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Abstract: Cone penetration test (CPT) is an appropriate technique for quickly determining the geotechnical properties 
of lunar soil, which is valuable for in situ lunar exploration. Utilizing a typical coupling method recently developed by 
the authors, a finite element method (FEM)-discrete element method (DEM) coupled model of CPTs is obtained. A 
series of CPTs in lunar soil are simulated to qualitatively reveal the flow of particles and the development of resistance 
throughout the penetration process. In addition, the effects of major factors, such as penetration velocity, penetration 
depth, cone tip angle, and the low gravity on the Moon surface are investigated. 
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1 Introduction 
 

With the ultimate aim of constructing a 
permanent base on the Moon for human habitation 
and resource exploitation, a new round of lunar 
exploration was launched at the beginning of the 
21st century. The integration of in situ resource 
utilization (ISRU) with lunar exploration is a 
cutting-edge topic that has received increasing 
attention [1, 2]. The major steps in ISRU include 
excavation and mining, which are affected by the 
geotechnical properties of lunar soil, such as 
bearing capacity and slope stability. Due to the 
significant environmental differences between the 
Earth and the Moon, the most importance is that the 
gravitational field on the Moon is approximately 
1/6 of that on the Earth, the initial stress field and 
the mechanical and geotechnical properties of lunar 
soil are very different from those of soil on the 
Earth [3]. In the past two decades, considerable 
work has been conducted to study Moon-related 
problems, such as lunar excavation forces [4, 5], 
lunar soil collapse [6], the specific cutting 

resistance of lunar regolith simulant [7], the angle 
of repose for a lunar particle system [8], and the 
mobility performance of lunar rovers [9–11]. 
Further studies are needed to fully understand the 
geotechnical and mechanical properties of in situ 
lunar soil for future lunar exploration. 

To obtain better insights into the mechanical 
properties of in situ lunar soil, suitable instruments 
and techniques that can be performed directly on 
the lunar surface should be developed [12]. As a 
major tool for geotechnical characterization in soil 
mechanics, cone penetration tests (CPTs) were 
conducted on Earth to study the mechanical 
properties of lunar soil obtained during the early 
Apollo Missions [13]. As a sensitive indicator of the 
packing characteristics of in situ soil, the cone 
penetration resistance in CPTs can be used as a 
convenient measurement of lunar soil strength, 
which is of great importance for excavation and 
mining during in situ base construction on the 
Moon surface [14]. The use of CPTs is expected to 
be extensive during the development of ISRU in 
future lunar exploration, and the mechanism of 
CPTs under the low gravity of the lunar surface 
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must be thoroughly investigated [15]. 
Because laboratory experiments in the field of 

lunar exploration have many shortcomings, such as 
high technology demands and very large economic 
costs, numerical methods have attracted increasing 
attention in recent years [16]. Unlike in 
conventional laboratory experiments, the particulate 
information in a DEM study can be transparent, and 
the details of microstructure evolution during the 
loading process can be fully captured and analyzed 
[17]. Moreover, implementing low gravity 
conditions is much easier in a DEM simulation. The 
DEM simulation is widely applied in various 
aspects of lunar exploration research, e.g., 
analyzing the wheel performance of a lunar rover 
[10, 18–21]. On the other hand, the direct 
application of DEM remains limited due to the 
prohibitive computational costs, especially for 
large-scale or dynamic engineering problems [22]. 
Therefore, the multi-scale numerical method, which 
was developed to concurrently simulate different 
regions using dissimilar models on both the macro 
and micro scale, appears to be an optimal solution 
as it inherits the advantages of both the FEM and 
DEM [23–26]. 

The objective of this work is to establish an 
FEM-DEM coupled model of CPTs in lunar soil 
using a recently developed coupling method. The 
qualitative results of numerical modeling can 
provide a predictive reference for realistic in situ 
tests on the Moon surface. This paper is organized 
as follows. First, the theories of FEM and DEM are 
briefly reviewed. Second, the concept of coupling 
finite elements and discrete elements is presented. 
Additionally, an explicit time integration algorithm 
with multiple time steps is exploited to dramatically 
reduce computational costs. Next, the properties of 
lunar soil are summarized for numerical modeling. 
Using the separate edge coupling method, an 
FEM-DEM coupled model of CPTs in lunar soil is 
established. Then, the modeling results and the 
influence of major factors are qualitatively analyzed 
in detail, and conclusions are presented. 
 
2 Method for FEM-DEM coupled 

modeling of CPTs 
 

The most important procedure for creating a 
coupled model is to formulate an efficient scheme 
that can transfer key information across the coupled 
region. In previous literature, there are two main 
types of coupling schemes: 1) energy-based 

methods in which a common energy functional with 
explicit consideration of compatibility is shared by 
dissimilar models and from which the equilibrium 
of each model can be derived; and 2) force-based 
methods in which the compatibility conditions of 
different models are directly enforced as boundary 
conditions to obtain the equilibrium of each model. 
The separate edge coupling method, a state-of-the- 
art force-based method, is used in this work to 
create an FEM-DEM coupled model of CPTs in 
lunar soil. 
 
2.1 Theories of FEM and DEM 

For a problem in continuum mechanics, whose 
region is denoted as Ω and whose displacement 
boundary and surface force boundary are denoted as 
∂1Ω and ∂2Ω, respectively, the conservation of 
linear momentum equation can be written as 
follows:  

( : )u g D g           in Ω             (1) 
 

where ρ is the mass density; u  is the acceleration 
vector, which is the second derivative of the 
displacement u with respect to time t;   is the 
Hamilton operator; σ and ε are the stress and strain 
tensors, respectively; D is the fourth-order stiffness 
tensor; g is the vector of the body force per unit 
volume. 

Assume that the initial conditions are: 
 

0

0
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u x u
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and the boundary conditions are: 
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                        (3) 

 
where u0 is the initial displacement vector; v0 is the 
initial velocity vector; u  and T  are the prescribed 
displacement on ∂1Ω and the pre-applied traction on 
∂2Ω, respectively; n is the out-normal of ∂2Ω. 

The governing equation of the continuum can 
be obtained in a weak form as follows: 

 
d : ( )d du u V u V g u V

  
             

2

dT u S





                           (4) 
 
where δu is the virtual displacement. 

Discretizing the continuum region using FEM, 
the displacement field can be approximated as 
follows: 
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where n is the total number of nodes; N is the 
matrix of the shape function and U is the nodal 
displacement vector. The following equation can be 
obtained by substituting Eq. (5) into Eq. (4): 
 

T T TU MU U KU U F                     (6) 
 
where δU is the virtual displacement vector of the 
nodes and M, K and F are the mass matrix, stiffness 
matrix and force vector, respectively. Denoting the 
strain matrix as B, then M, K and F can be given as 
follows:  

T dM N N V

                           (7) 

 
T dK B DB V


                            (8) 

 

2

T Td dF N g V N T S
 

                    (9) 
 

In DEM, which was first introduced by 
CUNDALL et al in 1979 [27], the calculation cycle 
is a time-stepping algorithm that alternatively 
applies Newton’s second law to each particle and a 
force-displacement law to each contact. The 
translational and rotational motions of particle i 
(1≤i≤p) can be described by Eqs. (10) and (11), 
respectively. 
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ijiii ttxb
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                      (11) 

 
where p is the total number of particles; bi is the 
mass of particle i; ci is the total number of contacts 
around particle i; xi is the position vector; e

it  is the 
external force vector; Ii is the inertial moment; θi is 
the rotational angle vector; e

im  is the external 
moment vector of particle i; i

ijt  is the contact force 
vector between particles i and j; and rij is a vector 
pointing from the mass center of particle i to the 
contact between particles i and j. 

For a linear contact model, the normal contact 
force can be computed by: 

 
in

nin (if attaching)

0 (if detaching)

ij
ij

k u
t

 


                   (12) 

and the tangential contact force can be computed 
by: 
 

is is
s

is in

(if sticking)

(if sliding)

ij ij

ij ij

t k u

t t

  



                  (13) 

 
where 

in
iju  is the relative displacement between 

particles i and j in the normal direction; is
iju  is the 

incremental relative displacement between particles 
i and j in the tangential direction; kn and ks are the 
normal and tangential contact stiffness, respectively; 
μ is the contact frictional coefficient. 

Rewriting Eqs. (10) and (11) in a weak form, 
we obtain the following: 
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in which δxi and δθi are the virtual displacements of 
particle i. Define that:  

1

1

0 0 0

0 0 0

0 0

0 0 0 0

0 0 0 0

p

p

b E

I

m
b E

I

 
 
 
 
 
 
 
 




                  (15) 

 

1

0 0 0 0

0 0 0

0 0

0 0 0 0 0

0 0 0 0 p

I

I

I

 
 
 
 
 
 
 
 




                       (16) 

 
T

1 1( ,  ,  ,  ,  )p pd x x                      (17) 
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where E is the unit matrix, and Eq. (14) can then be 
rewritten in a much simpler form as follows:  

T T( ) ( )e id md d Id d f f                   (21) 

 
2.2 FEM-DEM coupled modeling of CPTs 

As shown in Figure 1, the local region of 
interest in a CPT can be modeled using discrete 
elements, while the remaining region can be 
described by a continuum. Denote the regions of the 
discrete elements as Ωm, the regions of the 
continuum as ΩM, and their coupling region as 

C m M    . Two artificial boundaries are then 
introduced: Γm for the discrete elements and ΓM for 
the continuum. 

To progressively eliminate the freedoms of the 
continuum in Ωm and to generate the artificial  
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Figure 1 Conventional diagram of an FEM-DEM 

coupled model of CPTs 

 
boundary ΓM, a new model is constructed with an 
assigned function α(x) to weight the material 
properties of the continuum. The mass density ρ′, 
stiffness tensor D′ and body force g′ of the new 
model satisfy: 
 

( ) , ( ) and ( )x D x D  g x g                (22) 
 

The conservation of linear momentum for the 
new model becomes: 

 
  C( ) ( ) : ( ) inx u x D x g g               (23) 

 
where gC is an undetermined compensation body 
force that is needed to achieve equilibrium. The 
force boundary condition of the new model is 

( ) ( )x n x T     on ∂2Ω, and the other initial and 
boundary conditions remain unchanged. 

The compensation force gC can be obtained 
from Eq. (1) and Eq. (23) as follows: 

 
C ( )g x                             (24) 

 
Thus, the new model is guaranteed to have the 

same solution u(x, t) as the original model. 
In general, we assume that 0≤α(x)≤1. Assign 

( ) 0x   in M\   and ( ) 1x   in M C\ ,   
then C 0g   in these regions even if 0  . In ΩC, 

C 0g   because of the variation of α(x). In this case, 
gC or the stress σ has to be determined by the 
compatibility requirement of the continuum with 
respect to the discrete elements. 

The corresponding weak-form governing 
equation of the continuum becomes: 
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Substituting Eq. (5) into Eq. (25), we obtain: 
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Similarly, another assigned function β(x) is 
introduced to weight the material properties of the 
discrete elements to reduce the number of discrete 
elements and to generate the artificial boundary Γm. 
The mass, external force, external moment of 
particle i and the contact stiffness between particle i 
and particle j of the new model satisfy:  
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c
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where c
ijx  is the position vector of the contact 

between particle i and particle j. A compensation 
force C

it  and a compensation moment C
im  must 

be introduced to achieve equilibrium. Then, the 
translational and rotational motions of particle i are 
respectively governed by the following equations: 
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To ensure that the new model has the same 

solution as the original one, we have:  
C c
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Implementing the Taylor expansion, Eq. (38) 
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and Eq. (39) become: 
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For brevity, the governing equations of all 

particles can be rewritten in matrix form as follows: 
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In the same way, we assume that 0≤β(x)≤1. 
Assign ( ) 0x   in m\  and ( ) 1x   in m C\ ,   
then C 0it   and C 0im   in these regions. Due to 
the variation of β(x) in ΩC, C

it  and C
im  are not 

zero and will be required to satisfy the 
compatibility requirement of the discrete elements 
with respect to the continuum. Note that the 
weighting functions α(x) and β(x) are independent 
of each other. 

ΩC can be divided into four groups, each with 
a different coupling scheme, based on the values of 
α(x) and β(x): (1) C

I : ( ) 1x   and ( ) 1x  ; (2) 
II

C : α(x)<1 and ( ) 1x  ; (3) III
C : ( ) 1x   and 

β(x)<1; and (4) IV
C : α(x)<1 and β(x)<1. As shown 

in Figure 2, with different choices of the weighting 
functions α(x) and β(x), four typical coupling 

methods can be derived. Particularly, when 
IV

C  , a useful coupling method named separate 
region coupling is obtained, as shown in Figure 2(c). 
Separate region coupling can be considered a force- 
based coupling method, with only the displacement 
compatibility or the force compatibility condition 
guaranteed. The most important advantage of this 
method is that the compatibility conditions of 
dissimilar models can be obtained and imposed on 
their own. When the widths of both material 
variation regions approach zero, separate region 
coupling tends to separate edge coupling, as shown 
in Figure 2(d); separate edge coupling is used in 
this work for multi-scale modeling of CPTs in lunar 
soil. 
 

  
Figure 2 Weighting functions for typical generalized 

bridging region methods: (a) Bridging region method;  

(b) Edge-to-edge coupling; (c) Separate region coupling; 

(d) Separate edge coupling [28] 

 
The most important assignment of coupling 

method is to determine gC, 
C
it  and 

C
im  using the 

compatibility conditions so that the equilibrium of 
each new model is guaranteed. For separate edge 
coupling, the material variation regions of the 
continuum and discrete elements are misaligned, 
and the corresponding displacement compatibility 
requirements are individually enforced by the 
Lagrange multiplier method; its coupling region 
belongs to group 

I
C : ( ) 1x   and ( ) 1x  . From 

Eqs. (21) and (32), we can easily obtain gC=0, 
C 0,it  and C 0.im   Therefore, nothing has to be 

done with either the continuum or the discrete 
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element model, but a coupling scheme must be 
formulated to transfer key information between the 
two models. 
 
2.3 Multiple-time-step algorithm 

To reduce computational costs, an explicit 
integration algorithm with multiple time steps is 
introduced to integrate the ordinary differential 
governing equations of FEM and DEM. The 
displacement, velocity, and acceleration of finite 
elements and the Lagrange forces are updated at 
each coarse time step, and the quantities of discrete 
elements are updated at each fine time step. The 
coarse time step ΔT equals m times the fine time 
step Δt. For separate edge coupling, the coupling 
terms will not be introduced until the sum of the 
fine time steps reaches a coarse time step. Given the 
quantities of finite elements at macroscale step k 
and the quantities of discrete elements at microscale 
substep k, i, the multi-time-step algorithm for 
separate edge coupling is specified as follows: 

1) Compute the displacement of finite 
elements at each coarse time step and the 
displacement of discrete elements at each fine time 
step: 

 
2
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2) Compute the trial acceleration at each 

microscale substep without coupling terms: 
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3) Calculate the predictive velocities using the 

Newmark scheme: 

* *
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4) Adjust the velocities of different models by 
introducing the coupling terms: 
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5) Update the accelerations: 
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3 FEM-DEM coupled modeling of CPTs 

in lunar soil 
 
3.1 Material properties of lunar soil 

The Moon is covered by a complex layer of 
unconsolidated debris, known as the lunar regolith 
or lunar soil [29]. In total, 382 kg of lunar samples 
have been brought back to Earth since the first 
successful Moon landing in 1969, and the debris 
with a diameter of less than 1 cm are defined as 
“lunar soil” in a narrow sense by the Lunar 
Receiving Laboratory [3]. Our understanding of the 
characteristics of lunar soil depends mainly on the 
studies of soil samples returned by the Apollo and 
Luna missions [30]. The main physical and 
mechanical properties of lunar soil, used for 
determining the parameters in FEM-DEM coupled 
modeling of CPTs in lunar soil, are briefly 
summarized here. 

The main physical and mechanical properties 
of lunar soil are needed to develop the reliable 
engineering models, and the determination of these 
properties is one of the main scientific goals at the 
initial stage of lunar exploration [31]. The data 
sources of the Apollo missions indicate that the 
bulk density and void ratio of lunar soil vary locally 
and are closely related to soil conditions, as shown 
in Table 1. In stark contrast with Earth soil, which 
has a general grain density of about 2.6 to 2.8, the 
grain density of the returned lunar soil samples is 
between 2.9 and 3.3, and the recommended value is 
3.1 [32]. 

Porosity is a crucial variable that affects the 
mechanical characteristics of lunar soil, such as 
compressibility, bearing capacity and shear strength. 
With increasing depth, the porosity of lunar soil 
decreases, and the bulk density increases. The best 
estimates for the average porosity, void ratio and 
bulk density of in situ lunar soil at different depths 
in the intercrater areas are shown in Table 2. 

Measurements of lunar soil samples conducted 
by STESKY et al [33] suggested that the Poisson 
ratio depends strongly on the density of lunar soil. 
The Poisson ratio of lunar soil samples is about 
0.46 at the near-surface area and decreases rapidly  
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Table 1 Bulk density and void ratio of lunar soil under 

different conditions [32] 

Lunar soil 
sample 

Bulk density/ 
(g·cm–3) 

Void ratio Grain
density/
(g·cm–3)Loose Compact Loose Compact

Apollo 11 1.36 1.8 1.21 0.67 3.01 

Apollo 12 1.15 1.93 — — — 

Apollo 14 
0.89 
0.87 

1.55 
1.51 

2.26 
2.37 

0.87 
0.94 

2.9 
2.93 

Apollo 15 1.1 1.89 1.94 0.71 3.24 

Luna 16 1.115 1.793 1.69 0.67 3.0 

Luna 20 1.040 1.798 1.88 0.67 3.0 

 
Table 2 Best estimates of porosity, void ratio, and bulk 

density of lunar soil at different depths [32] 

Depth/cm Porosity/% Void ratio Bulk density/(g·cm–3)

0–15 52±2 1.07±0.07 1.50±0.05 

0–30 49±2 0.96±0.07 1.58±0.05 

30–60 44±2 0.78±0.07 1.74±0.05 

0–60 46±2 0.87±0.07 1.66±0.05 

 
with increasing depth. In processing the 
experimental data obtained by the Surveyor 
spacecraft, a range of 0–0.5 was used for the 
Poisson ratio of lunar soil [34]. As for lunar seismic 
modeling, a constant Poisson ratio of 0.35 is 
assumed [35]. Moreover, the mean value of Poisson 
ratio of lunar soil is estimated to be 0.3 [36]. No 
direct data are available for the elastic modulus of 
lunar soil. However, it should be noted that a 
variety of physical experiments conducted on JSC-1 
lunar soil simulant show a elastic modulus interval 
of 65–110 MPa for a bulk density of 1.64 g/cm3 

[37]. In numerical simulation studies of lunar 
excavations, values of 100 MPa and 0.3 are used for 
the elastic modulus and Poisson ratio of the FJS-1 
lunar soil simulant, respectively [5]. 
 
3.2 Modeling of CPTs in lunar soil 

Conventionally, numerical modeling of CPTs 
can monitor the internal parameters that are difficult 
to be measured in situ. The additional insights 
provided by the numerical model can improve the 
interpretation of the penetrometer-soil interaction. 
Based on a classical plane strain case, together with 
the separate edge coupling method discussed above, 
a series of CPTs in lunar soil are modeled by 
coupling FEM and DEM to qualitatively reveal the 
flow of particles and the development of resistance 

in the penetration process. 
As shown in Figure 3, the modeled region has 

dimensions of 0.62 m in height and 0.66 m in width. 
The FEM zone is discretized by rectangular mesh 
elements with a size of 0.06 m 0.06 3 m , yielding 
a total of 76 nodes and 54 elements. Meanwhile, the 
DEM zone is filled with particles. For simplicity, 
the inter-particle cohesion and the shape 
characteristics of real lunar soil particles are 
neglected. Rounded particles with a radius of  
0.003 m are used here to represent lunar soil 
particles, and their original arrangement is shown in 
Figure 4. In total, there are 5101 particles in the 
DEM zone, whose area accounts for approximately 
one-third of the entire region. The cone 
penetrometer is assumed to be rigid and to produce 
no deformation during the penetration process. The 
penetrometer’s width is 35.7 mm, and its length is 
519.6 mm, which is long enough to penetrate 
through the whole DEM zone. The angle of the 
cone tip, denoted by α, varies in different simulated 
conditions. 
 

 
Figure 3 Schematic diagram of FEM-DEM coupled 

model of CPTs in lunar soil 

 

On the basis of the material properties of lunar 
soil summarized above, the parameters for the 
FEM-DEM coupled model of CPTs are determined. 
The main model parameters are listed in Table 3, as 
well as the dimensions of the modeled region and 
cone penetrometer. 

In principle, the CPT results can be affected by 
several factors, such as penetration velocity, 
penetration depth and cone tip angle. For in situ 
CPTs in lunar soil, the low gravity is another  
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Figure 4 Particles in DEM zone and their original 

arrangement 

 
important factor. Using the FEM-DEM coupled 
model of CPTs, all these main factors are 
investigated in the following section. In total, seven 
conditions are simulated, and their detailed 
conditions are listed in Table 4. 
 
3.3 Results and analyses 
3.3.1 Effect of penetration velocity 

The first three simulated conditions are 
selected in the model to consider the effects of 
different penetration velocities. The curves of the 
specific penetration resistance (Ps), cone tip 
resistance (Qc) and side frictional resistance (Fs) 
versus penetration depth for these three penetration 
velocities are depicted in Figure 5. As shown in the 
figure, the values of these three resistances 
generally increase when the penetration velocity 
increases. Compared to the other two curves, the 

oscillation of the curve is the smallest when the 
penetration velocity is 0.3 m/s. In addition, the 
results of 0.5 m/s are close to those of 0.3 m/s. 
When the penetration velocity is 0.7 m/s, the cone 
penetrometer bears the greatest resistances during 
the penetration process due to the inertia effect of 
the soil. As a result, the penetration velocity should 
be limited to a low value when modeling CPTs in a 
quasi-static process. 
3.3.2 Effect of penetration depth 

To observe the disturbance on lunar soil 
particles when the cone penetrometer reaches 
different depths, we consider the simulated 
condition (2) as an example. Figure 6 depicts the 
penetration process as the cone penetrometer going 
through the particles of the DEM zone to three 
different depths: s=0.10 m, s=0.25 m, and s=   
0.40 m. 

As shown in Figure 6(a), immediately after the 
penetration of the cone penetrometer, the lunar soil 
particles flow sideways and up. The void increases 
and shear dilatancy appears in the particles around 
the cone penetrometer. Meanwhile, the particles 
below the cone tip are slightly disturbed when the 
penetration depth is rather small. With increasing 
penetration depth, the effect of the cone 
penetrometer on the particles becomes stronger. For 
particles in the lateral direction, the main range of 
influence is approximately 2 times d (the diameter 
of the cone penetrometer); and for particles below 
the cone tip, this range is 4 times d. When s/d>10 
(the ratio of penetration depth to the diameter of the 
cone penetrometer), particles near the cone tip 
experience a punching shear failure, as shown in 
Figure 6(c). 

A square area with a size of 0.1 m×0.1 m and a 
center located at (0.432 m, 0.225 m) is selected to 
examine the change of the void ratio of the particles 
adjacent to the cone tip during the penetration 
process .  The curve of the void rat io versus 

 

Table 3 Parameters for FEM-DEM coupled model of CPTs in lunar soil 

Region  Cone 
penetrometer 

 FEM zone 

Width/mm Height/mm Length/mm Width/mm  
Elastic modulus, 

E/MPa 
E′=E/(1–υ2)/

MPa 
Poisson
ratio, υ

υ′=υ/(1–υ) 
Normal 

cohesion/N 
Bulk density, 
ρ/(g·cm–3)

660 620  519.6 35.7  100 109.89 0.3 0.43 0.01 1.80 

DEM zone 

Normal stiffness, 
kn/(kN·m–1) 

Shear stiffness, 
ks/(kN·m–1) 

Normal 
cohesion, Cn

Shear cohesion,
Cs/N 

Radius of 
particles, mm

Particle density, 
ρp/(g·cm–3) 

Void ratio 
Friction 

coefficient, μ

1500 1000 0 0.01 3.0 3.0 0.67 1.0 
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Table 4 Simulated conditions and their corresponding 

numbers 
Simulated 

condition No. 
Cone tip 

angle, α/(°) 
Gravitational 

acceleration, g 
Penetration 

velocity/(m·s–1)

(1) 60 1/6 0.3 

(2) 60 1/6 0.5 

(3) 60 1/6 0.7 

(4) 120 1/6 0.5 

(5) 180 1/6 0.5 

(6) 60 1/3 0.5 

(7) 60 1 0.5 

 

 
Figure 5 Curves of resistances versus penetration depth 

at different penetration velocities: (a) Specific 

penetration resistance; (b) Cone tip resistance; (c) Side 

frictional resistance 

 

 
Figure 6 Diagram of penetration process at different 

penetration depths: (a) s=0.10 m; (b) s=0.25 m; (c) s= 

0.40 m 
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penetration depth is drawn in Figure 7. With 
increasing penetration depth, the disturbance of the 
particles by the cone penetrometer becomes 
stronger. The void ratio begins to increase when the 
penetration depth is approximately 0.1 m and 
reaches a maximum value when the penetration 
depth approaches 0.17 m, resulting in shear 
dilatancy of the particles. Then, the void ratio 
increases due to the extrusion from the cone 
penetrometer, leading to shear shrinkage of the 
particles. Affected by the compressive deformation 
of the particles, the void ratio finally becomes less 
than its initial value. 
 

  
Figure 7 Curve of void ratio of a particular area versus 

penetration depth 

 

Figure 8 depicts the curves of Ps, Qc and Fs 
versus penetration depth. As shown in Figure 8, Ps, 
Qc and Fs gradually increase as the penetration 
depth increases, and all the curves present zigzag 
patterns with sharp variations. When the penetration 
depth s<0.1 m, the side frictional resistance is 
almost negligible, and the specific penetration 
resistance is all borne by the cone tip resistance. 
The side frictional resistance gradually increases 
with increasing penetration depth when s>0.1 m, 
and the specific penetration resistance is borne by 
both the cone tip resistance and the side frictional 
resistance. The maximum values of Ps, Qc and Fs 
are 23.0 N, 17.1 N and 9.2 N, respectively. The 
specific penetration resistance is quite large, while 
the ratio of side frictional resistance to specific 
penetration resistance is small, which conforms to 
the law obtained from CPTs in sandy soil. 
3.3.3 Effect of cone tip angle 

In an attempt to study the effect of cone tip 
angle, three simulated conditions with cone tip 
angles of 60°, 120° and 180° are compared and  

 

 
Figure 8 Curves of resistances versus penetration depth 

in simulated condition (2) 

 
analyzed, and the corresponding distribution 
contours of the normal contact forces of the 
particles in the DEM zone are shown in     
Figures 9–11, respectively. In all three conditions, 
the particles below the cone tip have greater normal 
contact forces than those at other locations. As the 
cone tip angle increases, the penetration process has 
less effect on the particles lateral to the cone 
penetrometer, but the effect on the particles below 
the cone tip increases. In addition, the normal 
contact forces of the particles affect a larger range 
when the cone tip angle increases, which is 
reflected by greater specific penetration resistance 
and cone tip resistance. Moreover, smaller 
penetration depth corresponds with greater cone tip 
angle when punching shear failure occurs in the 
particles. 

For more detail, the effect of penetration depth 
can also be shown by the distribution contours of 
the normal contact forces of particles. When the 
penetration depth is small, the cone penetrometer 
acts on particles that are both lateral to the cone 
penetrometer and below the cone tip. As the 
penetration depth increases, the area influenced by 
the cone penetrometer is concentrated in the vertical 
direction, and the range of particles affected by the 
penetration action gradually expands. When s/d>10, 
the particles below the cone tip bear the maximum 
normal contact forces, undertaking the main 
penetration action from the cone penetrometer. 
3.3.4 Effect of gravity 

The environment of the Moon is quite different 
from that of the Earth; in particular, the gravity on 
the Moon’s surface is approximately 1/6 of that on 
the Earth’s surface. The effect of low gravity on 
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Figure 9 Distribution contour of normal contact forces of particles in DEM zone at different penetration depths when 

cone tip angle is 60°: (a) s=0.10 m; (b) s=0.25 m; (c) s=0.40 m 

 

 
Figure 10 Distribution contour of normal contact forces of particles in DEM zone at different penetration depths when 

cone tip angle is 120°: (a) s=0.10 m; (b) s=0.25 m; (c) s=0.40 m 

 

CPT mechanism is also analyzed using the 
FEM-DEM coupled model of CPTs in lunar soil. 
Gravities of 1g and 1/6g are selected to simulate the 
environments of the Earth and Moon, respectively. 
Additionally, 1/3g is simulated to more clearly 
explain the effect of low gravity. The curves of 
resistances versus penetration depth under different 
gravities are shown in Figure 12. 

In general, the resistances under low gravity 
(1/6g or 1/3g) are smaller than the resistance under 
1g. Therefore, the cone penetrometer is expected to 
experience less resistance during the penetration 
process as the gravity decreases. Thus, the impact 

of low gravity must be considered when designing 
equipment and techniques for CPTs conducted on 
the lunar surface. 

 
4 Conclusions 
 

This paper presents the notion of coupling 
FEM and DEM and introduces two independent 
functions to weight the material properties of 
different models. Based on compatibility conditions, 
artificial boundaries and compensation forces are 
derived to ensure the equilibrium of each new 
model. Using the separate edge coupling method,  
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Figure 11 Distribution contours of normal contact forces of particles in DEM zone at different penetration depths when 

cone tip angle is 180°: (a) s=0.10 m; (b) s=0.25 m; (c) s=0.40 m 

 

 
 
together with a multi-time-step algorithm, an 
FEM-DEM coupled model of CPTs was obtained. 
Compared to the conventional approaches of 
experiments or simulations, the proposed FEM- 
DEM coupled model is substantially superior 
because it can simulate the flow of particles and the 
development of penetrometer resistances during the 
penetration progress. 

To prepare for future tests conducted on the 
lunar surface, the results of the proposed FEM- 
DEM coupled modeling of CPTs offers an 
alternative way to qualitatively evaluate the 
geotechnical properties of lunar soil, which is 
important for in situ excavation and mining during 
the construction of a base on the Moon. The 
FEM-DEM coupled modeling results of CPTs in 

Figure 12 Curves of resistances versus 
penetration depth under different 
gravities: (a) Specific penetration 
resistance; (b) Cone tip resistance;  
(c) Side frictional resistance  
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lunar soil show the following: 
1) The penetration velocity has clear effect on 

the penetration mechanism. The specific penetration 
resistance, cone tip resistance and side frictional 
resistance generally increase as the penetration 
velocity increases. To obtain a quasi-static CPT 
process, the penetration velocity should be limited 
to a low value in an actual test, as well as in a 
numerical model. 

2) With increasing penetration depth, the 
specific penetration resistance, cone tip resistance 
and side frictional resistance of the penetrometer 
cone increase. The curves of these three resistances 
versus the penetration depth all present a sharp 
zigzag pattern. Moreover, the side frictional 
resistance plays a role only after the penetrometer 
cone reaches a certain depth. 

3) The cone tip angle greatly influences the 
failure mode and the transfer of the normal contact 
forces of particles. As the cone tip angle increases, 
the specific penetration resistance and cone tip 
resistance increase simultaneously. Whereas, the 
side frictional resistance is unrelated to the cone tip 
angle. 

4) As the gravity decreases, the specific 
penetration resistance, the cone tip resistance and 
the side frictional resistance all decrease. Thus, the 
effect of low gravity must be particularly taken into 
consideration when designing equipment and 
techniques for CPTs conducted on the lunar surface. 

Following the progress of science and 
technology, in situ lunar exploration is entering a 
flourishing era.  FEM-DEM coupled modeling is a 
promising method for the numerical study of the 
geotechnical problems of lunar soil, whose results 
could serve as a predictive reference and reduce the 
risk of trials for in situ lunar engineering tests. 
Other coupling methods with different weighting 
functions α(x) and β(x) will be applied and 
compared in our future work. Additionally, the 
simulation will be extended to 3D, and the particle 
shape characteristics will be considered. 
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中文导读 
 

对月壤静力触探实验 FEM-DEM 多尺度耦合的模拟研究 
 
摘要：月壤是原位探月工程研究的直接对象，其岩土力学性质极具研究价值。静力触探实验（CPT）
是一种能够快速确定月壤岩土力学性质的技术方法。利用近期研发的一种典型耦合理论，成功获得一

种耦合有限元（FEM）和离散元（DEM）的静力触探多尺度模型。利用静力触探多尺度模型对不同条

件下的月壤静力触探实验进行了模拟研究，定性揭示了静力触探过程中月壤颗粒的流动情况及阻力的

发展情况。同时，模拟研究了刺探速度、深度以及锥尖角度和月表低重力对月壤静力触探的影响。 
 
关键词：FEM-DEM 耦合模型；静力触探实验；月壤；探月工程 


