm judges whether the last request result is 
timeout or not. 

9) If the request has exceeded the time 
threshold, the query results in the database are 
updated, thus they are not used again for the last 
request result. The algorithm returns to step (10). If 
the request is not a timeout, the data in the database 

are not updated, thus the block index can be 
intercepted directly from the global retrieval list. 
The algorithm returns to step (12). 

10) Process the query request in each node and 
cloud. Return and aggregate a large amount of 
query results from each cloud, storage node and 
VDS. 

11) The aggregated results are encoded, and 
the index of each data record is generated. For 
example, given 10 query records in the VDS1, the 
indices of each record are designed as follows: 1_1, 
1_2, … and 1_10. Then, one index is taken out 
from an index list. And it added to the global index 
list of the query request. The index is deleted from 
the index list until all indices of the index list are 
added to the global index list. 

12) User sets the block number of the block 
index list from each VDS, storage node and clouds, 
in which stores the initial index and offset 
information of the block data. Intercept and process 
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Figure 5 Chunked retrieval algorithm 

 
the block index list from the global index list 
according to the block number. 

13) Query condition and target index 
information are redeployed. Query and block index 
are re-encoded into each cloud and storage node to 
obtain data records corresponding to each encoding. 

14) The returned record lists from each VDS, 
storage node and clouds submit to the master node, 
and then jointly presented to the user. The algorithm 
is finished. 
 
5 Implementation and validation of cloud 

geodatabase 
 
5.1 Implementation of cloud geodatabase 

The experiments on the Hadoop cloud 
geodatabase and Oracle relational database are 
simulated on Windows machines to validate the 
performance of the Hadoop cloud geodatabase. The 
Hadoop server cluster consists of a cloud centre in 
the construction headquarter for sponge city. Six 
slave nodes are distributed in the departments, such 
as meteorological bureau, water conservancy 
bureau, planning bureau, housing and urban 
construction department, land resource bureau and 
institute of remote sensing surveying and mapping 
in Yinchuan City, Ningxia, China. HDFS is 
deployed to the servers of the seven departments. 
Oracle 10g is used as a relational database and 
deployed in seven Windows computers, which had 
the same machine configuration as the Hadoop 
0.20.2 cluster machines. Four client machines are 
tested, which are configured with 2 GB memory 

and 2.83 GHz quad core CPU. Various client 
browser interfaces are designed by using Active 
Server Pages technology. Figure 6 shows one of the 
interfaces to illustrate the zones of the sponge city. 
The top of the browser interface provides with 
some basic tools, such as map operation, query and 
find, layer control and thematic mapping. The 
middle of the browser interface is the map view 
area. The bottom of the browser interface displays 
the work log, including real-time operation time, 
map tool, coordinates and other information. 
 
5.2 Validation of concurrent access to cloud 

geodatabase 
By considering the layer of ‘Housing in 

Yinchuan City’ as an example, the layer has the 
maximum number of features with 715942 
housings. A new file is specially created to define 
500 rectangles, which covered different spatial 
ranges. The contained or intersected geographical 
objects are queried and loaded by using the 
rectangles as a spatial query condition. Four clients 
are used to simulate multiple users in a multi- 
threaded manner. Spatial queries are performed on 
the Oracle database and Hadoop cloud geodatabase. 
Each computer simulated 20 concurrent users at the 
outset. The query condition is executed iteratively 
for 5 min. Afterwards, each computer increased 20 
concurrent users every 5 min. The average time 
spent in the spatial query of concurrent users for the 
Oracle and Hadoop databases is recorded as shown 
in Figure 7. 

As shown in Figure 7, with the increase of the 
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Figure 6 Browser interface for zones of sponge city 

 

 
Figure 7 Experimental result of elapsed time for spatial 

query and pan based on Oracle and Hadoop 

number of concurrent users, the response time of 
spatial queries based on the Oracle and Hadoop 
database schemes have all increased. However, the 
query time of the Oracle geodatabase is constantly 
longer than that of the Hadoop geodatabase. The 
time spent on request and response of the Oracle 
geodatabase is relatively stable in the case of a 
small number of concurrent accesses. However, the 
request and response time will increase intensely 
when the number of concurrent access exceeds a 
certain threshold. This condition is possibly because 
that the long period of communication time among 
the nodes is occupied. On the contrary, time spent 
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on request and response of the Hadoop geodatabase 
increases slowly and maintain relatively stable 
although a large number of users for concurrent 
access existed. Thus, the Hadoop geodatabase can 
simply handle highly concurrent spatial query 
requests, whereas the Oracle geodatabase cannot 
meet the requirements of high concurrent access. 

The performances of the geodatabases based 
on Oracle and Hadoop are then tested in the case of 
highly concurrent pan scenarios using the same 
method as the highly concurrent query. The testing 
process is described as follows. A display area in 
the layer of ‘Yinchuan City Housing’ is considered 
as the starting point. One-half map sheet within the 
scope of two map sheets close to the display area is 
loaded at a time to simulate the pan operation. To 
avoid the possibility of selecting from the area of 
the starting point on the experimental results, 10 
starting regions are randomly selected within the 
layer before the experiment started. After 
completing a pan of starting ranges, the next area is 
navigated until the 10 regions are all navigated. The 
total time spent in the 10 pan operations is recorded 
and then averaged. Then, the number of concurrent 
users for pan operation increases gradually to 
validate the elapsed time of pan operation spent on 
the Oracle and Hadoop geodatabases (Figure 7). 

As shown in Figure 7, when the number of 
concurrent users is small in the experiment of map 
pan operation, the performance of the Oracle 
scheme is quite similar to that of the Hadoop 
scheme. However, when the number of concurrent 
users exceeds a certain threshold, the performance 
of the Oracle relational database decreases intensely 
and the pan response time is significantly increased. 
However, the number of concurrent users slightly 
affected the performance of the Hadoop distributed 
cluster. When 300 virtual users exist, the map pan 
time for loading adjacent data to the Oracle scheme 
is 2.5 times as fast as that of the Hadoop scheme. 

A contrast experiment between the Oracle 
database and the Hadoop cloud geodatabase is 
carried out to verify the efficiency of MapReduce 
for construction of parallel spatial index. The 
numbers of Mapper and Reducer on a single node 
are set to 2. The block size in HDFS is set to 128M. 

Construction time of parallel spatial index based on 
different data quantity by using Oracle and Hadoop, 
respectively, is shown in Table 2. 

As shown in Table 2, construction times of 
parallel spatial index from both Oracle database and 
Hadoop cloud geodatabase gradually increase with 
the increase of data volume. The advantage of cloud 
geodatabase in the parallel performance of spatial 
index is not very obvious compared with that of 
single machine environment when the amount of 
processed spatial data is relatively small. The 
parallel generation of spatial index of Oracle is 
faster than that of the Hadoop cloud geodatabase 
because there is an excellent index mechanism at 
the bottom of the Oracle database. However, the 
parallel generation time of spatial index spent from 
the Hadoop cloud geodatabase is much shorter than 
that from the Oracle database when the volume of 
spatial data is greater than 200TB. 
 
6 Conclusions 
 

In the study, a cloud geodatabase for sponge 
city is designed and achieved. virtualisation, 
geohash fragmentation, parallel computing and 
WebService architecture are first used to design 
Hadoop distributed computing framework with a 
master and multiple slaves. Spatial data storage 
layer, cloud geodatabase access layer, spatial data 
access layer and spatial data analysis layer are built 
and integrated into cloud geodatabase access for the 
sponge city. Direct addressing via a file name, 
three-level concurrent retrieval and block data 
retrieval are then designed for retrieval model. The 
cloud geodatabase for sponge city is finally 
implemented and validated by using the 
comparisons of the Hadoop cloud geodatabase with 
Oracle database. It is shown that the cloud 
geodatabase for sponge city can store and retrieve 
massive data with high-performance computing and 
communication. 

The cloud geodatabase for the sponge city has 
high scalability, high availability, large-scale 
parallel processing and effective resource allocation. 
It can flexibly store and manage heterogeneous data 
and massive data to integrate and organise the  

 
Table 2 Construction time of parallel spatial index based on different data quantity by using Oracle and Hadoop 

Data/TB 1.7 19.2 56.8 91.7 118.6 225.5 375.8 569.4 

Oracle/s 3.65 8.02 15.48 23.68 30.92 57.26 84.04 130.58 

Hadoop/s 5.26 12.52 20.58 31.94 38.32 46.08 56.83 79.15  
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multi-source, multi-scale and massive basic spatial 
data of the sponge city. It can virtualise many 
backend functions, and avoid redundant 
configuration of personnel, hardware and software. 
Meanwhile, the cloud geodatabase can significantly 
enhance the database storage capacities, retrieval, 
access, sharing and security for the construction and 
management of the sponge city. 

The future study is mainly 1) to adjust joining 
strategy of multiple tables to reduce communication 
and unnecessary repetitive operation; 2) to propose 
a locking scheme based on attribute predicates with 
multiple granularities to realize fast lookup of 
conflict predicates; 3) to dynamically partition 
concepts according to the existing data in a cloud 
database; 4) to carry out the real-time monitoring, 
defect diagnosis and data mining by using cloud 
computing technology. 
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中文导读 
 

海绵城市云空间数据库设计与实现 
 
摘要：构建海绵城市云空间数据库可以整合不同管理部门分散的地理空间信息，实现海量数据的多用
户高并发访问和检索、高可扩展性和可用性、高效存储和管理。为了处理海量空间数据，本研究首先
利用并行计算技术设计了包括 Hadoop 分布式文件系统和 MapReduce 的 Hadoop 分布式计算框架。其
次，用一系列标准 API 设计了访问控制模块，包括空间数据存储层、云空间数据库访问层、空间数据
访问层和空间数据分析层。然后，设计了一个检索模型，包括利用文件名直接寻址、3 层并行检索和
数据块检索策略。实现了多尺度、多源和海量空间数据的实时并行访问，高性能计算、通讯、存储、
高效检索和时序安排等功能。最后，通过与 Oracle 数据库的比较，验证了 Hadoop 云空间数据库的性
能。海绵城市云空间数据库能避免人员、硬件和软件资源的冗余配置，支持数据传输、模型调试和应
用开发，为海绵城市建设和管理提供基础和专题地理信息的精确、实时、虚拟、智能、可靠、动态、
按需和弹性可扩展的云服务。 
 
关键词：云空间数据库；海绵城市；分布式计算；并发检索；访问 


