

J. Cent. South Univ. (2018) 25: 2423−2437
DOI: https://doi.org/10.1007/s11771-018-3926-1

Design and achievement of cloud geodatabase for a sponge city

HOU Jing-wei(侯景伟)1, 2, SUN Shi-qin(孙诗琴)1, 2, LIU Ren-tao(刘仁涛)3,
LI Jian-hua(李建华)1, 2, ZHANG Ming-xin(张明鑫)1, 2

1. School of Resources and Environment, Ningxia University, Yinchuan 750021, China;

2. Ningxia (China-Arab) Key Laboratory of Resource Assessment and Environment Regulation in
Arid Region, Yinchuan 750021, China;

3. Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwestern China of
Ministry of Education, Ningxia University, Yinchuan 750021, China

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: Building a cloud geodatabase for a sponge city is crucial to integrate the geospatial information dispersed in
various departments for multi-user high concurrent access and retrieval, high scalability and availability, efficient
storage and management. In this study, Hadoop distributed computing framework, including Hadoop distributed file
system and MapReduce (mapper and reducer), is firstly designed with a parallel computing framework to process
massive spatial data. Then, access control with a series of standard application programming interfaces for different
functions is designed, including spatial data storage layer, cloud geodatabase access layer, spatial data access layer and
spatial data analysis layer. Subsequently, a retrieval model is designed, including direct addressing via file name,
three-level concurrent retrieval and block data retrieval strategies. Main functions are realised, including real-time
concurrent access, high-performance computing, communication, massive data storage, efficient retrieval and
scheduling decisions on the multi-scale, multi-source and massive spatial data. Finally, the performance of Hadoop
cloud geodatabases is validated and compared with that of the Oracle database. The cloud geodatabase for the sponge
city can avoid redundant configuration of personnel, hardware and software, support the data transfer, model debugging
and application development, and provide accurate, real-time, virtual, intelligent, reliable, elastically scalable, dynamic
and on-demand cloud services of the basic and thematic geographic information for the construction and management
of the sponge city.

Key words: cloud geodatabase; sponge city; Hadoop; concurrent retrieval; access

Cite this article as: HOU Jing-wei, SUN Shi-qin, LIU Ren-tao, LI Jian-hua, ZHANG Ming-xin. Design and
achievement of cloud geodatabase for a sponge city [J]. Journal of Central South University, 2018, 25(10): 2423–2437.
DOI: https://doi.org/10.1007/s11771-018-3926-1.

1 Introduction

Presently, the rapid urbanisation has changed
the urban land use pattern and hydrological
mechanism, increased the impervious area of the
city. These changes deteriorate the microclimate
environment, shorten the flood peak time, increase
surface runoff, peak discharge, runoff pollution and
waterlogging risk, decrease the amount of
groundwater recharge and surface interception.

China has vigorously constructed sponge cities to
solve the abovementioned ‘urban diseases’. A
sponge city refers to a city like a sponge that has
certain flexibility in response to natural disasters
and environmental changes. Sponge city is a
construction model of low-impact development
(LID) for natural infiltration, natural accumulation
and natural purification. Rainwater in sponge cities
is infiltrated, stored, absorbed and purified in the
rainy season, and then the stored rainwater is
released and utilised in the dry season.

Foundation item: Project(NZ1628) supported by the Natural Science Foundation of Ningxia, China
Received date: 2017−07−04; Accepted date: 2017−12−02
Corresponding author: HOU Jing-wei, PhD, Associate Professor; Tel: +86−15121888067; E-mail: hjwei2005@163.com; ORCID:

0000-0002-5308-3204

J. Cent. South Univ. (2018) 25: 2423–2437

2424

The spatial layout of spongy bodies, such as
bio-swale, green roof, rainwater garden, is the most
important factor that determines the efficiency of
sponge city. The optimal spatial layout of sponge
bodies can improve the overall performance, capital
utilization and operation efficiency of sponge city.
However, massive spatial data and attribute data are
involved during the optimisation of spatial layout of
the sponge bodies [1, 2]. Vector data include
administrative boundaries, topography, roads and
buildings. Raster data include digital elevation
model, remote sensing images and land use.
Drainage data include municipal pipe network,
drainage node and water inlet node. Land use data
include soil, vegetation, rivers and lakes, watershed
and waterlogging area. Hydrologic data include
permeability rate, groundwater level, impervious
area, Manning coefficient, storage volume, erosion
coefficient and erosion index. Pollution data include
maximum pollutant accumulation and distribution
of major pollutants. Meteorological data include
temperature and precipitation. Attribute data
include hydrological and hydraulic parameters, LID
facility parameters, water supply, water demand and
construction costs.

All of these data will be stored from the
terabyte (TB) level to petabyte (PB) level.
Meanwhile, these data will be distributed among
various departments, such as the construction
headquarter for sponge city, construction bureau,
planning bureau, water conservancy bureau,
meteorological bureau, institute of remote sensing
surveying and mapping and land resource bureau.
The data are massive, multi-scale, multi-type,
multi-source and spatiotemporal so that they are
difficult to concurrently access, process and
compute [3–5]. Building a cloud geodatabase for a

sponge city can solve these problems. Cloud
geodatabase can integrate the geospatial
information dispersed in various departments for
massive data processing and multi-user high
concurrent access.

Many cloud geodatabases have been
developed, such as Database as a Service [6],
geoprocessing-tools-for-hadoop [7], MongoDB [8],
Amazon Relational Database Service [9], Building
information models (BIMs) [10], GeoCouch [11],
SpatialHadoop [12], GRIDDBLite [13], TerraFly
GeoCloud [14], RDB-KV CloudDB [15], Geopot
[16], Cloud-based geographic information system
(GIS) [17], Hadoop-GIS [18, 19] and GeoMPP [20].
These cloud database products are to ensure the
high efficiency and high availability of data.
However, their architectures are not the same, and
their functions, compared to that of traditional
databases, have not been completely realized. These
cloud geodatabases provide methods and techniques
to achieve our cloud geodatabase for sponge city.

Cloud geodatabases have developed with the
increase in demands of cloud computing technology,
such as massive data storage space, fast data
retrieval and processing and high data security.
Cloud geodatabases have been applied to various
fields as shown in Table 1.

According to the application fields and
software types of cloud geodatabases
abovementioned, cloud geodatabase has not been
applied to the sponge city for spatial data storage,
MapReduce, retrieval and access to optimize the
spatial layout of the sponge bodies. Therefore, the
purpose of this paper is to design and achieve a
cloud geodatabase to provide accurate, real-time,
virtual, intelligent, reliable, elastically scalable,
dynamic and on-demand cloud services of the basic

Table 1 Application of cloud geodatabases

Application of cloud geodatabase Usage of techniques Reference

Evaluation of the dynamic groundwater quality using a spatial database,
a property database and mathematical models

GIS and cloud-
based simulation technologies

[21]

An efficient retrieval method for skewed spatial data An R+-tree [22]

Online spatial analytical processing that is three-layer architecture:
data layer, service layer and application layer

Cloud spatial data warehouses [23]

High-performance cloud computing system for remote sensing image
analysis, storage, data processing and on-demand services

Cloud Hadoop MapReduce [24–27]

A middleware and a vector spatial data storage schema to express
spatial topological relations and store large-scale vector spatial data

Key/value mapping, GeoTools toolkit and
column-oriented storage structures

[28]

A cloud-based service for analysing, storing and viewing massive
building information models

MapReduce and Bigtable as the data processing
and storage paradigms

[29]

Data indexing of large-scale spatial and non-spatial datasets
Combination of MapReduce programming model

with cloud computing
[30]

J. Cent. South Univ. (2018) 25: 2423–2437

2425

and thematic geographic information for the
optimal spatial layout of the sponge bodies.

In this study, Hadoop distributed computing
framework including a master and multiple slaves is
first designed using virtualisation technology,
geohash fragmentation, parallel computing and
cross-platform service-oriented architecture of
WebService. Cloud geodatabase access for the
sponge city is then achieved including spatial data
storage layer, cloud geodatabase access layer,
spatial data access layer and spatial data analysis
layer. Retrieval model is also constructed using
direct addressing via a file name, three-level
concurrent retrieval and block data retrieval
techniques. Finally, the cloud geodatabase for
sponge city is implemented and validated. It is
shown that the cloud geodatabase for sponge city
can support data transfer, model debugging and
application development. It can also store and
retrieve massive data with high-performance
computing and communication.

2 Distributed computing framework of

Hadoop

Cloud geodatabase for the sponge city is built
using Hadoop distributed computing framework.
MongoDB is used to keep the details of geodata set
in the hadoop distributed file system (HDFS). The
servers of the construction headquarter and other
departments with relation to sponge city are
abstracted as physical resources, such as central
processing unit (CPU), memory, disk. These
physical resources can be managed dynamically
into a logical resource pool by using virtualisation
technology. Cloud geodatabase for the sponge city
adopts a master and multiple slaves’ architecture.
Servers of construction headquarter for the sponge
city are the master centre. They mainly take charge
of receiving and parsing the production order,
results feedback, scheduling of task and allocation
of data and service portals. The portals can provide
cloud storage service, production service and data
service. The master centre also accepts cloud
register, preserves cloud information list, collects
query results and consumes thumbnails and
metadata from each slave centres. Slave clouds are
the servers of the construction bureau, planning
bureau, water conservancy bureau, meteorological
bureau, land resource bureau and institute of remote
sensing surveying and mapping. They are mainly

responsible for task execution and massive data
storage.

The parallel import function of spatial data is
realised by using the geohash fragmentation method
to improve the spatial query and concurrent access
performances. Geohash is a geocoding method that
transforms the two-dimensional coordinates of
longitude and latitude into a string in accordance
with the accuracy requirement.

A communication framework is built for data
communication and sharing by using the
cross-platform service-oriented architecture of
WebService between the master and slave centres.
It provides the external service interfaces, such as
query, download and upload, for the cloud
geodatabase. The framework can directly achieve
interoperability between data and information, and
also integrate and share data among different
operating system users.

Hadoop is an open source programming of the
Google FileSystem. Hadoop can process huge
datasets across clusters of computers and is widely
applied in many fields, such as graph processing,
machine learning and behavioral simulations. It can
scale up from single servers to a great many
machines. Hadoop provides a cloud platform
software with a parallel computing framework,
including HDFS and MapReduce, to process
massive spatial data [25]. Hadoop utilizes the high
operation speed and mass data storage of the cluster.
Meanwhile, it hides the underlying distributed
details of parallel computing, data distribution and
failure processing to users. HDFS locates the
underlying part of Hadoop framework and accesses
the file system data in binary stream form with high
throughput and high fault tolerance. HDFS is
deployed on a low-cost hardware. It can divide the
data in the HDFS file into tile data and then store
the tile data on each DataNode of Hadoop.
MapReduce is a parallel computing framework that
generates and processes large datasets for batch
workloads of data-intensive applications
implemented by HDFS. It can divide the
computational work into small segments and
distribute the segments among hundreds of different
machines to ensure data reliability.

MapReduce computing consists of the
mapping phase (Mapper) and the Reduce
specification stage (Reducer). In the mapping phase,
a set of key-value pairs are inputted by utilising the
Map function to generate a set of intermediate

J. Cent. South Univ. (2018) 25: 2423–2437

2426

results <Key, Value>. Each DataNode of
MapReduce has a Mapper under the default
configuration. Each Mapper reads the split file data
from the DataNode as the key-value pair of the Map
function, where key is a row number by default, and
value is a string. The value contains the hierarchical
structure and computing metrics for all dimensions.
The Map function splits the fields based on
dimension and hierarchical structure descriptions. A
new string forms a key of the output key-value pair,
whereas the string calculating metric is the value of
the output key-value pair. At the same time, the
MapReduce computing model sorts and groups the
intermediate key-value pair output from the
mapping phase according to the keys. The model
then generates the intermediate data <key, list
(value)> as the input of the Reduce stage.

In the Reduce specification stage, the Reduce
function is used to aggregate and simplify the
intermediate results from Mapper. All of the
intermediate data <key, list (value)> are inputted
into the Reduce function and then iterated until a set
of values and fields corresponding to each key are
accumulated. A new string is reconstructed as a
value of key-value pair which is outputted from the
Reducer.

The key-value pair of Hadoop MapReduce
model can convert relational data in a relational
database into structural data [31] to enhance the
interoperability of Hadoop cloud geodatabase with
Oracle relational database. Firstly, all dimension
and metric relational datasets are calculated by
using Cartesian product according to association
key. Each dimension table is connected with fact
table to generate a new dataset. Secondly, data in
each row of the new dataset in HDFS forms a string
as the value of the key-value pair which is inputted
from the Map function of the MapReduce model.
The row number is the key of the key-value pair.
Finally, the dimensions are extracted from the value
via Map operation to form a new string, which is
the key of the Reducer. The information of all
dimensions contained in the value is removed.
Calculating metric is used as the value of the
Reducer.

3 Design of cloud geodatabase access

Cloud geodatabase access is an important part
of the cloud geodatabase application for the sponge
city. It mainly includes spatial data storage layer,

cloud geodatabase access layer, spatial data access
layer and spatial data analysis layer. Each layer
provides a series of standard application
programming interfaces (APIs) for different
functions. The functions of cloud geodatabase are
abstracted and packaged into the engines to shield
the differences among multi-source heterogeneous
databases and provide a unified data access
interface for the application layer. Figure 1 shows
the architectural design of the cloud geodatabase
access.

3.1 Spatial data storage layer

The spatial data storage layer is located at the
bottom layer of the cloud geodatabase access. It is
composed of many storage engines, such as stored
procedures, triggers, and views, of an Oracle
relational database and a Hadoop cloud geodatabase
for sponge city. The Oracle relational database
stores small amount of real-time data. It can also
stores data that can be directly involved in model
calculation, such as attribute data, metadata, water
level and water quality. Cloud geodatabase for
sponge city based on Hadoop stores large-scale
raster and vector datasets. Then, the massive data in
the cloud geodatabase are segmented, aggregated,
cleaned and optimised using the MapReduce
calculation model. It generates the relatively small
ordered datasets to meet the high concurrent access
demand of a large number of users [32].

The storage space of a storage node in the
study is divided into several visual disk spaces
(VDSs) [33]. The VDSs are adjacently encoded
with Arabic numerals. It improves the parallel
access and bandwidth utilisation of the cloud
geodatabase for sponge city and shields the
computer hardware details of the distributed
database. The hardware configuration information
is transparent within the cloud.

The mapping relation between tile file and
VDS is established according to some vector or
raster tile data attributes as follows:
E=(Ir+Ic)Mod Nmax
where E is a VDS-encoded tile datum. Ir and Ic are
the row and column numbers of a tile data. Mod is
modulo operator. Nmax is the total number of VDSs.

According to the above equation, tile data with
the same row number and column number are
stored in the adjacent VDSs, whereas tile data with
the same summation of row number and column

J. Cent. South Univ. (2018) 25: 2423–2437

2427

Figure 1 Access structure of cloud geodatabase

number are stored in a VDS to sort them based on
row major order.

The purpose of spatial data partitioning is to
horizontally fragment spatial dimension tables via a
spatial hierarchy and replicate the remaining tables
of the cloud geodatabase for parallel processing
according to spatial proximity. The start-point of
data partitioning is the spatial data with the large
level of granularity to avoid spatial data redundancy.
A cloud node must store spatial data instances with
large and fine levels of granularity. Let dataset
D={∪I=1… I, si}, where I defines the number of
partitions, si is the ith non-overlapping subset.
Cloud node set N={n1, n2, …, nj …}, where nj is

the jth cloud node. H1≤H2≤…≤ Hn is a hierarchy of
spatial data which instances are{h1

1, h1
2 …}, {h2

1,
h2

2…}, …, {h n
 1 , h n

 2 …}, respectively, where H1
is the large level of granularity and Hn is the fine
level of granularity. One or more instances {h1

1,
h1

2 …} of H1 are stored in the cloud node nj (n≥1).
Each instance h1

k of H1 (k≥1) and all instances hl
k

(l>1 and k≥1) related to h1
k are stored in the same

cloud node nj.
The abovementioned data block method can

realise rapid location and flexible scheduling of
spatial data. The spatial data are divided into tiles
with unique identifiers. The target level index of
geography is established for geographical target

J. Cent. South Univ. (2018) 25: 2423–2437

2428

contained in a data block to realise multilevel index
of spatial data. Each spatial data block is
compressed, serialised and then stored in HDFS in
binary stream form as a table cell. The tile data are
stored and organised based on the vector or raster
target record, and the block is used as a unit to
compress. Redundant attribute data are stored in the
Oracle relational database, including layer
description table, spatial data table, information
table of map sheet and its version and attribute
information table. Spatial data stored in the Hadoop
cloud geodatabase are used for load display and
spatial query, whereas attribute data stored in the
Oracle relational database are used to support
attribute query. This method improves data storage
granularity and loading speed and map display and
spatial query performances.

3.2 Cloud geodatabase access layer

The cloud geodatabase access layer is located
at the top of the spatial data storage layer. Spatial
data access model is mapped into the spatial data of
the cloud geodatabase for intelligent invocation,
efficient and transparent access and communication
with other databases. The cloud geodatabase access
layer is divided into two sub-layers with small
granularity. The lower sub-layer is the feature
interface layer of the database. The features of each
database are abstracted into a series of interfaces,
and different databases implement different
interface sets. Transparent access of the cloud
geodatabase is realised by using a mapping
conversion strategy according to the feature
interface provided by the database. The
corresponding features of the database are extended
in the feature library if a new database is added in
the cloud geodatabase.

The upper sub-layer is the data access mapping
layer. To realise transparent access to data, the
access commands of spatial data and spatial index
are passed down from the spatial data access layer.
They are transformed into a series of invocations of
interface functions according to the mapping
conversion strategy. The transformation can directly
communicate with the feature interface library and
shield the differences among the slave nodes. The
mapping conversion strategy is described as follows:
Firstly, judging whether the requested database
directly supports a set data structure. If the set
structure is supported, it is directly called.
Otherwise, examing whether a list structure is

supported. If supported, the list data structure is
used to simulate the set data structure. Otherwise,
the KeyValue data structure is simulated. The data
access mapping feature of the database isolated the
data model from the spatial database. Thus, the
realisation of physical model is not dependent
anymore on the specific database, which
significantly improved the scalability of spatial data
engine.

3.3 Spatial data access layer

The spatial data access layer is located at the
top of the cloud geodatabase access layer, which is
encapsulated into three modules: spatial access,
data model and spatial index. The spatial access
module, that is, access API module, provides all the
interfaces that operate on the geospatial data. The
interfaces are packaged into small modules, such as
feature access, layer access, database access, spatial
analysis and index access. The interfaces can access
spatial geographical data with different levels and
granularities for operation, implementation and
query.

Spatial data access begins with cloud
geodatabase. Spatial dataset information is obtained
from the cloud geodatabase, and then layer
information is acquired from the spatial dataset.
Finally, the layer features are found via spatial
index. Spatial data access includes the following
steps (Figure 2):

1) The metadata of the cloud geodatabase is
read and the spatial dataset information is obtained.

2) The metadata of the spatial dataset is read
and the layer name is obtained.

3) The layer metadata is read through layer
name, and the name and type of the spatial index
are obtained.

4) Whether the index name is empty is
determined. If index name is empty, the primary
key index is read through the ‘key=Index: Primary
Key-layer name’ because of only one primary key
index. The filtering results are obtained according
to the minimum bounding rectangle (MBR)
filtering and primary key index information.

5) If the index name is not empty, whether the
index type is a quadtree index is determined. If it is
a quadtree index, quadtree metadata is read by
considering the index name. The node location of
the quadtree in the spatial query window is
calculated.

6) All node records on the path between the

J. Cent. South Univ. (2018) 25: 2423–2437

2429

Figure 2 Algorithm of spatial data access

root node and slave node of the quadtree are
obtained. Then, the encoding of data object and
preorder traversal encodings of all the slave nodes
of the node are obtained.

7) Data object details are queried according to
sequential coding. Whether the data object
intersects or contains the query frame is judged.

8) If the index type is a grid index, the
metadata information of the grid index is read
through the index name.

9) The grid cell intersected by the grid index
and the spatial query window are calculated. All the
intersected code sets are obtained.

10) All the index information of the intersected
grid cell is combined, and then the union sets are
filtered according to MBR.

11) The filtered features are read, and whether
they are a compulsory primary key index or an
optional spatial index is judged. An intersection test
is performed for the results filtered by MBR to
obtain the final query results.

3.4 Spatial data analysis layer

The spatial data analysis layer is located at the
top of the cloud geodatabase access. It supports the
user-oriented declarative Map Query Language
(MapQL), including lexical analysis, syntax
analysis, semantic analysis, code generation and
interpreter execution.

MapQL is a query language for semantically-
translatable extracting and mapping from inclusion
relation to classification of indivisuals according to
description logic [34]. MapQL can convert from
one representation to query mapping by using an
operator, and to mapping expression by using a

translator. For example, a MapQL model
‘map_implies (C, D)’, if its MapQL operator is ‘isa
<C, D>’, then its response result is ‘{True, False}’.
For another example, a MapQL model
‘map_instance (C(a), D)’, if its MapQL opterator is
‘translate <C, a, D>’, then its response result is
‘D(a) or None’. A MapQL request of the operator
‘isa’ is translated using JSON (JavaScript Object
Notation) format, for example, as follows:
{‘domain-class’: ‘LID’, ‘domain-instance’: ‘Roof
Garden’, ‘range-class’: ‘Sponge city’}. The
response will be returned ‘True’ if there is a
mapping inclusion relation among ‘LID’, ‘Roof
Garden’ and ‘Sponge city’. Otherwise, the response
will be returned ‘False’ if the mapping does not
exist or there is an inference error.

The specific processes of the layer are as
follows: 1) The spatial data analysis layer accepts
the MapQL input by a user and transmits it to a
lexical analyser. 2) The lexical analyser performs
lexical analysis of the MapQL, then generates a
token stream and transmits the token stream to a
syntax analyser. 3) The syntax analyser analyses the
syntax of the token stream and obtains the
structurised abstract syntax tree objects. 4) The
spatial geographic data engine system analyses the
abstract syntax tree semantics and constructs a
corresponding execution plan. 5) Obtain the query
results and return them to the user interface in the
format of pictures, tables, vactors or images.

Implementation of lexical analyser. Lexical
analysis reads source program characters one by
one and identifies relatively independent tokens,
also known as marks or words. The tokens include
keywords such as select, from, and and as, identifier

J. Cent. South Univ. (2018) 25: 2423–2437

2430

and special symbols. Unnecessary content such as
annotation symbols is filtered down during the
compilation process. The remaining content forms a
sequential token stream. The general design process
of the lexical analyser is as follows (Figure 3): 1)
Aggregate the statement form and expression
limitation supported by the descriptive language
according to spatial query demand. 2) The
descriptive language is decomposed into lexical
granularities and expressed in terms of compiler
syntax. 3) Query the symbol table of keywords. If
the string is queried and found, it is a keyword.
Otherwise, the string is an identifier. Token type is
described by a regular expression to form a syntax
regular expression. 4) Lexical analyser with a
specified program language such as C source code
is generated using an ANother Tool for Language
Recognition compiler.

Implementation of syntax analyser. The syntax
analyser accepts a token stream text file that
conforms to the MapQL specification and then
generates a syntax tree. Take the SELECT query
statement of spatial data as an example, its general
form is ‘SELECT < query object set > FROM < data
source > WHERE < query condition >’, where
SELECT statement is an object property, which can
provide an attribute name directly, or point out an
attribute source of an object with the format of
‘object.’, or find all the attribute information of an
object with the symbol of ‘*’. The FROM
sub-clause is an object set that has already been
found in a database, or acquired from the nested
queries. The object result set must define an alias
using the AS keyword to facilitate references to
other sub-clauses. The WHERE sub-clause is
optional, which represents the filter condition of the
query, such as a logical expression, a function
expression and a comparison among object
attributes, or between object attributes and their
values.

The semantic analyser checks static semantics,
such as type checking and transformation of the
syntactic unit in a syntax tree based on semantic
rules. Semantic analysis does not need code

generation. It iterates and analyses a syntax tree,
and calls the corresponding interface to obtain the
information of a string. The syntax analysis tree is a
geometric arborescence representation of the
abstract syntax structure of source code in the
course of sentence pattern derivation. Meaningless
nodes, such as separator ‘,’ left parenthesis ‘(‘ and
right parenthesis ‘)’, are hidden when a syntax tree
is built. Meanwhile, the syntax tree adds virtual
nodes with abstract meaning and keywords with a
unified form. Translation process is separated from
the process of syntax analysis to reflect the natural
and distinct hierarchical structure of language
elements and explicit node meaning of syntax tree.

4 Design of cloud geodatabase retrieval

4.1 Direct addressing via file name

The relative path of tile data is adopted to store
tile data for efficient data migration, backup,
recovery and parallel access. It is determined by
computation and query of global information. The
front part of a relative path is composed of IP and
VDS encoding of a storage node. The mapping
table between a storage node and a VDS encoding
determines a one-to-many relationship between IP
and VDS encoding. A field in the mapping table
exists to identify whether a storage node is an
operation node. The latter part of the relative path is
composed of the determinant attributes of tile data.
Many tile data can exist in a VDS, thus its retrieval
rate is far less than that of data records in a database.
Therefore, stratifying the storage space is necessary
in each VDS and directory structure in the virtual
space according to the determinant attributes of tile
data. For example, raster tile data are stratified as
follows: ‘\Number of tile levels\Satellite name\
Sensor name\Year of shooting image\Month of
shooting image\Day of shooting image\Tile type
(band file or thumbnail file)\Tile name’. The
stratification can significantly reduce the number of
files in a subdirectory and facilitate direct
addressing via a file name in the case of the known
path for high-efficiency concurrent retrieval.

Figure 3 Implementation of lexical analyzer

J. Cent. South Univ. (2018) 25: 2423–2437

2431

Direct addressing via a file name utilises the

file name of tile data and the mapping relationship
between a storage node and VDS encoding. It has
been initialised when the cloud geodatabase starts
to provide services. Finding the file’s storage path
through a massive database is not required. The
mapping relationship table between VDS encoding
and storage node is only modified if data need to be
transfered and recovered due to hardware failure.
And continual update of the storage path of tile data
is unnecessary. Direct addressing via file name and
mapping relationships between the cloud centre and
various clouds and between storage nodes and VDS
encoding constitute the mapping part of
MapReduce model. They can map file names of tile
data into a storage path of tile file. Direct
addressing via file name based on virtual
distribution enhances the storage security and
efficient retrieval of data.

4.2 Three-level concurrent retrieval

The cloud geodatabase for sponge city is
composed of clouds with unpredictable number and
no theoretical upper limit. Therefore, a three-level
concurrent retrieval strategy is constructed to
improve data storage efficiency, retrieval, backup,
recovery and the overall system of concurrent
execution mechanism (Figure 4).

The storage node in the bottom level of the
architecture has multiple VDSs, each of which
stores an index file of tile data. The number of
VDSs determines the number of threads, which
deploys request information from a storage node to
VDSs and then process them separately [35].
Multiple thread processing results from multiple
VDSs are aggregated through the interprocess
communication channels provided by .NET
Remoting technology. Microsoft.NET remote
processing is a kind of network communication and
transmission technology between the registered
client and server using Hypertext Transfer Protocol
and Transmission Control Protocol (TCP) / Internet
Protocol. It speeds up the internal data exchange
within a storage node and realises command issue,
result collection, data communication and
transmission among the storage nodes.

The cloud in the middle level has multiple
storage nodes, which can apply multiple threads
after the external service interface issued uniformly
receives data processing request [36]. Each thread

releases data request at the same time inside each
node through the TCP channel of .NET Remoting
technology. The results from parallel processing
within the node are also aggregated to the operation
node via the TCP channel. If the processing request
comes from the outside of a cloud, the result returns
to the requester via the web service. If the
processing request comes from the inside of a cloud,
it returns directly to the requester for quick data
transmission.

Clouds on the top level constitute cloud
geodatabase. Data processing requests at the clouds
level are generally received from the external
service interface of the cloud centre. The server of
cloud centre can also apply multiple threads, each
of which accesses the external service interface of
the clouds or cloud centre via reflection calls. Data
processing results are transmitted through the web
service when performing global retrieval in the
clouds [37]. A large amount of data will take a long
period of time for retrieval.

4.3 Block data retrieval

Although the three-level concurrent processing
architecture speeds up parallel data processing, long
period of time may be consumed when a mass of
query results are returned from a massive database.
Furthermore, the user cannot quickly find one or
several data records from the returned massive
query results. Meanwhile, the user is difficultly
utilising quadratic search from the returned massive
query results [38]. Therefore, a block retrieval
algorithm (Figure 5) is designed to improve data
retrieval efficiency within the cloud geodatabase.

The block retrieval algorithm is described in
detail as follows:

1) Compute the centroid of a space object
according to the MBR.

2) Encode the longitude and latitude of the
centroid with base32 and then combine them
according to the Geohash algorithm.

3) Obtain and sort the Geohash value of the
target object.

4) Divide the Geohash value into n blocks
according to the sorting code.

5) Establish the spatial index for the
geographic object of each block according to
Hilbert curve. The index information from the
query condition and query result is transmitted
based on cache mechanism for retrieval efficiency.

J. Cent. South Univ. (2018) 25: 2423–2437

2432

Figure 4 Architecture of three-level concurrent retrieval

Each query fragment can independently run in the
table fragments of the slave node. Each block
generally contains the same number of records.

6) Deploy data in parallel among different
physical nodes. Each slave node supports local
index.

7) Receive data query request, judge whether
the request is new or the same as the previous
request.

8) If the request is a new query combination,
hand out the request to each cloud, and then to each
node. The algorithm returns to step (10). If the
request is consistent with the last request, the
algorithm judges whether the last request result is
timeout or not.

9) If the request has exceeded the time
threshold, the query results in the database are
updated, thus they are not used again for the last
request result. The algorithm returns to step (10). If
the request is not a timeout, the data in the database

are not updated, thus the block index can be
intercepted directly from the global retrieval list.
The algorithm returns to step (12).

10) Process the query request in each node and
cloud. Return and aggregate a large amount of
query results from each cloud, storage node and
VDS.

11) The aggregated results are encoded, and
the index of each data record is generated. For
example, given 10 query records in the VDS1, the
indices of each record are designed as follows: 1_1,
1_2, … and 1_10. Then, one index is taken out
from an index list. And it added to the global index
list of the query request. The index is deleted from
the index list until all indices of the index list are
added to the global index list.

12) User sets the block number of the block
index list from each VDS, storage node and clouds,
in which stores the initial index and offset
information of the block data. Intercept and process

J. Cent. South Univ. (2018) 25: 2423–2437

2433

Figure 5 Chunked retrieval algorithm

the block index list from the global index list
according to the block number.

13) Query condition and target index
information are redeployed. Query and block index
are re-encoded into each cloud and storage node to
obtain data records corresponding to each encoding.

14) The returned record lists from each VDS,
storage node and clouds submit to the master node,
and then jointly presented to the user. The algorithm
is finished.

5 Implementation and validation of cloud

geodatabase

5.1 Implementation of cloud geodatabase

The experiments on the Hadoop cloud
geodatabase and Oracle relational database are
simulated on Windows machines to validate the
performance of the Hadoop cloud geodatabase. The
Hadoop server cluster consists of a cloud centre in
the construction headquarter for sponge city. Six
slave nodes are distributed in the departments, such
as meteorological bureau, water conservancy
bureau, planning bureau, housing and urban
construction department, land resource bureau and
institute of remote sensing surveying and mapping
in Yinchuan City, Ningxia, China. HDFS is
deployed to the servers of the seven departments.
Oracle 10g is used as a relational database and
deployed in seven Windows computers, which had
the same machine configuration as the Hadoop
0.20.2 cluster machines. Four client machines are
tested, which are configured with 2 GB memory

and 2.83 GHz quad core CPU. Various client
browser interfaces are designed by using Active
Server Pages technology. Figure 6 shows one of the
interfaces to illustrate the zones of the sponge city.
The top of the browser interface provides with
some basic tools, such as map operation, query and
find, layer control and thematic mapping. The
middle of the browser interface is the map view
area. The bottom of the browser interface displays
the work log, including real-time operation time,
map tool, coordinates and other information.

5.2 Validation of concurrent access to cloud

geodatabase
By considering the layer of ‘Housing in

Yinchuan City’ as an example, the layer has the
maximum number of features with 715942
housings. A new file is specially created to define
500 rectangles, which covered different spatial
ranges. The contained or intersected geographical
objects are queried and loaded by using the
rectangles as a spatial query condition. Four clients
are used to simulate multiple users in a multi-
threaded manner. Spatial queries are performed on
the Oracle database and Hadoop cloud geodatabase.
Each computer simulated 20 concurrent users at the
outset. The query condition is executed iteratively
for 5 min. Afterwards, each computer increased 20
concurrent users every 5 min. The average time
spent in the spatial query of concurrent users for the
Oracle and Hadoop databases is recorded as shown
in Figure 7.

As shown in Figure 7, with the increase of the

J. Cent. South Univ. (2018) 25: 2423–2437

2434

Figure 6 Browser interface for zones of sponge city

Figure 7 Experimental result of elapsed time for spatial

query and pan based on Oracle and Hadoop

number of concurrent users, the response time of
spatial queries based on the Oracle and Hadoop
database schemes have all increased. However, the
query time of the Oracle geodatabase is constantly
longer than that of the Hadoop geodatabase. The
time spent on request and response of the Oracle
geodatabase is relatively stable in the case of a
small number of concurrent accesses. However, the
request and response time will increase intensely
when the number of concurrent access exceeds a
certain threshold. This condition is possibly because
that the long period of communication time among
the nodes is occupied. On the contrary, time spent

J. Cent. South Univ. (2018) 25: 2423–2437

2435

on request and response of the Hadoop geodatabase
increases slowly and maintain relatively stable
although a large number of users for concurrent
access existed. Thus, the Hadoop geodatabase can
simply handle highly concurrent spatial query
requests, whereas the Oracle geodatabase cannot
meet the requirements of high concurrent access.

The performances of the geodatabases based
on Oracle and Hadoop are then tested in the case of
highly concurrent pan scenarios using the same
method as the highly concurrent query. The testing
process is described as follows. A display area in
the layer of ‘Yinchuan City Housing’ is considered
as the starting point. One-half map sheet within the
scope of two map sheets close to the display area is
loaded at a time to simulate the pan operation. To
avoid the possibility of selecting from the area of
the starting point on the experimental results, 10
starting regions are randomly selected within the
layer before the experiment started. After
completing a pan of starting ranges, the next area is
navigated until the 10 regions are all navigated. The
total time spent in the 10 pan operations is recorded
and then averaged. Then, the number of concurrent
users for pan operation increases gradually to
validate the elapsed time of pan operation spent on
the Oracle and Hadoop geodatabases (Figure 7).

As shown in Figure 7, when the number of
concurrent users is small in the experiment of map
pan operation, the performance of the Oracle
scheme is quite similar to that of the Hadoop
scheme. However, when the number of concurrent
users exceeds a certain threshold, the performance
of the Oracle relational database decreases intensely
and the pan response time is significantly increased.
However, the number of concurrent users slightly
affected the performance of the Hadoop distributed
cluster. When 300 virtual users exist, the map pan
time for loading adjacent data to the Oracle scheme
is 2.5 times as fast as that of the Hadoop scheme.

A contrast experiment between the Oracle
database and the Hadoop cloud geodatabase is
carried out to verify the efficiency of MapReduce
for construction of parallel spatial index. The
numbers of Mapper and Reducer on a single node
are set to 2. The block size in HDFS is set to 128M.

Construction time of parallel spatial index based on
different data quantity by using Oracle and Hadoop,
respectively, is shown in Table 2.

As shown in Table 2, construction times of
parallel spatial index from both Oracle database and
Hadoop cloud geodatabase gradually increase with
the increase of data volume. The advantage of cloud
geodatabase in the parallel performance of spatial
index is not very obvious compared with that of
single machine environment when the amount of
processed spatial data is relatively small. The
parallel generation of spatial index of Oracle is
faster than that of the Hadoop cloud geodatabase
because there is an excellent index mechanism at
the bottom of the Oracle database. However, the
parallel generation time of spatial index spent from
the Hadoop cloud geodatabase is much shorter than
that from the Oracle database when the volume of
spatial data is greater than 200TB.

6 Conclusions

In the study, a cloud geodatabase for sponge
city is designed and achieved. virtualisation,
geohash fragmentation, parallel computing and
WebService architecture are first used to design
Hadoop distributed computing framework with a
master and multiple slaves. Spatial data storage
layer, cloud geodatabase access layer, spatial data
access layer and spatial data analysis layer are built
and integrated into cloud geodatabase access for the
sponge city. Direct addressing via a file name,
three-level concurrent retrieval and block data
retrieval are then designed for retrieval model. The
cloud geodatabase for sponge city is finally
implemented and validated by using the
comparisons of the Hadoop cloud geodatabase with
Oracle database. It is shown that the cloud
geodatabase for sponge city can store and retrieve
massive data with high-performance computing and
communication.

The cloud geodatabase for the sponge city has
high scalability, high availability, large-scale
parallel processing and effective resource allocation.
It can flexibly store and manage heterogeneous data
and massive data to integrate and organise the

Table 2 Construction time of parallel spatial index based on different data quantity by using Oracle and Hadoop

Data/TB 1.7 19.2 56.8 91.7 118.6 225.5 375.8 569.4

Oracle/s 3.65 8.02 15.48 23.68 30.92 57.26 84.04 130.58

Hadoop/s 5.26 12.52 20.58 31.94 38.32 46.08 56.83 79.15

J. Cent. South Univ. (2018) 25: 2423–2437

2436

multi-source, multi-scale and massive basic spatial
data of the sponge city. It can virtualise many
backend functions, and avoid redundant
configuration of personnel, hardware and software.
Meanwhile, the cloud geodatabase can significantly
enhance the database storage capacities, retrieval,
access, sharing and security for the construction and
management of the sponge city.

The future study is mainly 1) to adjust joining
strategy of multiple tables to reduce communication
and unnecessary repetitive operation; 2) to propose
a locking scheme based on attribute predicates with
multiple granularities to realize fast lookup of
conflict predicates; 3) to dynamically partition
concepts according to the existing data in a cloud
database; 4) to carry out the real-time monitoring,
defect diagnosis and data mining by using cloud
computing technology.

References

[1] HOU Jing-wei, LI Long-tang, HE Jie. Detection of grapevine

leafroll disease based on 11-index imagery and ant colony
clustering algorithm [J]. Precision Agriculture, 2016, 17(4):
488–505. DOI: 10.1007/s11119-016-9432-2.

[2] HOU Jing-wei, FAN Xin-gang, LIU Ren-tao. Optimal spatial
allocation of irrigation water under uncertainty using the
bilayer nested optimisation algorithm and geospatial
technology [J]. International Journal of Geographical
Information Science, 2016, 30(12): 2462–2485. DOI:
10.1080/13658816.2016.1181264.

[3] ZHOU Xiao-guang, CHEN Jun, JIANG Jie, ZHU Jian-jun,
LI Zhi-lin. Event-based incremental updating of spatio-
temporal database [J]. Journal of Central South University of
Technology, 2004, 11(2): 192–198.

[4] LEI Xiang-dong, ZHAO Yue-long, CHEN Song-qiao,
YUAN Xiao-li. Scheduling transactions in mobile distributed
real-time database systems [J]. Journal of Central South
University of Technology, 2008, 15: 545−551. DOI: 10.1007/
s11771−008−0103−y.

[5] HOU Jing-wei, MI Wen-bao, LI Long-tang. Spatial quality
evaluation for drinking water based on GIS and ant colony
clustering algorithm [J]. Journal of Central South University
of Technology, 2014, 21(2): 1051–1057. DOI: 10.1007/
s11771-014-2036-y.

[6] JANAKIRAMAN K K, ORGUN M A, NAYAK A.
Geospatial editing over a federated cloud geodatabase for the
state of NSW [C]// Proceedings of the 18th SIGSPATIAL
International Conference on Advances in Geographic
Information Systems. San Jose: ACM, 2010: 144–151. DOI:
10.1145/1869790.1869813.

[7] VORA A, JAIN D, MAVANI G, SHAH S. Incorporating
database management system in cloud [J]. International
Journal of Scientific Research and Education, 2016, 5(11):
61–64. DOI: 10.17148/IJARCCE.2016.51112.

[8] LI Wei-yue, LIU Chun, HONG Yang, ZHANG Xin-hua,
WAN Zhan-ming, SAHARIA M, SUN Wei-wei, YAO

Dong-jing, CHEN Wen, CHEN Sheng, YANG Xiu-qin, YUE
Jing. A public cloud-based China’s landslide inventory
database (CsLID): Development, zone, and spatiotemporal
analysis for significant historical events, 1949–2011 [J].
Journal of Mountain Science, 2016, 13(7): 1275–1285. DOI:
10.1007/s11629-015-3659-7.

[9] DŐRNEMANN T, JUHNKE E, FREISLEBEN B. On-
demand resource provisioning for BPEL workflows using
Amazon’s elastic computer cloud [C]// Processing of the 9th
IEEE/ACM Int Symposium on Cluster Computing and the
Grid. Shanghai, China: TEEE, 2009: 140–147.

[10] KANG C. Cloud computing and its Applications in GIS [D].
Ann Arbor: Clark University, 2011.

[11] BALKIĆ Z，ŠOŠTARIĆ D，HORVAT G. GeoHash and
UUID identifier for multi-agent systems [M]// Agent and
Multi-Agent Systems Technologies and Applications. Berlin,
Springer, 2012, 7327: 290–298. DOI: 10.1007/978-3-642-
30947-2_33.

[12] ELDAWY A. MOKBEL M F. SpatialHadoop: A MapReduce
framework for spatial data [C]// IEEE International
Conference on Data Engineering, Seoul: IEEE,
2016: 1352–1363.

[13] SRIVASTAVA P, BINH N T, KHARE A. Content-based
image retrieval using moments [C]// Context-Aware Systems
and Applications. ICCASA 2013. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. Berlin: Springer, 2014,
128: 228–237. DOI: 10.1007/978-3-319-05939-6_23.

[14] ZHANG Ming-jin, WANG Hui-bo, LU Yun, LI Tao,
GUANG Yu-dong, LIU Chang, EDROSA E, LI Hong-tai,
RISHE N. TerraFly GeoCloud: An online spatial data
analysis and visualization system [J]. ACM Transactions on
Embedded Computing Systems, 2010, 9(4): 1–24. DOI:
10.1145/2700494.

[15] DING Zhi-ming, GUO Li-min, YANG Qi. RDB-KV: A cloud
database framework for managing massive heterogeneous
sensor stream data [C]// Second International Conference on
Intelligent System Design and Engineering Application.
Sanya: IEEE, 2011: 653–656. DOI: 10.1109/ISdea.2011.33.

[16] LEE D W, LIANG S H L. Geopot: A Cloud-based
geolocation data service for mobile applications [J].
International Journal of Geographical Information Science,
2011, 25(8): 1283–1301. DOI: 10.1080/13658816.2011.
558017.

[17] BHAT M A, SHAH R M, AHMAD B. Cloud computing: a
solution to geographical information systems (GIS) [J].
International Journal on Computer Science and Engineering,
2011, 3(2): 594–600.

[18] YANG Chao-wei, GOODCHILD M, HUANG Qun-ying,
NEBERT D, RASKIN R, XU Yan, BAMBACUS M, FAY D.
Spatial cloud computing: How can the geospatial sciences
use and help shape cloud computing [J]. International
Journal of Digital Earth, 2011, 4(4): 305–329. DOI:
10.1080/17538947. 2011.587547.

[19] AJI A, SUN Xi-ling, VO H, LIU Qiao-ling, LEE R, ZHANG
Xiao-dong, SALTZ J, WANG Fu-sheng. Demonstration of
Hadoop-GIS: A spatial data warehousing system over
MapReduce [J]. Advances in Geographic Information
Systems, 2013, 6(11): 528–531. DOI: 10.1145/2525314.
2525320.

[20] CHEN Da-lun, CHEN Rong-guo, XIE Jiong. Research of the
parallel spatial database proto system based on MPP
architecture [J]. Journal of Geo-information Science, 2016,

J. Cent. South Univ. (2018) 25: 2423–2437

2437

18(2): 151–159. DOI:10.3724/SP.J.1047.2016.00151.
[21] LIU Bao-ling, LI Gang, YOU Hong, SUI Ming-rui, WANG

Shu-tao. Evaluation of dynamic groundwater quality
simulation based on Cloud-GIS: A case study in Harbin
urban area, China [J]. Water Science & Technology: Water
Supply, 2014, 14(6): 1095–1103. DOI: 10.2166/ws.2014.070.

[22] WEI Ling-yin, HSUA Ya-ting, PENGA Wen-chih, LEE
Wang-chien. Indexing spatial data in cloud data
managements [J]. Pervasive and Mobile Computing, 2014,
15(12): 48–61. DOI: 10.1016/j.pmcj.2013.07.001.

[23] MATEUS R C，SIQUEIRA T L L，TIMES V C， CIFERRI
R R， CIFERRI C D D A. Spatial data warehouses and
spatial OLAP come towards the cloud: design and
performance [J]. Distributed and Parallel Databases, 2015, 4:
1–37. DOI: 10.1007/s10619-015-7176-z.

[24] KUNE R, KONUGURTHI P K, AGARWAL A,
CHILLARIGE R R, BUYYA R. XHAMI – extended HDFS
and MapReduce interface for big data image processing
applications in cloud computing environments [J]. Software:
Practice and Experience, 2017, 47: 455–472. DOI: 10.1002/
spe.2425.

[25] WANG Yong, LIU Zhen-ling, LIAO Hong-yan. Improving
the performance of GIS polygon overlay computation with
MapReduce for spatial big data processing [J]. Cluster
Computing, 2015, 18(2): 507–516. DOI: 10.1007/s10586-
015-0428-x.

[26] YAN Ji-ning, MA Yan, WANG Li-zhe. A cloud-based remote
sensing data production system [J]. Future Generation
Computer Systems, 2018, 86(9): 1154–1166. DOI: 10.1016/
j.future.2017.02.044.

[27] LIN Feng-cheng, CHUNG Lan-kun, WANG Chun-ju.
Storage and processing of massive remote sensing images
using a novel cloud computing platform [J]. GIScience &
Remote Sensing, 2013, 50(3): 322–336. DOI: 10.1080/
15481603.2013.810976.

[28] WANG Peng-yao, WANG Jian-qin, CHEN Ying. Rapid
processing of remote sensing images based on cloud
computing [J]. Future Generation Computer Systems, 2013,
29(8): 1963–1968. DOI: 10.1016/j.future.2013.05.002.

[29] CHEN Hung-ming, CHANG Kai-chuan, LIN Tsung-hsi. A
cloud-based system framework for performing online

viewing, storage, and analysis on big data of massive BIMs
[J]. Automation in Construction, 2016, 71: 34–48. DOI:
10.1016/j.autcon.2016.03.002.

[30] CARY A, YESHA Y, ADJOUADI M, RISHE N. Leveraging
cloud computing in geodatabase management [C]// IEEE
International Conference on Granular Computing. San Jose:
IEEE, 2010: 73–78.

[31] CAFARELLA M, CHANG E, FIKES A, HALEVY A,
HSIEH W, LERNER A, MADHAVAN J,
MUTHUKRISHNAN S. Data management projects at
Google [J]. ACM Signod Record, 2008, 37(1): 34–38. DOI:
10.1145/1374780.1374789.

[32] ZHENG Kun, FU Yan-li. Research on vector spatial data
storage schema based on Hadoop platform [J]. International
Journal of Database Theory and Application, 2013, 6(5):
85–94. DOI: 10.14257/ijdta.2013.6.5.08.

[33] XU Xiao-long, ZHANG Qi-tong, ZHOU Jing-lan.
NC-MACPABE: Non-centered multi-authority proxy
re-encryption based on CP-ABE for cloud storage systems
[J]. Journal of Central South University, 2017, 24(4): 807−
818. DOI: 10.1007/s11771-017-3483-z.

[34] RYOTA H, KIMIO K. MapQL: Map-based Ontology Query
Language [C]// DEWS2008, C3-2. 2008: 1–8. (in Japanese)

[35] DUAN L F. The research and application of cloud database
technology for remote sensing data [D]. Kaifeng: Henan
University, 2014. (in Chinese)

[36] ZHANG Xiu-ling, GAO Wu-yang, LAI Yong-jin, CHENG
Yan-tao. Flatness predictive model based on T-S cloud
reasoning network implemented by DSP [J]. Journal of
Central South University, 2017, 24(10): 2222−2230. DOI:
10.1007/s11771-017-3631-5.

[37] YAO Guang-shun, DING Yong-sheng, HAO Kuang-rong.
Multi-objective workflow scheduling in cloud system based
on cooperative multi-swarm optimization algorithm [J].
Journal of Central South University, 2017, 24(5): 1050−1062.
DOI: 10.1007/s11771-017-3508-7.

[38] VIJAYA P, RAJU G, RAY S K. Artificial neural
network-based merging score for Meta search engine [J].
Journal of Central South University, 2016, 23(10): 2604−
2615. DOI: 10.1007/s11771-016-3322-7.

(Edited by HE Yun-bin)

中文导读

海绵城市云空间数据库设计与实现

摘要：构建海绵城市云空间数据库可以整合不同管理部门分散的地理空间信息，实现海量数据的多用
户高并发访问和检索、高可扩展性和可用性、高效存储和管理。为了处理海量空间数据，本研究首先
利用并行计算技术设计了包括 Hadoop 分布式文件系统和 MapReduce 的 Hadoop 分布式计算框架。其
次，用一系列标准 API 设计了访问控制模块，包括空间数据存储层、云空间数据库访问层、空间数据
访问层和空间数据分析层。然后，设计了一个检索模型，包括利用文件名直接寻址、3 层并行检索和
数据块检索策略。实现了多尺度、多源和海量空间数据的实时并行访问，高性能计算、通讯、存储、
高效检索和时序安排等功能。最后，通过与 Oracle 数据库的比较，验证了 Hadoop 云空间数据库的性
能。海绵城市云空间数据库能避免人员、硬件和软件资源的冗余配置，支持数据传输、模型调试和应
用开发，为海绵城市建设和管理提供基础和专题地理信息的精确、实时、虚拟、智能、可靠、动态、
按需和弹性可扩展的云服务。

关键词：云空间数据库；海绵城市；分布式计算；并发检索；访问

